Target Temperature Management Effect on the Clinical Outcome of Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation: A Nationwide Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Settings
2.2. Data Source
2.3. Study Population
2.4. Variables
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Propensity Score-Matched Analysis of Outcomes in the Two Groups
3.3. Outcome Analysis after PSM
3.4. Multivariable Logistic Analysis of Outcomes in the Patient Groups after PSM
3.5. Propensity Score-Matched Analysis for Subgroup Analysis of Patient Outcomes According to the Time Interval from EMS Call to the ECPR Pump-on, Bystander CPR, and Non-Sustained ROSC Event
3.6. Subgroup Analysis for Patient Outcomes by TTM in the Matched Cohort According to the Time Interval from EMS Call to the ECPR Pump-on (EMS Call to ECPR < 30 min or <60 min)
3.7. Subgroup Analysis for Patient Outcomes by TTM in the Matched Cohort According to Bystander CPR or Non-Sustained ROSC Event
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, D.; MacLaren, G.; Lorusso, R.; Price, S.; Yannopoulos, D.; Vercaemst, L.; Bělohlávek, J.; Taccone, F.S.; Aissaoui, N.; Shekar, K.; et al. Extracorporeal cardiopulmonary resuscitation in adults: Evidence and implications. Intensive Care Med. 2022, 48, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.S.; McNally, B.; Tang, F.; Kellermann, A. Recent trends in survival from out-of-hospital cardiac arrest in the United States. Circulation 2014, 130, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Malta Hansen, C.; Kragholm, K.; Pearson, D.A.; Tyson, C.; Monk, L.; Myers, B.; Nelson, D.; Dupre, M.E.; Fosbøl, E.L.; Jollis, J.G.; et al. Association of Bystander and First-Responder Intervention with Survival after Out-of-Hospital Cardiac Arrest in North Carolina, 2010–2013. JAMA 2015, 314, 255–264. [Google Scholar] [CrossRef] [PubMed]
- McNally, B.; Robb, R.; Mehta, M.; Vellano, K.; Valderrama, A.L.; Yoon, P.W.; Sasson, C.; Crouch, A.; Perez, A.B.; Merritt, R.; et al. Out-of-hospital cardiac arrest surveillance—Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005–December 31, 2010. Morb. Mortal. Wkly. Rep. Surveill. Summ. 2011, 60, 1–19. [Google Scholar]
- Belohlavek, J.; Smalcova, J.; Rob, D.; Franek, O.; Smid, O.; Pokorna, M.; Horák, J.; Mrazek, V.; Kovarnik, T.; Zemanek, D.; et al. Effect of Intra-arrest Transport, Extracorporeal Cardiopulmonary Resuscitation, and Immediate Invasive Assessment and Treatment on Functional Neurologic Outcome in Refractory Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA 2022, 327, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.K.; Darby, Z.; Bleck, T.P.; Whitman, G.J.R.; Kim, B.S.; Cho, S.M. Post-Cardiac Arrest Care in Adult Patients After Extracorporeal Cardiopulmonary Resuscitation. Crit. Care Med. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Aneman, A.; Frost, S.; Parr, M.; Skrifvars, M.B. Target temperature management following cardiac arrest: A systematic review and Bayesian meta-analysis. Crit. Care 2022, 26, 58. [Google Scholar] [CrossRef] [PubMed]
- Belur, A.D.; Sedhai, Y.R.; Truesdell, A.G.; Khanna, A.K.; Mishkin, J.D.; Belford, P.M.; Zhao, D.X.; Vallabhajosyula, S. Targeted Temperature Management in Cardiac Arrest: An Updated Narrative Review. Cardiol. Ther. 2023, 12, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Taccone, F.S.; Lascarrou, J.-B.; Skrifvars, M.B. Targeted temperature management and cardiac arrest after the TTM-2 study. Crit. Care 2021, 25, 275. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhen, Z.; Na, J.; Wang, Q.; Gao, L.; Yuan, Y. Associations of therapeutic hypothermia with clinical outcomes in patients receiving ECPR after cardiac arrest: Systematic review with meta-analysis. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Shoskes, A.; Migdady, I.; Amin, M.; Hasan, L.; Price, C.; Uchino, K.; Choi, C.W.; Hernandez, A.V.; Cho, S.M. Does Targeted Temperature Management Improve Neurological Outcome in Extracorporeal Cardiopulmonary Resuscitation (ECPR)? J. Intensive Care Med. 2022, 37, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Kaneko, T.; Yamada, S.; Takahashi, T. Extracorporeal cardiopulmonary resuscitation with temperature management could improve the neurological outcomes of out-of-hospital cardiac arrest: A retrospective analysis of a nationwide multicenter observational study in Japan. J. Intensive Care 2022, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Ma, Q.; Zhu, C.; Shi, Y.; Duan, B. eCPR Combined with Therapeutic Hypothermia Could Improve Survival and Neurologic Outcomes for Patients with Cardiac Arrest: A Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 703567. [Google Scholar] [CrossRef] [PubMed]
- Donnino, M.W.; Andersen, L.W.; Berg, K.M.; Reynolds, J.C.; Nolan, J.P.; Morley, P.T.; Lang, E.; Cocchi, M.N.; Xanthos, T.; Callaway, C.W.; et al. Temperature Management After Cardiac Arrest: An Advisory Statement by the Advanced Life Support Task Force of the International Liaison Committee on Resuscitation and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation 2015, 132, 2448–2456. [Google Scholar] [CrossRef] [PubMed]
- Neumar, R.W.; Otto, C.W.; Link, M.S.; Kronick, S.L.; Shuster, M.; Callaway, C.W.; Kudenchuk, P.J.; Ornato, J.P.; McNally, B.; Silvers, S.M.; et al. Part 8: Adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122, S729–S767. [Google Scholar] [CrossRef] [PubMed]
- Fagnoul, D.; Combes, A.; De Backer, D. Extracorporeal cardiopulmonary resuscitation. Curr. Opin. Crit. Care 2014, 20, 259–265. [Google Scholar] [CrossRef]
- Jo, I.J.; Shin, T.G.; Sim, M.S.; Song, H.G.; Jeong, Y.K.; Song, Y.-B.; Hahn, J.-Y.; Choi, S.H.; Gwon, H.-C.; Jeon, E.-S.; et al. Outcome of in-hospital adult cardiopulmonary resuscitation assisted with portable auto-priming percutaneous cardiopulmonary support. Int. J. Cardiol. 2011, 151, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Park, I.H.; Yang, J.H.; Jang, W.J.; Chun, W.J.; Oh, J.H.; Park, Y.H.; Yu, C.W.; Kim, H.-J.; Kim, B.S.; Jeong, J.-O.; et al. Clinical Significance of Low-Flow Time in Patients Undergoing Extracorporeal Cardiopulmonary Resuscitation: Results from the RESCUE Registry. J. Clin. Med. 2020, 9, 3588. [Google Scholar] [CrossRef] [PubMed]
- Soar, J.; Nolan, J.P.; Böttiger, B.W.; Perkins, G.D.; Lott, C.; Carli, P.; Pellis, T.; Sandroni, C.; Skrifvars, M.B.; Smith, G.B.; et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 3. Adult advanced life support. Resuscitation 2015, 95, 100–147. [Google Scholar] [CrossRef] [PubMed]
- Roy Chowdhury, S.; Anantharaman, V. Public attitudes towards cardiopulmonary resuscitation training and performance in Singapore. Int. J. Emerg. Med. 2021, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Higashi, A.; Nakada, T.A.; Imaeda, T.; Abe, R.; Shinozaki, K.; Oda, S. Shortening of low-flow duration over time was associated with improved outcomes of extracorporeal cardiopulmonary resuscitation in in-hospital cardiac arrest. J. Intensive Care 2020, 8, 39. [Google Scholar] [CrossRef]
- Inoue, A.; Hifumi, T.; Sakamoto, T.; Kuroda, Y. Extracorporeal Cardiopulmonary Resuscitation for Out-of-Hospital Cardiac Arrest in Adult Patients. J. Am. Heart Assoc. 2020, 9, e015291. [Google Scholar] [CrossRef] [PubMed]
- Napp, L.C.; Sanchez Martinez, C.; Akin, M.; Garcheva, V.; Kühn, C.; Bauersachs, J.; Schäfer, A. Use of extracorporeal membrane oxygenation for eCPR in the emergency room in patients with refractory out-of-hospital cardiac arrest. PLoS ONE 2020, 15, e0239777. [Google Scholar] [CrossRef] [PubMed]
- Shoji, K.; Ohbe, H.; Kudo, D.; Tanikawa, A.; Kobayashi, M.; Aoki, M.; Hamaguchi, T.; Nagashima, F.; Inoue, A.; Hifumi, T.; et al. Low-flow time and outcomes in out-of-hospital cardiac arrest patients treated with extracorporeal cardiopulmonary resuscitation. Am. J. Emerg. Med. 2023, 75, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Liou, F.Y.; Lin, K.C.; Chien, C.S.; Hung, W.T.; Lin, Y.Y.; Yang, Y.P.; Lai, W.Y.; Lin, T.W.; Kuo, S.H.; Huang, W.C. The impact of bystander cardiopulmonary resuscitation on patients with out-of-hospital cardiac arrests. J. Chin. Med. Assoc. JCMA 2021, 84, 1078–1083. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, G.; Masoumi, A.; Brodie, D. ECPR for out-of-hospital cardiac arrest: More evidence is needed. Crit. Care 2020, 24, 7. [Google Scholar] [CrossRef] [PubMed]
- Zeibi Shirejini, S.; Carberry, J.; McQuilten, Z.K.; Burrell, A.J.C.; Gregory, S.D.; Hagemeyer, C.E. Current and future strategies to monitor and manage coagulation in ECMO patients. Thromb. J. 2023, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Kander, T.; Ullén, S.; Dankiewicz, J.; Wise, M.P.; Schött, U.; Rundgren, M. Bleeding Complications After Cardiac Arrest and Targeted Temperature Management, a Post Hoc Study of the Targeted Temperature Management Trial. Ther. Hypothermia Temp. Manag. 2019, 9, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Schiefecker, A.; Lackner, P.; Frank, F.; Helbok, R.; Beer, R.; Pfausler, B.; Schmutzhard, E.; Broessner, G. Targeted Temperature Management in Spontaneous Intracerebral Hemorrhage: A Systematic Review. Curr. Drug Targets 2017, 18, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; DePuydt, J.; Belon, F.; Bailey, M.; Schmidt, M.; Sheldrake, J.; Murphy, D.; Scheinkestel, C.; Cooper, D.J.; Capellier, G.; et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann. Intensive Care 2016, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef]
- Hoyler, M.M.; Flynn, B.; Iannacone, E.M.; Jones, M.M.; Ivascu, N.S. Clinical Management of Venoarterial Extracorporeal Membrane Oxygenation. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2776–2792. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Ahn, C.; Shin, H.; Kim, W.; Lim, T.H.; Jang, B.-H.; Cho, Y.; Choi, K.-S.; Lee, J.; Na, M.K. Efficacy of the cooling method for targeted temperature management in post-cardiac arrest patients: A systematic review and meta-analysis. Resuscitation 2020, 148, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Hoedemaekers, C.W.; Ezzahti, M.; Gerritsen, A.; van der Hoeven, J.G. Comparison of cooling methods to induce and maintain normo- and hypothermia in intensive care unit patients: A prospective intervention study. Crit. Care 2007, 11, R91. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, K.; Tanno, K.; Hase, M.; Mori, K.; Asai, Y. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: A propensity-matched study and predictor analysis. Crit. Care Med. 2013, 41, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Moreau, A.; Levy, B.; Annoni, F.; Lorusso, R.; Su, F.; Belliato, M.; Taccone, F.S. The use of induced hypothermia in extracorporeal membrane oxygenation: A narrative review. Resusc. Plus 2023, 13, 100360. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Sawano, H.; Natsukawa, T.; Nakashima, T.; Oku, H.; Gon, C.; Takahagi, M.; Hayashi, Y. Low-flow time is associated with a favorable neurological outcome in out-of-hospital cardiac arrest patients resuscitated with extracorporeal cardiopulmonary resuscitation. J. Crit. Care 2018, 48, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.Y.K.; Wee, G.H.L.; Huang, M.J.; Hoo, A.E.E.; Tahir Sheriff, I.M.; Lim, S.L.; Tan, T.E.; Loh, Y.J.; Chao, V.T.T.; Soon, J.L.; et al. Therapeutic Hypothermia May Improve Neurological Outcomes in Extracorporeal Life Support for Adult Cardiac Arrest. Heart Lung Circ. 2017, 26, 817–824. [Google Scholar] [CrossRef]
- Yukawa, T.; Kashiura, M.; Sugiyama, K.; Tanabe, T.; Hamabe, Y. Neurological outcomes and duration from cardiac arrest to the initiation of extracorporeal membrane oxygenation in patients with out-of-hospital cardiac arrest: A retrospective study. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 95. [Google Scholar] [CrossRef]
- Hifumi, T.; Inoue, A.; Otani, T.; Otani, N.; Kushimoto, S.; Sakamoto, T.; Kuroda, Y. Details of Targeted Temperature Management Methods for Patients Who Had Out-of-Hospital Cardiac Arrest Receiving Extracorporeal Cardiopulmonary Resuscitation: A Questionnaire Survey. Ther. Hypothermia Temp. Manag. 2022, 12, 215–222. [Google Scholar] [CrossRef]
Variables | Total | ECPR without TTM | ECPR with TTM | p-Value |
---|---|---|---|---|
(n = 399) | (n = 330) | (n = 69) | ||
Age, years [median (IQR)] | 56.0 [45.0–65.0] | 58.0 [46.0–66.0] | 49.0 [42.0–62.0] | 0.004 |
Sex, male, n (%) | 331 (83.0%) | 271 (82.1%) | 60 (87.0%) | 0.426 |
Bystander CPR | 161 (40.4%) | 130 (39.4%) | 31 (44.9%) | 0.473 |
Location of cardiac arrest | ||||
Public places | 100 (25.1%) | 86 (26.1%) | 14 (20.3%) | 0.394 |
First cardiac rhythm at EMS | 91 (22.8%) | 80 (24.2%) | 11 (15.9%) | 0.292 |
Shockable rhythms, n (%) | 114 (28.6%) | 91 (27.6%) | 23 (33.3%) | |
Non-shockable rhythms, n (%) | 91 (22.8%) | 80 (24.2%) | 11 (15.9%) | |
Unknown | 194 (48.6%) | 159 (48.2%) | 35 (50.7%) | |
EMS call to ECPR, mins * | 37.0 [20.2–77.0] | 42.5 [20.1–80.0] | 30.0 [20.2–66.0] | 0.277 |
Non-sustained ROSC event a | 229 (57.4%) | 186 (56.4%) | 43 (62.3%) | 0.438 |
Pre-existing comorbidity, n (%) | ||||
HTN | 157 (39.3%) | 133 (40.3%) | 24 (34.8%) | 0.473 |
DM | 102 (25.6%) | 88 (26.7%) | 14 (20.3%) | 0.341 |
Heart disease | 85 (21.3%) | 74 (22.4%) | 11 (15.9%) | 0.301 |
Chronic kidney disease | 11 (2.8%) | 10 (3.0%) | 1 (1.4%) | 0.698 |
Respiratory disease | 10 (2.5%) | 10 (3.0%) | 0 (0.0%) | 0.222 |
Stroke | 15 (3.8%) | 14 (4.2%) | 1 (1.4%) | 0.485 |
Dyslipidemia | 33 (8.3%) | 28 (8.5%) | 5 (7.2%) | 0.921 |
Mechanical CPR | 119 (29.8%) | 102 (30.9%) | 17 (24.6%) | 0.373 |
Post-cardiac arrest care | ||||
PCI | 272 (68.2%) | 214 (64.8%) | 58 (84.1%) | 0.003 |
Outcomes at hospital discharge | ||||
Survival | 60 (15.0%) | 42 (12.7%) | 18 (26.1%) | 0.008 |
Good neurological outcome | 39 (9.8%) | 28 (8.5%) | 11 (15.9%) | 0.094 |
Variables | Total | ECPR without TTM | ECPR with TTM | p-Value |
---|---|---|---|---|
(n = 138) | (n = 69) | (n = 69) | ||
Age, years [median (IQR)] | 50.0 [41.0–60.0] | 50.0 [41.0–58.0] | 49.0 [42.0–62.0] | 0.606 |
Sex, male, n (%) | 117 (84.8%) | 57 (82.6%) | 60 (87.0%) | 0.636 |
Bystander CPR | 63 (45.7%) | 32 (46.4%) | 31 (44.9%) | 1.000 |
Location of cardiac arrest | ||||
Public places | 33 (23.9%) | 19 (27.5%) | 14 (20.3%) | 0.425 |
First cardiac rhythm at EMS | 27 (19.6%) | 16 (23.2%) | 11 (15.9%) | 0.055 |
Shockable rhythms, n (%) | 34 (24.6%) | 11 (15.9%) | 23 (33.3%) | |
Non-shockable rhythms, n (%) | 27 (19.6%) | 16 (23.2%) | 11 (15.9%) | |
Unknown | 77 (55.8%) | 42 (60.9%) | 35 (50.7%) | |
EMS call to ECPR, mins * | 30.0 [10.9–62.0] | 30.6 [10.8–57.0] | 30.0 [20.2–66.0] | 0.069 |
Non-sustained ROSC event a | 87 (63.0%) | 44 (63.8%) | 43 (62.3%) | 1.000 |
Pre-existing comorbidity, n (%) | ||||
HTN | 43 (31.2%) | 19 (27.5%) | 24 (34.8%) | 0.462 |
DM | 30 (21.7%) | 16 (23.2%) | 14 (20.3%) | 0.836 |
Heart disease | 27 (19.6%) | 16 (23.2%) | 11 (15.9%) | 0.391 |
Chronic kidney disease | 3 (2.2%) | 2 (2.9%) | 1 (1.4%) | 1.000 |
Respiratory disease | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1.000 |
Stroke | 3 (2.2%) | 2 (2.9%) | 1 (1.4%) | 1.000 |
Dyslipidemia | 10 (7.2%) | 5 (7.2%) | 5 (7.2%) | 1.000 |
Mechanical CPR | 30 (21.7%) | 13 (18.8%) | 17 (24.6%) | 0.536 |
Post-cardiac arrest care | ||||
PCI | 113 (81.9%) | 55 (79.7%) | 58 (84.1%) | 0.658 |
Outcomes at hospital discharge | ||||
Survival | 34 (24.6%) | 16 (23.2%) | 18 (26.1%) | 0.843 |
Good neurological outcome | 21 (15.2%) | 10 (14.5%) | 11 (15.9%) | 1.000 |
OR (95%CI) | p-Value | |
---|---|---|
Survival to hospital discharge * | ||
Public places | 4.323 (1.541–12.122) | 0.005 |
Shockable rhythm | 10.739 (1.889–61.680) | 0.007 |
TTM | 0.930 (0.339–2.546) | 0.887 |
Good neurologic outcome * | ||
Age | 0.944 (0.898–0.992) | 0.023 |
TTM | 1.139 (0.361–3.593) | 0.824 |
EMS Call to ECPR Pump-on < 30 min | EMS Call to ECPR Pump-on < 60 min | |||||
---|---|---|---|---|---|---|
ECPR without TTM, n/N (%) | ECPR with TTM, n/N (%) | p | ECPR without TTM, n/N (%) | ECPR with TTM, n/N (%) | p | |
Survival to hospital discharge | 6/35 (17.1%) | 10/35 (28.6%) | 0.393 | 15/46 (32.6%) | 12/46 (26.1%) | 0.471 |
Good neurological outcome | 4/35 (11.4%) | 6/35 (17.1%) | 0.733 | 9/46 (19.6%) | 7/46 (15.2%) | 0.104 |
Bystander CPR | Non-Sustained ROSC Event a | |||||
---|---|---|---|---|---|---|
ECPR without TTM, n/N (%) | ECPR with TTM, n/N (%) | p | ECPR without TTM, n/N (%) | ECPR with TTM, n/N (%) | p | |
Survival to hospital discharge | 7/30 (23.3%) | 9/30 (30.0%) | 0.770 | 14/43 (32.6%) | 10/43 (23.3%) | 0.471 |
Good neurological outcome | 6/30 (20.0%) | 3/30 (10.0%) | 0.472 | 12/43 (27.9%) | 5/43 (11.6%) | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kim, J.-G.; Kang, G.-H.; Jang, Y.-S.; Kim, W.; Choi, H.-Y.; Lee, Y.; Ahn, C. Target Temperature Management Effect on the Clinical Outcome of Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation: A Nationwide Observational Study. J. Pers. Med. 2024, 14, 185. https://doi.org/10.3390/jpm14020185
Kim J-H, Kim J-G, Kang G-H, Jang Y-S, Kim W, Choi H-Y, Lee Y, Ahn C. Target Temperature Management Effect on the Clinical Outcome of Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation: A Nationwide Observational Study. Journal of Personalized Medicine. 2024; 14(2):185. https://doi.org/10.3390/jpm14020185
Chicago/Turabian StyleKim, Jae-Hee, Jae-Guk Kim, Gu-Hyun Kang, Yong-Soo Jang, Wonhee Kim, Hyun-Young Choi, Yoonje Lee, and Chiwon Ahn. 2024. "Target Temperature Management Effect on the Clinical Outcome of Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation: A Nationwide Observational Study" Journal of Personalized Medicine 14, no. 2: 185. https://doi.org/10.3390/jpm14020185
APA StyleKim, J. -H., Kim, J. -G., Kang, G. -H., Jang, Y. -S., Kim, W., Choi, H. -Y., Lee, Y., & Ahn, C. (2024). Target Temperature Management Effect on the Clinical Outcome of Patients with Out-of-Hospital Cardiac Arrest Treated with Extracorporeal Cardiopulmonary Resuscitation: A Nationwide Observational Study. Journal of Personalized Medicine, 14(2), 185. https://doi.org/10.3390/jpm14020185