Associations between Mediterranean Diet Adherence, Quality of Life, and Mental Health in Patients with Multiple Sclerosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.2.1. Sociodemographic and Anthropometric Factors Assessment of the Study Population
2.2.2. Disease Disability, Physical Activity, Quality of Life, and Depression Assessment of the Survey Population
2.2.3. Mediterranean Diet Adherence Assessment of the Study Population
2.2.4. Blood Circulating Biochemical Parameters of the Study Population
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Study Population
3.2. Association of MD Compliance with Socio-Demographic and Anthropometry Parameters of the Study Population
3.3. Association of MD Compliance with Disease Disability, Quality of Life, Physical Activity Levels and Depressive Symptoms of the Enrolled MS Patients
3.4. Association of MD Compliance with Blood Biochemical Parameters of the Enrolled MS Patients
3.5. Multivariate Analysis of MD Compliance by Adjusting for Potential Confounders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Gupta, G.D.; Mehan, S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J. Clin. Med. 2023, 12, 4274. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.; Antel, J.; Kuhlmann, T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol. 2023, 19, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Hagemeier, K.; Brück, W.; Kuhlmann, T. Multiple sclerosis-remyelination failure as a cause of disease progression. Histol. Histopathol. 2012, 27, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Gaby, A. Multiple Sclerosis. Glob. Adv. Health Med. 2013, 2, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, E.S.; Fitzgerald, K.C. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr. Allergy Asthma Rep. 2023, 23, 481–496. [Google Scholar] [CrossRef]
- Boiko, A.; Vorobeychik, G.; Paty, D.; Devonshire, V.; Sadovnick, D. University of British Columbia MS Clinic Neurologists. Early onset multiple sclerosis: A longitudinal study. Neurology 2002, 59, 1006–1010. [Google Scholar] [CrossRef]
- Amin, M.; Hersh, C.M. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener. Dis. Manag. 2023, 13, 47–70. [Google Scholar] [CrossRef]
- Merino-Vico, A.; Frazzei, G.; van Hamburg, J.P.; Tas, S.W. Targeting B cells and plasma cells in autoimmune diseases: From established treatments to novel therapeutic approaches. Eur. J. Immunol. 2023, 53, e2149675. [Google Scholar] [CrossRef]
- Warren, S.A.; Janzen, W.; Warren, K.G.; Svenson, L.W.; Schopflocher, D.P. Multiple Sclerosis Mortality Rates in Canada, 1975-2009. Can. J. Neurol. Sci. 2016, 43, 134–141. [Google Scholar] [CrossRef]
- Capasso, N.; Virgilio, E.; Covelli, A.; Giovannini, B.; Foschi, M.; Montini, F.; Nasello, M.; Nilo, A.; Prestipino, E.; Schirò, G.; et al. Aging in multiple sclerosis: From childhood to old age, etiopathogenesis, and unmet needs: A narrative review. Front. Neurol. 2023, 14, 1207617. [Google Scholar] [CrossRef]
- Poppe, A.Y.; Wolfson, C.; Zhu, B. Prevalence of multiple sclerosis in Canada: A systematic review. Can. J. Neurol. Sci. 2008, 5, 593–601. [Google Scholar] [CrossRef]
- Files, D.K.; Jausurawong, T.; Katrajian, R.; Danoff, R. Multiple sclerosis. Prim. Care 2015, 42, 159–175. [Google Scholar] [CrossRef]
- Lorefice, L.; Mellino, P.; Fenu, G.; Cocco, E. How to measure the treatment response in progressive multiple sclerosis: Current perspectives and limitations in clinical settings. Mult. Scler. Relat. Disord. 2023, 76, 104826. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Yu, N.; Blanchard, J.; Leung, S.; Elliott, L. The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology 2010, 74, 465–471. [Google Scholar] [CrossRef]
- Meyer-Moock, S.; Feng, Y.S.; Maeurer, M.; Dippel, F.W.; Kohlmann, T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014, 14, 58. [Google Scholar] [CrossRef]
- Galetta, K.M.; Bhattacharyya, S. Multiple Sclerosis and Autoimmune Neurology of the Central Nervous System. Med. Clin. N. Am. 2019, 103, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, A.; Ahlenstiel, C.; Swaminathan, S.; Parnell, G.P. The interaction between Epstein-Barr virus and multiple sclerosis genetic risk loci: Insights into disease pathogenesis and therapeutic opportunities. Clin. Transl. Immunol. 2023, 12, e1454. [Google Scholar] [CrossRef]
- Feinstein, A. The neuropsychiatry of multiple sclerosis. Can. J. Psychiatry 2004, 49, 157–163. [Google Scholar] [CrossRef]
- Margoni, M.; Preziosa, P.; Rocca, M.A.; Filippi, M. Depressive symptoms, anxiety and cognitive impairment: Emerging evidence in multiple sclerosis. Transl. Psychiatry 2023, 13, 264. [Google Scholar] [CrossRef] [PubMed]
- Binzer, S.; McKay, K.A.; Brenner, P.; Hillert, J.; Manouchehrinia, A. Disability worsening among persons with multiple sclerosis and depression: A Swedish cohort study. Neurology 2019, 93, e2216–e2223. [Google Scholar] [CrossRef] [PubMed]
- McKay, K.A.; Tremlett, H.; Fisk, J.D.; Zhang, T.; Patten, S.B.; Kastrukoff, L.; Campbell, T.; Marrie, R.A.; CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Psychiatric comorbidity is associated with disability progression in multiple sclerosis. Neurology 2018, 90, e1316–e1323. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.; Horwitz, R.; Vollmer, T. The burden of mental comorbidity in multiple sclerosis: Frequent, underdiagnosed, and undertreated. Mult. Scler. 2009, 15, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Brasanac, J.; Chien, C. A review on multiple sclerosis prognostic findings from imaging, inflammation, and mental health studies. Front. Hum. Neurosci. 2023, 17, 1151531. [Google Scholar] [CrossRef]
- Esposito, S.; Bonavita, S.; Sparaco, M.; Gallo, A.; Tedeschi, G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018, 21, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Tsagalioti, E.; Trifonos, C.; Morari, A.; Vadikolias, K.; Giaginis, C. Clinical value of nutritional status in neurodegenerative diseases: What is its impact and how it affects disease progression and management? Nutr. Neurosci. 2018, 21, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Khemka, S.; Reddy, A.; Garcia, R.I.; Jacobs, M.; Reddy, R.P.; Roghani, A.K.; Pattoor, V.; Basu, T.; Sehar, U.; Reddy, P.H. Role of diet and exercise in aging, Alzheimer’s disease, and other chronic diseases. Ageing Res. Rev. 2023, 91, 102091. [Google Scholar] [CrossRef]
- Armon-Omer, A.; Waldman, C.; Simaan, N.; Neuman, H.; Tamir, S.; Shahien, R. New Insights on the Nutrition Status and Antioxidant Capacity in Multiple Sclerosis Patients. Nutrients 2019, 11, 427. [Google Scholar] [CrossRef]
- Atabilen, B.; Akdevelioğlu, Y. Effects of different dietary interventions in multiple sclerosis: A systematic review of evidence from 2018 to 2022. Nutr. Neurosci. 2023, 26, 1279–1291. [Google Scholar] [CrossRef]
- La Rosa, G.; Lonardo, M.S.; Cacciapuoti, N.; Muscariello, E.; Guida, B.; Faraonio, R.; Santillo, M.; Damiano, S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 7247. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; Cheek, J.J.; Fox, S.S.; Healy, H.S.; Schweizer, M.L.; Bao, W.; Kamholz, J.; Titcomb, T.J. Efficacy of Diet on Fatigue and Quality of Life in Multiple Sclerosis: A Systematic Review and Network Meta-analysis of Randomized Trials. Neurology 2023, 100, e357–e366. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Leweling, H. Multiple sclerosis and nutrition. Mult. Scler. 2005, 11, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bäärnhielm, M.; Olsson, T.; Alfredsson, L. Fatty fish intake is associated with decreased occurrence of multiple sclerosis. Mult. Scler. 2014, 20, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Tryfonos, C.; Mantzorou, M.; Fotiou, D.; Vrizas, M.; Vadikolias, K.; Pavlidou, E.; Giaginis, C. Dietary Supplements on Con-trolling Multiple Sclerosis Symptoms and Relapses: Current Clinical Evidence and Future Perspectives. Medicines 2019, 6, 95. [Google Scholar] [CrossRef]
- Ferorelli, P.; Antonelli, F.; Shevchenko, A.; Mischiati, C.; Doepp, M.; Lenzi, S.; Borromeo, I.; Feriotto, G.; Beninati, S. Reduction in Fatigue Symptoms Following the Administration of Nutritional Supplements in Patients with Multiple Sclerosis. Med. Sci. 2021, 9, 52. [Google Scholar] [CrossRef]
- Penesová, A.; Dean, Z.; Kollár, B.; Havranová, A.; Imrich, R.; Vlček, M.; Rádiková, Ž. Nutritional intervention as an essential part of multiple sclerosis treatment? Physiol. Res. 2018, 67, 521–533. [Google Scholar] [CrossRef]
- Wahls, T.L. Dietary Approaches to Treating Multiple Sclerosis-Related Symptoms. Phys. Med. Rehabil. Clin. N. Am. 2022, 33, 605–620. [Google Scholar] [CrossRef]
- Zielińska, M.; Michońska, I. Effectiveness of various diet patterns among patients with multiple sclerosis. Postep. Psychiatr. Neurol. 2023, 32, 49–58. [Google Scholar] [CrossRef]
- Langer-Gould, A.; Black, L.J.; Waubant, E.; Smith, J.B.; Wu, J.; Gonzales, E.G.; Shao, X.; Koebnick, C.; Lucas, R.M.; Xiang, A.; et al. Seafood, fatty acid biosynthesis genes, and multiple sclerosis susceptibility. Mult. Scler. 2020, 26, 1476–1485. [Google Scholar] [CrossRef]
- Alfredsson, L.; Olsson, T.; Hedström, A.K. Inverse association between Mediterranean diet and risk of multiple sclerosis. Mult. Scler. 2023, 29, 1118–1125. [Google Scholar] [CrossRef]
- Özel, S.U.; Bayram, S.; Kılınç, M. The relationship between dietary profile and adherence to the Mediterranean diet with EDSS and quality of life in multiple sclerosis patients: A retrospective cross-sectional study. Nutr. Neurosci. 2023, 18, 1–9. [Google Scholar] [CrossRef]
- Farzinmehr, S.; Hosseini, S.; Kamali, H.; Moghadasi, A.N.; Poursadeghfard, M.; Sharifi, M.H. Association of self-reported adherence to the Mediterranean diet with anthropometric indices, comorbidities, and degree of disability in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 66, 104060. [Google Scholar] [CrossRef]
- Felicetti, F.; Tommasin, S.; Petracca, M.; De Giglio, L.; Gurreri, F.; Ianniello, A.; Nistri, R.; Pozzilli, C.; Ruggieri, S. Eating Hubs in Multiple Sclerosis: Exploring the Relationship Between Mediterranean Diet and Disability Status in Italy. Front. Nutr. 2022, 9, 882426. [Google Scholar] [CrossRef]
- Öztürk, Y.E.; Helvaci, E.M.; Sökülmez Kaya, P.; Terzi, M. Is Mediterranean diet associated with multiple sclerosis related symptoms and fatigue severity? Nutr. Neurosci. 2023, 26, 228–234. [Google Scholar] [CrossRef]
- Guglielmetti, M.; Al-Qahtani, W.H.; Ferraris, C.; Grosso, G.; Fiorini, S.; Tavazzi, E.; Greco, G.; La Malfa, A.; Bergamaschi, R.; Tagliabue, A. Adherence to Mediterranean Diet Is Associated with Multiple Sclerosis Severity. Nutrients 2023, 15, 4009. [Google Scholar] [CrossRef] [PubMed]
- Cavalla, P.; Vercellino, M. May Mediterranean diet contribute to reduce risk of multiple sclerosis? Mult. Scler. 2023, 29, 1045–1046. [Google Scholar] [CrossRef]
- Riccio, P.; Rossano, R. Nutrition facts in multiple sclerosis. ASN Neuro 2015, 7, 1759091414568185. [Google Scholar] [CrossRef]
- Samara, A.; Cantoni, C.; Piccio, L.; Cross, A.H.; Chahin, S. Obesity, gut microbiota, and multiple sclerosis: Unraveling the connection. Mult. Scler. Relat. Disord. 2023, 76, 104768. [Google Scholar] [CrossRef]
- Mangels, A.R. CE: Malnutrition in Older Adults. Am. J. Nurs. 2018, 118, 34–41. [Google Scholar] [CrossRef]
- Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Serdari, A.; Vasios, G.; Tryfonos, C.; Giaginis, C. Nutritional status is associated with the degree of cognitive impairment and depressive symptoms in a Greek elderly population. Nutr. Neurosci. 2020, 23, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Tryfonos, C.; Vasios, G.; Serdari, A.; Giaginis, C. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clin. Exp. Res. 2021, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Tryfonos, C.; Pavlidou, E.; Vorvolakos, T.; Alexatou, O.; Vadikolias, K.; Mentzelou, M.; Tsourouflis, G.; Serdari, A.; Antasouras, G.; Papadopoulou, S.K.; et al. Association of Higher Mediterranean Diet Adherence with Lower Prevalence of Disability and Symptom Severity, Depression, Anxiety, Stress, Sleep Quality, Cognitive Impairment, and Physical Inactivity in Older Adults with Multiple Sclerosis. J. Geriatr. Psychiatry Neurol. 2023, 29, 8919887231218754. [Google Scholar] [CrossRef]
- Tryfonos, C.; Chrysafi, M.; Vadikolias, K.; Berberoglou, L.; Vorvolakos, T.; Dimoliani, S.; Tsourouflis, G.; Kontogiorgis, C.; Antasouras, G.; Giaginis, C. Nutritional Interventional Studies in Patients with Multiple Sclerosis: A Scoping Review of the Current Clinical Evidence. J. Neurol. 2024; in press. [Google Scholar] [CrossRef]
- Barreiro-González, A.; Sanz, M.T.; Carratalà-Boscà, S.; Pérez-Miralles, F.; Alcalá, C.; Carreres-Polo, J.; España-Gregori, E.; Casanova, B. Design and Validation of an Expanded Disability Status Scale Model in Multiple Sclerosis. Eur. Neurol. 2022, 85, 112–121. [Google Scholar] [CrossRef]
- Nociti, V.; Romozzi, M. The Importance of Managing Modifiable Comorbidities in People with Multiple Sclerosis: A Narrative Review. J. Pers. Med. 2023, 13, 1524. [Google Scholar] [CrossRef] [PubMed]
- Hauer, L.; Perneczky, J.; Sellner, J. A global view of comorbidity in multiple sclerosis: A systematic review with a focus on regional differences, methodology, and clinical implications. J. Neurol. 2021, 268, 4066–4077. [Google Scholar] [CrossRef]
- Bourre, B.; Casez, O.; Ciron, J.; Gueguen, A.; Kwiatkowski, A.; Moisset, X.; Montcuquet, A.; Ayrignac, X. Paradigm shifts in multiple sclerosis management: Implications for daily clinical practice. Rev. Neurol. 2023, 179, 256–264. [Google Scholar] [CrossRef]
- Magistrale, G.; Pisani, V.; Argento, O.; Incerti, C.C.; Bozzali, M.; Cadavid, D.; Caltagirone, C.; Medori, R.; DeLuca, J.; Nocentini, U. Validation of the World Health Organization Disability Assessment Schedule II (WHODAS-II) in patients with multiple sclerosis. Mult. Scler. 2015, 21, 448–456. [Google Scholar] [CrossRef]
- Visser, L.A.; Louapre, C.; Uyl-de Groot, C.A.; Redekop, W.K. Health-related quality of life of multiple sclerosis patients: A European multi-country study. Arch. Public. Health 2021, 79, 39. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Braz. J. Psychiatry 2013, 35, 416–431. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Canudas, S.; Becerra-Tomás, N.; Hernández-Alonso, P.; Galié, S.; Leung, C.; Crous-Bou, M.; De Vivo, I.; Gao, Y.; Gu, Y.; Meinilä, J.; et al. Mediterranean Diet and Telomere Length: A Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 1544–1554. [Google Scholar] [CrossRef]
- Sand, I.K.; Levy, S.; Fitzgerald, K.; Sorets, T.; Sumowski, J.F. Mediterranean diet is linked to less objective disability in multiple sclerosis. Mult. Scler. 2023, 29, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Baker, K.; Ponsonby, A.L.; van der Mei, I.; Lucas, R.M.; Pereira, G.; Ausimmune Investigator Group. A Higher Mediterranean Diet Score, Including Unprocessed Red Meat, Is Associated with Reduced Risk of Central Nervous System Demyelination in a Case-Control Study of Australian Adults. J. Nutr. 2019, 149, 1385–1392. [Google Scholar] [CrossRef]
- Mannino, A.; Daly, A.; Dunlop, E.; Probst, Y.; Ponsonby, A.L.; van der Mei, I.A.F.; Ausimmune Investigator Group; Black, L.J. Higher consumption of ultra-processed foods and increased likelihood of central nervous system demyelination in a case-control study of Australian adults. Eur. J. Clin. Nutr. 2023, 77, 611–614. [Google Scholar] [CrossRef]
- Park, Y.; Park, J.; Kim, Y.; Baek, H.; Kim, S.H. Association between nutritional status and disease severity using the amyotrophic lateral sclerosis (ALS) functional rating scale in ALS patients. Br. J. Nutr. 2015, 114, 231–239. [Google Scholar] [CrossRef]
- Bojang, K.P.; Manchana, V. Nutrition and Healthy Aging: A Review. Curr. Nutr. Rep. 2023, 12, 369–375. [Google Scholar] [CrossRef]
- Franco, G.A.; Interdonato, L.; Cordaro, M.; Cuzzocrea, S.; Di Paola, R. Bioactive Compounds of the Mediterranean Diet as Nutritional Support to Fight Neurodegenerative Disease. Int. J. Mol. Sci. 2023, 24, 7318. [Google Scholar] [CrossRef]
- Itsiopoulos, C.; Mayr, H.L.; Thomas, C.J. The anti-inflammatory effects of a Mediterranean diet: A review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 415–422. [Google Scholar] [CrossRef]
- Finicelli, M.; Di Salle, A.; Galderisi, U.; Peluso, G. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients 2022, 14, 2956. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, M.; Grosso, G.; Ferraris, C.; Bergamaschi, R.; Tavazzi, E.; La Malfa, A.; Wahidah, H.A.; Tagliabue, A. Ultra-processed foods consumption is associated with multiple sclerosis severity. Front. Neurol. 2023, 14, 1086720. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Walld, R.; Bolton, J.M.; Sareen, J.; Patten, S.B.; Singer, A.; Lix, L.M.; Hitchon, C.A.; El-Gabalawy, R.; Katz, A.; et al. Effect of mood and anxiety disorders on health care utilization in multiple sclerosis. Mult. Scler. 2021, 27, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Schorr, E.M.; Kurz, D.; Rossi, K.C.; Zhang, M.; Yeshokumar, A.K.; Jette, N.; Dhamoon, M.S. Depression readmission risk is elevated in multiple sclerosis compared to other chronic illnesses. Mult. Scler. 2022, 28, 139–148. [Google Scholar] [CrossRef]
- Davis, B.E.; Lakin, L.; Binns, C.C.; Currie, K.M.; Rensel, M.R. Patient and Provider Insights into the Impact of Multiple Sclerosis on Mental Health: A Narrative Review. Neurol. Ther. 2021, 10, 99–119. [Google Scholar] [CrossRef]
- Hanna, M.; Strober, L.B. Anxiety and depression in Multiple Sclerosis (MS): Antecedents, consequences, and differential impact on well-being and quality of life. Mult. Scler. Relat. Disord. 2020, 44, 102261. [Google Scholar] [CrossRef]
- Amaslidou, A.; Ierodiakonou-Benou, I.; Bakirtzis, C.; Nikolaidis, I.; Tatsi, T.; Grigoriadis, N.; Nimatoudis, I. Multiple sclerosis and mental health related quality of life: The role of defense mechanisms, defense styles and family environment. AIMS Neurosci. 2023, 10, 354–375. [Google Scholar] [CrossRef]
- Pernice, S.; Maglione, A.; Tortarolo, D.; Sirovich, R.; Clerico, M.; Rolla, S.; Beccuti, M.; Cordero, F. A new computational workflow to guide personalized drug therapy. J. Biomed. Inform. 2023, 148, 104546. [Google Scholar] [CrossRef] [PubMed]
- Aboseif, A.; Roos, I.; Krieger, S.; Kalincik, T.; Hersh, C.M. Leveraging Real-World Evidence and Observational Studies in Treating Multiple Sclerosis. Neurol. Clin. 2024, 42, 203–227. [Google Scholar] [CrossRef] [PubMed]
Characteristics (n = 558) | Descriptive Statistics |
---|---|
Age (mean ± SD; years) | 38.6 ± 12.2 |
Gender (n, %) | |
Female | 420 (75.3%) |
Male | 138 (24.7%) |
Education level (mean ± SD; years) | 12.5 ± 4.9 |
Family economic status (n, %) | |
Low | 330 (59.2%) |
Medium | 162 (29.0%) |
High | 66 (11.8%) |
Smoking habits (n, %) | |
No smokers | 403 (72.2%) |
Regular smokers | 155 (27.8%) |
Nationality (n, %) | |
Greek | 456 (81.7%) |
Other | 102 (18.3%) |
BMI status (n, %) | |
Normal weight | 241 (43.2%) |
Overweight | 199 (35.7%) |
Obese | 118 (21.1%) |
WHR (n, %) | |
Low | 220 (39.4%) |
Moderate | 222 (39.8%) |
High | 116 (20.8%) |
IPAQ (n, %) | |
Low | 167 (29.9%) |
Medium | 161 (28.9%) |
High | 230 (41.2%) |
EDSS (n, %) | |
0–2.5 | 252 (45.2%) |
3.0–4.5 | 165 (29.6%) |
5.0–6.5 | 81 (14.5%) |
≥7.0 | 60 (10.7%) |
MSQOL-54 (n, %) | |
Below mean value | 274 (49.1%) |
Over mean value | 284 (50.9%) |
Depression (n, %) | |
Undepressed | 350 (62.7%) |
Depressed | 208 (37.3%) |
Ferritin (mean ± SD; ng/mL) | 118 ± 54.3 |
Albumin (mean ± SD; g/dL) | 3.8 ± 0.7 |
Creatinine (mean ± SD; mg/dL) | 0.8 ± 0.5 |
RBC (mean ± SD; 106/mL) | 4.4 ± 0.5 |
Hemoglobin (mean ± SD; g/dL) | 14.0 ± 4.6 |
Hematocrit (mean ± SD; %) | 37.8 ± 5.5 |
RDW (mean ± SD; fL) | 58.3 ± 7.6 |
MCV (mean ± SD; fL) | 87.8 ± 8.5 |
MCH (mean ± SD; pg) | 29.5 ± 4.4 |
MCHC (mean ± SD; g/dL) | 34.1 ± 4.3 |
WBC (mean ± SD; k/μL) | 7.5 ± 2.4 |
NEUT (mean ± SD; %) | 67.5% ± 9.6 |
LYMPH (mean ± SD; k/μL) | 34.1% ± 4.7 |
MONO (mean ± SD; %) | 6.5% ± 1.8 |
EO (mean ± SD; %) | 4.0% ± 1.7 |
BASO (mean ± SD; %) | 0.5% ± 0.5 |
PLT (mean ± SD; k/μL) | 278.0 ± 12.9 |
Vitamin B12 (pg/mL) | 585 ± 44.7 |
Characteristics (n = 558) | Mediterranean Diet Adherence | ||||
---|---|---|---|---|---|
Very Low 138 (24.7%) | Low 138 (24.7%) | Moderate 141 (25.3%) | High 141 (25.3%) | p-Value | |
Age (mean ± SD; years) | 38.9 ± 11.9 | 38.3 ± 11.3 | 38.5 ± 12.1 | 38.8 ± 12.2 | p = 0.5678 |
Sex (n, %) | p = 0.6636 | ||||
Female | 102 (73.9%) | 108 (78.3%) | 102 (72.3%) | 108 (76.6%) | |
Male | 36 (26.1%) | 30 (21.7%) | 39 (27.7%) | 33 (23.4%) | |
Educational status (mean ± SD; years) | 12.2 ± 4.2 | 12.6 ± 4.8 | 12.4 ± 4.5 | 12.7 ± 4.7 | p = 0.3121 |
Family economic status (n, %) | p = 0.6873 | ||||
Low | 81 (58.7%) | 81 (58.7%) | 87 (61.7%) | 81 (57.4%) | |
Medium | 36 (26.1%) | 45 (32.6%) | 39 (27.7%) | 43 (29.8%) | |
High | 21 (15.2%) | 12 (8.7%) | 15 (10.6%) | 18 (12.8%) | |
Smoking habits (n, %) | p = 0.8653 | ||||
No smokers | 96 (69.6%) | 102 (73.9%) | 102 (72.3%) | 103 (73.0%) | |
Smokers | 42 (30.4%) | 36 (26.1%) | 39 (27.7%) | 38 (27.03%) | |
Nationality (n, %) | p = 0.1149 | ||||
Greek | 212 (84.1%) | 136 (82.42%) | 63 (77.8%) | 45 (75.0%) | |
Other | 40 (15.9%) | 29 (17.6%) | 18 (22.2%) | 15 (25.0%) | |
BMI status (n, %) | p < 0.0001 | ||||
Normal weight | 48 (34.8%) | 27 (19.6%) | 89 (63.2%) | 77 (54.6%) | |
Overweight | 45 (32.6%) | 73 (52.9%) | 25 (17.7%) | 56 (39.7%) | |
Obese | 45 (32.6%) | 38 (24.5%) | 27 (19.1%) | 8 (5.7%) | |
WHR (n, %) | p = 0.0004 | ||||
Low | 54 (39.1%) | 36 (26.1%) | 61 (43.3%) | 69 (48.9%) | |
Moderate | 46 (33.3%) | 63 (45.6%) | 53 (37.6%) | 60 (42.6%) | |
High | 38 (27.5%) | 39 (28.3%) | 27 (19.1%) | 12 (8.5%) | |
IPAQ (n, %) | p < 0.0001 | ||||
Low | 99 (71.7%) | 43 (31.2%) | 10 (7.1%) | 15 (10.6%) | |
Medium | 30 (21.8%) | 75 (54.3%) | 25 (17.7%) | 31 (22.0%) | |
High | 9 (6.5%) | 20 (14.5%) | 106 (75.2%) | 95 (67.4%) | |
EDSS (n, %) | p < 0.0001 | ||||
0–2.5 | 15 (10.9%) | 39 (28.3%) | 105 (74.5%) | 93 (66.0%) | |
3.0–4.5 | 57 (41.3%) | 51 (37.0%) | 24 (17.0%) | 33 (23.4%) | |
5.0–6.5 | 33 (23.9%) | 33 (23.9%) | 6 (4.3%) | 9 (6.4%) | |
≥7.0 | 33 (23.9%) | 15 (10.9%) | 6 (4.3%) | 6 (4.3%) | |
MSQOL-54 (n, %) | p < 0.0001 | ||||
Below mean value | 121 (87.7%) | 103 (74.6%) | 27 (19.1%) | 23 (16.3%) | |
Over mean value | 17 (12.3%) | 35 (25.4%) | 114 (8.9%) | 118 (83.7%) | |
Depression (n, %) | p = 0.0009 | ||||
Undepressed | 66 (47.8%) | 85 (61.6%) | 96 (68.1%) | 103 (73.0%) | |
Depressed | 72 (52.2%) | 53 (38.4%) | 45 (31.9%) | 38 (27.0%) | |
Ferritin (mean ± SD; ng/mL) | 101.1 ± 52.1 | 112 ± 53.7 | 134 ± 53.5 | 136 ± 53.9 | p = 0.0084 |
Albumin (mean ± SD; g/dL) | 3.5 ± 0.7 | 3.6 ± 0.5 | 3.7 ± 0.6 | 4.1 ± 0.7 | p = 0.0012 |
Creatinine (mean ± SD; mg/dL) | 0.9 ± 0.6 | 0.7 ± 0.5 | 0.8 ± 0.4 | 0.9 ± 0.2 | p = 0.3295 |
RBC (mean ± SD; 106/mL) | 4.1 ± 0.5 | 4.3 ± 0.4 | 4.6 ± 0.4 | 4.8 ± 0.3 | p = 0.0023 |
Hemoglobin (mean ± SD; g/dL) | 13.1 ± 3.2 | 13.8 ±4.4 | 14.2 ±3.1 | 14.9 ±2.9 | p = 0.0048 |
Hematocrit (mean ± SD; %) | 36.2 ± 5.6 | 37.3 ± 5.6 | 38.5 ± 5.4 | 39.1 ± 5.2 | p = 0.0059 |
RDW (mean ± SD; fL) | 57.9 ± 7.8 | 58.5 ± 7.3 | 58.1 ± 7.5 | 59.1 ± 7.2 | p = 0.2895 |
MCV (mean ± SD; fL) | 87.1 ± 8.3 | 88.0 ± 8.2 | 87.9 ± 8.3 | 87.9 ± 8.1 | p = 0.2736 |
MCH (mean ± SD; pg) | 28.8 ± 4.1 | 29.4 ± 4.2 | 29.7 ± 4.5 | 29.9 ± 4.6 | p = 0.1943 |
MCHC (mean ± SD; g/dL) | 33.6 ± 4.8 | 34.5 ± 4.6 | 34.3 ± 4.1 | 34.4 ± 4.2 | p = 0.1291 |
WBC (mean ± SD; k/μL) | 7.8 ± 2.1 | 7.6 ± 1.8 | 7.5 ± 2.3 | 7.3 ± 1.9 | p = 0.0343 |
NEUT (mean ± SD; %) | 67.8% ± 8.9 | 68.1% ± 9.7 | 67.4% ± 9.5 | 67.2% ± 9.2 | p = 0.2897 |
LYMPH (mean ± SD; k/μL) | 34.9 ± 4.8 | 34.5 ± 4.9 | 33.9 ± 4.5 | 34.2% ± 4.8 | p = 0.2492 |
MONO (mean ± SD; %) | 6.6% ± 1.7 | 6.3% ± 1.5 | 6.8% ± 1.9 | 6.5% ± 1.4 | p = 0.4492 |
EO (mean ± SD; %) | 3.9% ± 1.4 | 4.0% ± 1.6 | 3.9% ± 1.4 | 4.1% ± 1.1 | p = 0.3736 |
BASO (mean ± SD; %) | 0.5% ± 0.4 | 0.6% ± 0.5 | 0.6% ± 0.3 | 0.5% ± 0.4 | p = 0.5738 |
PLT (mean ± SD; k/μL) | 277.8 ± 12.6 | 278.4 ± 12.7 | 277.9 ± 12.8 | 278.7 ± 12.5 | p = 0.3955 |
Vitamin B12 (pg/mL) | 584 ± 42.3 | 585 ± 44.9 | 583 ± 45.3 | 586 ± 42.7 | p = 0.4583 |
Characteristics | Mediterranean Diet Adherence (Very Low + Low vs. Moderate + High) | |
---|---|---|
RR * (95% CI **) | p-Value | |
BMI (overweight + obesity/normal weight) | 2.13 (1.91–2.34) | p = 0.0018 |
WHR (moderate + high/low) | 2.04 (1.71–2.38) | p = 0.0102 |
IPAQ (low/medium + high) | 1.76 (1.48–2.02) | p = 0.0037 |
EDSS (≥5.0/≤4.5) | 2.26 (2.06–2.37) | p = 0.0009 |
MSQOL-54 (below/over mean value) | 1.95 (1.71–2.19) | p = 0.0011 |
Depression (undepressed/depressed) | 2.08 (1.79–2.31) | p = 0.0107 |
Ferritin (below/over mean value) | 1.87 (1.42–2.37) | p = 0.0746 |
Albumin (below/over mean value) | 1.61 (1.29–1.91) | p = 0.0293 |
RBC (below/over mean value) | 1.32 (0.97–1.79) | p = 0.0192 |
Hemoglobin (below/over mean value) | 1.47 (1.05–1.89) | p = 0.0204 |
Hematocrit (below/over mean value) | 1.51 (1.08–1.93) | p = 0.0256 |
WBC (over/below mean value) | 1.19 (0.68–1.87) | p = 0.2983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakanalis, A.; Tryfonos, C.; Pavlidou, E.; Vadikolias, K.; Papadopoulou, S.K.; Alexatou, O.; Vorvolakos, T.; Chrysafi, M.; Fotiou, D.; Mentzelou, M.; et al. Associations between Mediterranean Diet Adherence, Quality of Life, and Mental Health in Patients with Multiple Sclerosis: A Cross-Sectional Study. J. Pers. Med. 2024, 14, 199. https://doi.org/10.3390/jpm14020199
Dakanalis A, Tryfonos C, Pavlidou E, Vadikolias K, Papadopoulou SK, Alexatou O, Vorvolakos T, Chrysafi M, Fotiou D, Mentzelou M, et al. Associations between Mediterranean Diet Adherence, Quality of Life, and Mental Health in Patients with Multiple Sclerosis: A Cross-Sectional Study. Journal of Personalized Medicine. 2024; 14(2):199. https://doi.org/10.3390/jpm14020199
Chicago/Turabian StyleDakanalis, Antonios, Christina Tryfonos, Eleni Pavlidou, Konstantinos Vadikolias, Sousana K. Papadopoulou, Olga Alexatou, Theofanis Vorvolakos, Maria Chrysafi, Dimitrios Fotiou, Maria Mentzelou, and et al. 2024. "Associations between Mediterranean Diet Adherence, Quality of Life, and Mental Health in Patients with Multiple Sclerosis: A Cross-Sectional Study" Journal of Personalized Medicine 14, no. 2: 199. https://doi.org/10.3390/jpm14020199
APA StyleDakanalis, A., Tryfonos, C., Pavlidou, E., Vadikolias, K., Papadopoulou, S. K., Alexatou, O., Vorvolakos, T., Chrysafi, M., Fotiou, D., Mentzelou, M., Serdari, A., Chatzidimitriou, M., Dimoliani, S., Tsourouflis, G., & Giaginis, C. (2024). Associations between Mediterranean Diet Adherence, Quality of Life, and Mental Health in Patients with Multiple Sclerosis: A Cross-Sectional Study. Journal of Personalized Medicine, 14(2), 199. https://doi.org/10.3390/jpm14020199