Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure
Abstract
:1. Introduction
2. Sex Differences in Heart Morphology and Structure
3. The Sex Differences in Cardiac Remodeling Related to Body Composition in HF
4. Supra-Normal EF
5. The Sex-Related Differences in Guideline-Directed Medical Therapy (GDMT)
6. Sex Differences in Clinical Outcome
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- The Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 1987, 316, 1429–1435. [Google Scholar] [CrossRef]
- Pitt, B.; Zannad, F.; Remme, W.J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.; Wittes, J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 1999, 341, 709–717. [Google Scholar] [CrossRef]
- Packer, M.; Fowler, M.B.; Roecker, E.B.; Coats, A.J.; Katus, H.A.; Krum, H.; Mohacsi, P.; Rouleau, J.L.; Tendera, M.; Staiger, C.; et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 2002, 106, 2194–2199. [Google Scholar] [CrossRef]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Swedberg, K.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet 2010, 376, 875–885. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Salerno, P.R.; Chen, Z.; Wass, S.; Motairek, I.; Elamm, C.; Salerno, L.M.; Hassani, N.S.; Deo, S.V.; Al-Kindi, S.G. Sex-specific Heart Failure Burden Across the United States: Global Burden of Disease 1990–2019. Am. Heart J. 2023, 269, 35–44. [Google Scholar] [CrossRef]
- Sakata, Y.; Miyata, S.; Nochioka, K.; Miura, M.; Takada, T.; Tadaki, S.; Takahashi, J.; Shimokawa, H. Gender differences in clinical characteristics, treatment and long-term outcome in patients with stage C/D heart failure in Japan. Report from the CHART-2 study. Circ. J. 2014, 78, 428–435. [Google Scholar] [CrossRef]
- Kajimoto, K.; Minami, Y.; Sato, N.; Otsubo, S.; Kasanuki, H. Gender Differences in Left Ventricular Ejection Fraction and Outcomes Among Patients Hospitalized for Acute Decompensated Heart Failure. Am. J. Cardiol. 2017, 119, 1623–1630. [Google Scholar] [CrossRef]
- Witting, C.; Zheng, J.; Tisdale, R.L.; Shannon, E.; Kohsaka, S.; Lewis, E.F.; Heidenreich, P.; Sandhu, A. Treatment Differences in Medical Therapy for Heart Failure with Reduced Ejection Fraction Between Sociodemographic Groups. JACC Heart Fail. 2023, 11, 161–172. [Google Scholar] [CrossRef]
- Petitto, M.; Esposito, R.; Sorrentino, R.; Lembo, M.; Luciano, F.; De Roberto, A.M.; La Mura, L.; Pezzullo, E.; Maffei, S.; Galderisi, M.; et al. Sex-specific echocardiographic reference values: The women’s point of view. J. Cardiovasc. Med. 2018, 19, 527–535. [Google Scholar] [CrossRef]
- Gebhard, C.; Buechel, R.R.; Stähli, B.E.; Gransar, H.; Achenbach, S.; Berman, D.S.; Budoff, M.J.; Callister, T.Q.; Chow, B.; Dunning, A.; et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: Results from the prospective multicentre CONFIRM study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 990–1000. [Google Scholar] [CrossRef]
- Olivetti, G.; Giordano, G.; Corradi, D.; Melissari, M.; Lagrasta, C.; Gambert, S.R.; Anversa, P. Gender differences and aging: Effects on the human heart. J. Am. Coll. Cardiol. 1995, 26, 1068–1079. [Google Scholar] [CrossRef]
- Dworatzek, E.; Baczko, I.; Kararigas, G. Effects of aging on cardiac extracellular matrix in men and women. Proteom. Clin. Appl. 2016, 10, 84–91. [Google Scholar] [CrossRef]
- Garavaglia, G.E.; Messerli, F.H.; Schmieder, R.E.; Nunez, B.D.; Oren, S. Sex differences in cardiac adaptation to essential hypertension. Eur. Heart J. 1989, 10, 1110–1114. [Google Scholar] [CrossRef]
- Krumholz, H.M.; Larson, M.; Levy, D. Sex differences in cardiac adaptation to isolated systolic hypertension. Am. J. Cardiol. 1993, 72, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Kuch, B.; Muscholl, M.; Luchner, A.; Döring, A.; Riegger, G.A.; Schunkert, H.; Hense, H.W. Gender specific differences in left ventricular adaptation to obesity and hypertension. J. Hum. Hypertens. 1998, 12, 685–691. [Google Scholar] [CrossRef]
- Gori, M.; Lam, C.S.P.; Gupta, D.K.; Santos, A.B.S.; Cheng, S.; Shah, A.M.; Claggett, B.; Zile, M.R.; Kraigher-Krainer, E.; Pieske, B.; et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2014, 16, 535–542. [Google Scholar] [CrossRef]
- Föll, D.; Jung, B.; Schilli, E.; Staehle, F.; Geibel, A.; Hennig, J.; Bode, C.; Markl, M. Magnetic resonance tissue phase mapping of myocardial motion: New insight in age and gender. Circ. Cardiovasc. Imaging 2010, 3, 54–64. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Jackson, A.M.; Lam, C.S.P.; Redfield, M.M.; Anand, I.S.; Ge, J.; Lefkowitz, M.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; et al. Effects of Sacubitril-Valsartan Versus Valsartan in Women Compared with Men with Heart Failure and Preserved Ejection Fraction: Insights From PARAGON-HF. Circulation 2020, 141, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Sugawara, M.; Ishihara, K.; Kanazawa, S.; Corin, W.J.; Denslow, S.; Biederman, R.W.; Carabello, B.A. Myocardial stiffness derived from end-systolic wall stress and logarithm of reciprocal of wall thickness. Contractility index independent of ventricular size. Circulation 1990, 82, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.L.; Nanayakkara, S.; Segan, L.; Mariani, J.A.; Maeder, M.T.; van Empel, V.; Vizi, D.; Evans, S.; Lam, C.S.P.; Kaye, D.M. Sex Differences in Heart Failure with Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis. JACC Heart Fail. 2019, 7, 239–249. [Google Scholar] [CrossRef]
- Eaton, C.B.; Pettinger, M.; Rossouw, J.; Martin, L.W.; Foraker, R.; Quddus, A.; Liu, S.; Wampler, N.S.; Hank Wu, W.C.; Manson, J.E.; et al. Risk Factors for Incident Hospitalized Heart Failure with Preserved Versus Reduced Ejection Fraction in a Multiracial Cohort of Postmenopausal Women. Circ. Heart Fail. 2016, 9, e002883. [Google Scholar] [CrossRef]
- Selvaraj, S.; Martinez, E.E.; Aguilar, F.G.; Kim, K.Y.; Peng, J.; Sha, J.; Irvin, M.R.; Lewis, C.E.; Hunt, S.C.; Arnett, D.K.; et al. Association of Central Adiposity with Adverse Cardiac Mechanics: Findings from the Hypertension Genetic Epidemiology Network Study. Circ. Cardiovasc. Imaging 2016, 9, e004396. [Google Scholar] [CrossRef]
- Russo, C.; Sera, F.; Jin, Z.; Palmieri, V.; Homma, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Di Tullio, M.R. Abdominal adiposity, general obesity, and subclinical systolic dysfunction in the elderly: A population-based cohort study. Eur. J. Heart Fail. 2016, 18, 537–544. [Google Scholar] [CrossRef]
- Janssen, I.; Powell, L.H.; Jasielec, M.S.; Kazlauskaite, R. Covariation of change in bioavailable testosterone and adiposity in midlife women. Obesity 2015, 23, 488–494. [Google Scholar] [CrossRef]
- Savji, N.; Meijers, W.C.; Bartz, T.M.; Bhambhani, V.; Cushman, M.; Nayor, M.; Kizer, J.R.; Sarma, A.; Blaha, M.J.; Gansevoort, R.T.; et al. The Association of Obesity and Cardiometabolic Traits with Incident HFpEF and HFrEF. JACC Heart Fail. 2018, 6, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Nochioka, K.; Shiba, N.; Kohno, H.; Miura, M.; Shimokawa, H. Both high and low body mass indexes are prognostic risks in Japanese patients with chronic heart failure: Implications from the CHART study. J. Card. Fail. 2010, 16, 880–887. [Google Scholar] [CrossRef]
- Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; et al. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011, 377, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Richter, D.; Guasti, L.; Walker, D.; Lambrinou, E.; Lionis, C.; Abreu, A.; Savelieva, I.; Fumagalli, S.; Bo, M.; Rocca, B.; et al. Frailty in cardiology: Definition, assessment and clinical implications for general cardiology. A consensus document of the Council for Cardiology Practice (CCP), Association for Acute Cardio Vascular Care (ACVC), Association of Cardiovascular Nursing and Allied Professions (ACNAP), European Association of Preventive Cardiology (EAPC), European Heart Rhythm Association (EHRA), Council on Valvular Heart Diseases (VHD), Council on Hypertension (CHT), Council of Cardio-Oncology (CCO), Working Group (WG) Aorta and Peripheral Vascular Diseases, WG e-Cardiology, WG Thrombosis, of the European Society of Cardiology, European Primary Care Cardiology Society (EPCCS). Eur. J. Prev. Cardiol. 2022, 29, 216–227. [Google Scholar] [CrossRef]
- Denfeld, Q.E.; Winters-Stone, K.; Mudd, J.O.; Gelow, J.M.; Kurdi, S.; Lee, C.S. The prevalence of frailty in heart failure: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 236, 283–289. [Google Scholar] [CrossRef]
- Uchmanowicz, I.; Lee, C.S.; Vitale, C.; Manulik, S.; Denfeld, Q.E.; Uchmanowicz, B.; Rosińczuk, J.; Drozd, M.; Jaroch, J.; Jankowska, E.A. Frailty and the risk of all-cause mortality and hospitalization in chronic heart failure: A meta-analysis. ESC Heart Fail. 2020, 7, 3427–3437. [Google Scholar] [CrossRef]
- Langholz, P.L.; Strand, B.H.; Cook, S.; Hopstock, L.A. Frailty phenotype and its association with all-cause mortality in community-dwelling Norwegian women and men aged 70 years and older: The Tromsø Study 2001–2016. Geriatr. Gerontol. Int. 2018, 18, 1200–1205. [Google Scholar] [CrossRef]
- Walston, J.; McBurnie, M.A.; Newman, A.; Tracy, R.P.; Kop, W.J.; Hirsch, C.H.; Gottdiener, J.; Fried, L.P. Frailty and activation of the inflammation and coagulation systems with and without clinical comorbidities: Results from the Cardiovascular Health Study. Arch. Intern. Med. 2002, 162, 2333–2341. [Google Scholar] [CrossRef]
- Boxer, R.S.; Dauser, D.A.; Walsh, S.J.; Hager, W.D.; Kenny, A.M. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J. Am. Geriatr. Soc. 2008, 56, 454–461. [Google Scholar] [CrossRef]
- Phan, H.M.; Alpert, J.S.; Fain, M. Frailty, inflammation, and cardiovascular disease: Evidence of a connection. Am. J. Geriatr. Cardiol. 2008, 17, 101–107. [Google Scholar]
- Bowers, L.; James, K.; Quirk, A.; Simpson, A.; Sugar; Stewart, D.; Hodsoll, J. Corrigendum to "Reducing conflict and containment rates on acute psychiatric wards: The Safewards cluster randomised controlled trial" [Int. J. Nurs. Stud. 52 (September (9)) (2015) 1412–1422]. Int. J. Nurs. Stud. 2016, 58, 102. [Google Scholar] [CrossRef]
- Ahrenfeldt, L.J.; Möller, S.; Thinggaard, M.; Christensen, K.; Lindahl-Jacobsen, R. Sex Differences in Comorbidity and Frailty in Europe. Int. J. Public Health 2019, 64, 1025–1036. [Google Scholar] [CrossRef]
- Denfeld, Q.E.; Habecker, B.A.; Camacho, S.A.; Roberts Davis, M.; Gupta, N.; Hiatt, S.O.; Medysky, M.E.; Purnell, J.Q.; Winters-Stone, K.; Lee, C.S. Characterizing Sex Differences in Physical Frailty Phenotypes in Heart Failure. Circ. Heart Fail. 2021, 14, e008076. [Google Scholar] [CrossRef]
- Davis, M.R.; Lee, C.S.; Corcoran, A.; Gupta, N.; Uchmanowicz, I.; Denfeld, Q.E. Gender differences in the prevalence of frailty in heart failure: A systematic review and meta-analysis. Int. J. Cardiol. 2021, 333, 133–140. [Google Scholar] [CrossRef]
- Haedtke, C.A.; Moser, D.K.; Pressler, S.J.; Chung, M.L.; Wingate, S.; Goodlin, S.J. Influence of depression and gender on symptom burden among patients with advanced heart failure: Insight from the pain assessment, incidence and nature in heart failure study. Heart Lung J. Crit. Care 2019, 48, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Vaduganathan, M.; Lewis, E.F.; Claggett, B.L.; Rizkala, A.R.; Wang, W.; Lefkowitz, M.P.; Shi, V.C.; Anand, I.S.; Ge, J.; et al. Health-Related Quality of Life in Heart Failure with Preserved Ejection Fraction: The PARAGON-HF Trial. JACC Heart Fail. 2019, 7, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Ponikowski, P.; Varney, S.; Chua, T.P.; Clark, A.L.; Webb-Peploe, K.M.; Harrington, D.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997, 349, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wu, J.; Ren, Y.; Hu, J.; Yang, K.; Cao, J. Sarcopenia predicts adverse outcomes in an elderly population with coronary artery disease: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 493. [Google Scholar] [CrossRef]
- Funamizu, T.; Nagatomo, Y.; Saji, M.; Iguchi, N.; Daida, H.; Yoshikawa, T. Low muscle mass assessed by psoas muscle area is associated with clinical adverse events in elderly patients with heart failure. PLoS ONE 2021, 16, e0247140. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef]
- Ko, B.-J.; Chang, Y.; Kang, J.G.; Kim, J.; Jung, H.-S.; Yun, K.E.; Kim, C.-W.; Shin, H.; Ryu, S. Low relative muscle mass and left ventricular diastolic dysfunction in middle-aged adults. Int. J. Cardiol. 2018, 255, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Bekfani, T.; Pellicori, P.; Morris, D.A.; Ebner, N.; Valentova, M.; Steinbeck, L.; Wachter, R.; Elsner, S.; Sliziuk, V.; Schefold, J.C.; et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 2016, 222, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Díez-Villanueva, P.; Jiménez-Méndez, C.; Bonanad, C.; Ortiz-Cortés, C.; Barge-Caballero, E.; Goirigolzarri, J.; Esteban-Fernández, A.; Pérez-Rivera, A.; Cobo, M.; Sanz-García, A.; et al. Sex differences in the impact of frailty in elderly outpatients with heart failure. Front. Cardiovasc. Med. 2022, 9, 1000700. [Google Scholar] [CrossRef]
- Archer, S.H.; Lee, C.S.; Gupta, N.; Roberts Davis, M.; Hiatt, S.O.; Purnell, J.Q.; Tibbitts, D.; Winters-Stone, K.; Denfeld, Q.E. Sex differences in the impact of physical frailty on outcomes in heart failure. Heart Lung J. Crit. Care 2023, 61, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Wehner, G.J.; Jing, L.; Haggerty, C.M.; Suever, J.D.; Leader, J.B.; Hartzel, D.N.; Kirchner, H.L.; Manus, J.N.A.; James, N.; Ayar, Z.; et al. Routinely reported ejection fraction and mortality in clinical practice: Where does the nadir of risk lie? Eur. Heart J. 2020, 41, 1249–1257. [Google Scholar] [CrossRef]
- Shah, S.; Segar, M.W.; Kondamudi, N.; Ayers, C.; Chandra, A.; Matulevicius, S.; Agusala, K.; Peshock, R.; Abbara, S.; Michos, E.D.; et al. Supranormal Left Ventricular Ejection Fraction, Stroke Volume, and Cardiovascular Risk: Findings From Population-Based Cohort Studies. JACC Heart Fail. 2022, 10, 583–594. [Google Scholar] [CrossRef]
- Saab, F.A.; Steg, P.G.; Avezum, A.; López-Sendón, J.; Anderson, F.A.; Huang, W.; Eagle, K.A. Can an elderly woman’s heart be too strong? Increased mortality with high versus normal ejection fraction after an acute coronary syndrome. The Global Registry of Acute Coronary Events. Am. Heart J. 2010, 160, 849–854. [Google Scholar] [CrossRef]
- Gebhard, C.; Maredziak, M.; Messerli, M.; Buechel, R.R.; Lin, F.; Gransar, H.; Achenbach, S.; Al-Mallah, M.H.; Andreini, D.; Bax, J.J.; et al. Increased long-term mortality in women with high left ventricular ejection fraction: Data from the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) long-term registry. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 363–374. [Google Scholar] [CrossRef]
- Maredziak, M.; Bengs, S.; Portmann, A.; Haider, A.; Wijnen, W.J.; Warnock, G.I.; Etter, D.; Froehlich, S.; Fiechter, M.; Meisel, A.; et al. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF). Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3094–3106. [Google Scholar] [CrossRef]
- Kawata, T.; Daimon, M.; Miyazaki, S.; Ichikawa, R.; Maruyama, M.; Chiang, S.J.; Ito, C.; Sato, F.; Watada, H.; Daida, H. Coronary microvascular function is independently associated with left ventricular filling pressure in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2015, 14, 98. [Google Scholar] [CrossRef]
- Rosch, S.; Kresoja, K.P.; Besler, C.; Fengler, K.; Schöber, A.R.; von Roeder, M.; Lücke, C.; Gutberlet, M.; Klingel, K.; Thiele, H.; et al. Characteristics of Heart Failure with Preserved Ejection Fraction Across the Range of Left Ventricular Ejection Fraction. Circulation 2022, 146, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Montorsi, P.; Fabbiocchi, F.; Loaldi, A.; Annoni, L.; Polese, A.; De Cesare, N.; Guazzi, M.D. Coronary adrenergic hyperreactivity in patients with syndrome X and abnormal electrocardiogram at rest. Am. J. Cardiol. 1991, 68, 1698–1703. [Google Scholar] [CrossRef]
- Liu, C.C.; Kuo, T.B.; Yang, C.C. Effects of estrogen on gender-related autonomic differences in humans. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H2188–H2193. [Google Scholar] [CrossRef] [PubMed]
- Michalson, K.T.; Groban, L.; Howard, T.D.; Shively, C.A.; Sophonsritsuk, A.; Appt, S.E.; Cline, J.M.; Clarkson, T.B.; Carr, J.J.; Kitzman, D.W.; et al. Estradiol Treatment Initiated Early After Ovariectomy Regulates Myocardial Gene Expression and Inhibits Diastolic Dysfunction in Female Cynomolgus Monkeys: Potential Roles for Calcium Homeostasis and Extracellular Matrix Remodeling. J. Am. Heart Assoc. 2018, 7, e009769. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.O.; Adzika, G.K.; Mprah, R.; Ndzie Noah, M.L.; Adu-Amankwaah, J.; Rizvi, R.; Akhter, N.; Sun, H. Predominance of Heart Failure with Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front. Cell Dev. Biol. 2021, 9, 685996. [Google Scholar] [CrossRef]
- Haider, A.; Bengs, S.; Portmann, A.; Rossi, A.; Ahmed, H.; Etter, D.; Warnock, G.I.; Mikail, N.; Grämer, M.; Meisel, A.; et al. Role of sex hormones in modulating myocardial perfusion and coronary flow reserve. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2209–2218. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Coats, A.J.; Fowler, M.B.; Katus, H.A.; Krum, H.; Mohacsi, P.; Rouleau, J.L.; Tendera, M.; Castaigne, A.; Roecker, E.B.; et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 2001, 344, 1651–1658. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Dewan, P.; Rørth, R.; Jhund, P.S.; Shen, L.; Raparelli, V.; Petrie, M.C.; Abraham, W.T.; Desai, A.S.; Dickstein, K.; Køber, L.; et al. Differential Impact of Heart Failure with Reduced Ejection Fraction on Men and Women. J. Am. Coll. Cardiol. 2019, 73, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Kawai, A.; Nagatomo, Y.; Iwashita, M.; Ikegami, Y.; Takei, M.; Goda, A.; Kohno, T.; Mizuno, A.; Kitamura, M.; Nakano, S.; et al. Sex-Related Differences in Long-Term Outcomes Across the Spectrum of Left Ventricular Ejection Fraction in Acute Decompensated Heart Failure Patients. Circulation 2023, 148, A12044. [Google Scholar] [CrossRef]
- Blumer, V.; Greene, S.J.; Wu, A.; Butler, J.; Ezekowitz, J.A.; Lindenfeld, J.; Alhanti, B.; Hernandez, A.F.; O’Connor, C.M.; Mentz, R.J. Sex Differences in Clinical Course and Patient-Reported Outcomes Among Patients Hospitalized for Heart Failure. JACC Heart Fail. 2021, 9, 336–345. [Google Scholar] [CrossRef]
- Tromp, J.; Ezekowitz, J.A.; Ouwerkerk, W.; Chandramouli, C.; Yiu, K.H.; Angermann, C.E.; Dahlstrom, U.; Ertl, G.; Hassanein, M.; Perrone, S.V.; et al. Global Variations According to Sex in Patients Hospitalized for Heart Failure in the REPORT-HF Registry. JACC Heart Fail. 2023, 11, 1262–1271. [Google Scholar] [CrossRef]
- Lainščak, M.; Milinković, I.; Polovina, M.; Crespo-Leiro, M.G.; Lund, L.H.; Anker, S.D.; Laroche, C.; Ferrari, R.; Coats, A.J.S.; McDonagh, T.; et al. Sex- and age-related differences in the management and outcomes of chronic heart failure: An analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2020, 22, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Gracia Gutiérrez, A.; Poblador-Plou, B.; Prados-Torres, A.; Ruiz Laiglesia, F.J.; Gimeno-Miguel, A. Sex Differences in Comorbidity, Therapy, and Health Services’ Use of Heart Failure in Spain: Evidence from Real-World Data. Int. J. Environ. Res. Public Health 2020, 17, 2136. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.; Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Ozasa, N.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Sex differences in patients with acute decompensated heart failure in Japan: Observation from the KCHF registry. ESC Heart Fail. 2020, 7, 2485–2493. [Google Scholar] [CrossRef] [PubMed]
- Daubert, M.A.; Yow, E.; Barnhart, H.X.; Piña, I.L.; Ahmad, T.; Leifer, E.; Cooper, L.; Desvigne-Nickens, P.; Fiuzat, M.; Adams, K.; et al. Differences in NT-proBNP Response and Prognosis in Men and Women with Heart Failure with Reduced Ejection Fraction. J. Am. Heart Assoc. 2021, 10, e019712. [Google Scholar] [CrossRef]
- Čerlinskaitė-Bajorė, K.; Lam, C.S.P.; Sliwa, K.; Adamo, M.; Ter Maaten, J.M.; Léopold, V.; Mebazaa, A.; Davison, B.; Edwards, C.; Arrigo, M.; et al. Sex-specific analysis of the rapid up-titration of guideline-directed medical therapies after a hospitalization for acute heart failure: Insights from the STRONG-HF trial. Eur. J. Heart Fail. 2023, 25, 1156–1165. [Google Scholar] [CrossRef]
- Pabon, M.; Cunningham, J.; Claggett, B.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Diaz, R.; Wang, X.; Arias-Mendoza, A.; Bonderman, D.; et al. Sex Differences in Heart Failure with Reduced Ejection Fraction in the GALACTIC-HF Trial. JACC Heart Fail. 2023, 11, 1729–1738. [Google Scholar] [CrossRef]
- Russo, G.; Rea, F.; Barbati, G.; Cherubini, A.; Stellato, K.; Scagnetto, A.; Iorio, A.; Corrao, G.; Di Lenarda, A. Sex-related differences in chronic heart failure: A community-based study. J. Cardiovasc. Med. 2021, 22, 36–44. [Google Scholar] [CrossRef]
- Martin, R.M.; Biswas, P.N.; Freemantle, S.N.; Pearce, G.L.; Mann, R.D. Age and sex distribution of suspected adverse drug reactions to newly marketed drugs in general practice in England: Analysis of 48 cohort studies. Br. J. Clin. Pharmacol. 1998, 46, 505–511. [Google Scholar] [CrossRef]
- Bots, S.H.; Schreuder, M.M.; Roeters van Lennep, J.E.; Watson, S.; van Puijenbroek, E.; Onland-Moret, N.C.; den Ruijter, H.M. Sex Differences in Reported Adverse Drug Reactions to Angiotensin-Converting Enzyme Inhibitors. JAMA Netw. Open 2022, 5, e228224. [Google Scholar] [CrossRef]
- Verardi, F.; Maul, L.V.; Borsky, K.; Steinmann, S.; Rosset, N.; Pons, H.O.; Sorbe, C.; Yawalkar, N.; Micheroli, R.; Egeberg, A.; et al. Sex differences in adverse events from systemic treatments for psoriasis: A decade of insights from the Swiss Psoriasis Registry (SDNTT). J. Eur. Acad. Dermatol. Venereol. 2023. [Google Scholar] [CrossRef]
- Nanna, M.G.; Wang, T.Y.; Xiang, Q.; Goldberg, A.C.; Robinson, J.G.; Roger, V.L.; Virani, S.S.; Wilson, P.W.F.; Louie, M.J.; Koren, A.; et al. Sex Differences in the Use of Statins in Community Practice. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005562. [Google Scholar] [CrossRef]
- Luzier, A.B.; Killian, A.; Wilton, J.H.; Wilson, M.F.; Forrest, A.; Kazierad, D.J. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin. Pharmacol. Ther. 1999, 66, 594–601. [Google Scholar] [CrossRef]
- Vree, T.B.; Dammers, E.; Ulc, I.; Horkovics-Kovats, S.; Ryska, M.; Merkx, I. Lack of Male-Female Differences in Disposition and Esterase Hydrolysis of Ramipril to Ramiprilat in Healthy Volunteers after a Single Oral Dose. Sci. World J. 2003, 3, 1344–1358. [Google Scholar] [CrossRef]
- Santema, B.T.; Ouwerkerk, W.; Tromp, J.; Sama, I.E.; Ravera, A.; Regitz-Zagrosek, V.; Hillege, H.; Samani, N.J.; Zannad, F.; Dickstein, K.; et al. Identifying optimal doses of heart failure medications in men compared with women: A prospective, observational, cohort study. Lancet 2019, 394, 1254–1263. [Google Scholar] [CrossRef]
- Faller, H.; Störk, S.; Schowalter, M.; Steinbüchel, T.; Wollner, V.; Ertl, G.; Angermann, C.E. Depression and survival in chronic heart failure: Does gender play a role? Eur. J. Heart Fail. 2007, 9, 1018–1023. [Google Scholar] [CrossRef]
- Gottlieb, S.S.; Khatta, M.; Friedmann, E.; Einbinder, L.; Katzen, S.; Baker, B.; Marshall, J.; Minshall, S.; Robinson, S.; Fisher, M.L.; et al. The influence of age, gender, and race on the prevalence of depression in heart failure patients. J. Am. Coll. Cardiol. 2004, 43, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.J.; Perkins, S.M.; Lane, K.A.; Deer, M.; Brater, D.C.; Murray, M.D. Social support and health-related quality of life in chronic heart failure patients. Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 2001, 10, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Stolfo, D.; Lund, L.H.; Benson, L.; Lindberg, F.; Ferrannini, G.; Dahlström, U.; Sinagra, G.; Rosano, G.M.C.; Savarese, G. Real-world use of sodium-glucose cotransporter 2 inhibitors in patients with heart failure and reduced ejection fraction: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2023, 25, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.B.; Campbell, D.J.T.; Au, F.; Beall, R.F.; Ronksley, P.E.; Chew, D.S.; Ogundeji, Y.; Manns, B.J.; Hemmelgarn, B.R.; Tonelli, M.; et al. Patterns and Patients’ Characteristics Associated with Use of Sodium-Glucose Cotransporter-2 Inhibitors Among Adults With Type 2 Diabetes: A Population-based Cohort Study. Can. J. Diabetes 2023, 47, 58–65.e52. [Google Scholar] [CrossRef] [PubMed]
- Lega, I.C.; Bronskill, S.E.; Campitelli, M.A.; Guan, J.; Stall, N.M.; Lam, K.; McCarthy, L.M.; Gruneir, A.; Rochon, P.A. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes. Metab. 2019, 21, 2394–2404. [Google Scholar] [CrossRef]
- Kang, M.; Heo, K.N.; Ah, Y.M.; Yang, B.R.; Lee, J.Y. Age- and sex-specific risk of urogenital infections in patients with type 2 diabetes treated with sodium-glucose co-transporter 2 inhibitors: A population-based self-controlled case-series study. Maturitas 2021, 150, 30–36. [Google Scholar] [CrossRef]
- Wang, X.; Vaduganathan, M.; Claggett, B.L.; Hegde, S.M.; Pabon, M.; Kulac, I.J.; Vardeny, O.; O’Meara, E.; Zieroth, S.; Katova, T.; et al. Sex Differences in Characteristics, Outcomes, and Treatment Response with Dapagliflozin Across the Range of Ejection Fraction in Patients With Heart Failure: Insights From DAPA-HF and DELIVER. Circulation 2023, 147, 624–634. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- Nozaki, A.; Shirakabe, A.; Hata, N.; Kobayashi, N.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Nishigoori, S.; Uchiyama, S.; Kusama, Y.; et al. The prognostic impact of gender in patients with acute heart failure—An evaluation of the age of female patients with severely decompensated acute heart failure. J. Cardiol. 2017, 70, 255–262. [Google Scholar] [CrossRef]
- Sotomi, Y.; Hikoso, S.; Nakatani, D.; Mizuno, H.; Okada, K.; Dohi, T.; Kitamura, T.; Sunaga, A.; Kida, H.; Oeun, B.; et al. Sex Differences in Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2021, 10, e018574. [Google Scholar] [CrossRef]
- Okura, Y.; Ramadan, M.M.; Ohno, Y.; Mitsuma, W.; Tanaka, K.; Ito, M.; Suzuki, K.; Tanabe, N.; Kodama, M.; Aizawa, Y. Impending epidemic: Future projection of heart failure in Japan to the year 2055. Circ. J. 2008, 72, 489–491. [Google Scholar] [CrossRef]
- Shiba, N.; Shimokawa, H. Prospective care of heart failure in Japan: Lessons from CHART studies. EPMA J. 2011, 2, 425–438. [Google Scholar] [CrossRef]
- Shimokawa, H.; Miura, M.; Nochioka, K.; Sakata, Y. Heart failure as a general pandemic in Asia. Eur. J. Heart Fail. 2015, 17, 884–892. [Google Scholar] [CrossRef]
- Akyıldız Akçay, F.; Sinan, Ü.Y.; Gürbüz, D.; Şafak, Ö.; Kaya, H.; Yüksek, Ü.; Zoghi, M. Gender-Related Differences in Patients with Acute Heart Failure: Observation from the Journey Heart Failure-Turkish Population Study. Anatol. J. Cardiol. 2023, 27, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Gürgöze, M.T.; van der Galiën, O.P.; Limpens, M.A.M.; Roest, S.; Hoekstra, R.C.; AS, I.J.; Brugts, J.J.; Manintveld, O.C.; Boersma, E. Impact of sex differences in co-morbidities and medication adherence on outcome in 25 776 heart failure patients. ESC Heart Fail. 2021, 8, 63–73. [Google Scholar] [CrossRef]
- Basic, C.; Rosengren, A.; Dahlström, U.; Edner, M.; Fu, M.; Zverkova-Sandström, T.; Schaufelberger, M. Sex-related differences among young adults with heart failure in Sweden. Int. J. Cardiol. 2022, 362, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Kim, H.L.; Kim, M.A.; Lee, H.Y.; Park, J.J.; Choi, D.J. Sex differences in clinical characteristics and long-term outcome in patients with heart failure: Data from the KorAHF registry. Korean J. Intern. Med. 2023, 39, 95–109. [Google Scholar] [CrossRef]
- Cenko, E.; van der Schaar, M.; Yoon, J.; Manfrini, O.; Vasiljevic, Z.; Vavlukis, M.; Kedev, S.; Miličić, D.; Badimon, L.; Bugiardini, R. Sex-Related Differences in Heart Failure After ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 74, 2379–2389. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.; Carson, P.E.; Anand, I.S.; Rector, T.S.; Kuskowski, M.; Komajda, M.; McKelvie, R.S.; McMurray, J.J.; Zile, M.R.; Massie, B.M.; et al. Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: The Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ. Heart Fail. 2012, 5, 571–578. [Google Scholar] [CrossRef]
- Zsilinszka, R.; Shrader, P.; DeVore, A.D.; Hardy, N.C.; Mentz, R.J.; Pang, P.S.; Peacock, W.F.; Fonarow, G.C.; Hernandez, A.F. Sex Differences in the Management and Outcomes of Heart Failure with Preserved Ejection Fraction in Patients Presenting to the Emergency Department with Acute Heart Failure. J. Card. Fail. 2016, 22, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Dewan, P.; Rørth, R.; Raparelli, V.; Campbell, R.T.; Shen, L.; Jhund, P.S.; Petrie, M.C.; Anand, I.S.; Carson, P.E.; Desai, A.S.; et al. Sex-Related Differences in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2019, 12, e006539. [Google Scholar] [CrossRef] [PubMed]
Authors | Number of Patients | HFrEF (%) | βB (%) | RASi (%) (ACEi/ARB/ARNI) | MRA (%) | SGLT2i (%) | Notes | |
---|---|---|---|---|---|---|---|---|
Blumer et al., 2021 [75] | M: 3386 F: 1396 | M: 100% F: 100% | M: 61.0, F: 56.0 p = 0.001 | M: 63.4 F: 60.0 p = 0.028 | M: 33.1 F: 30.8 p = 0.13 | - | ||
Dewan P et al., 2019 [73] | M: 12,058 F: 3357 | M: 100% F: 100% | M: 92.6, F: 91.6 p = 0.049 | ACEi M: 88.7 F: 84.7 p < 0.001 ARB M: 11.9 F: 16.4 p < 0.001 | M: 47.4 F: 46.3 p = 0.26 | - | ||
Tromp et al., 2023 [76] | M: 6418 F: 2486 | M: 100% F: 100% | M: 77 F: 75 p = 0.075 | M: 68 F: 65 p = 0.236 | M: 61 F: 56 p = 0.001 | - | ||
Satake et al., 2014 [12] | M: 3234 F: 1502 | (LVEF < 50%) M: 34.2 F: 24.9 | M: 51.3 F: 43.9 p < 0.001 | M: 78.6 F: 76.4 p = 0.101 | - | - | ||
Lainscak et al., 2020 [77] | M: 6744 F: 2684 | (LVEF ≤ 45%) M: 82.2 F: 63.3 p < 0.001 | M: 90.2 F: 84.8 p < 0.001 | M: 87.5 F: 80.6 p < 0.001 | M: 59.8 F: 56.2 p = 0.001 | - | ||
Gutierrez et al., 2020 [78] | M: 7454 F: 10062 | unknown | M: 33.6 F: 30.8 p < 0.001 | ACEi M: 33.1 F: 25.8 ARB M: 21.0 F: 23.8 | M: 28.7 F: 23.7 | - | ||
Yamamoto E et al., 2020 [79] | M: 2057 F: 1671 | M: 45.1%, F: 27.5% | M: 70.2 F: 61.6 p < 0.0001 | M: 60.7 F: 53.5 p < 0.0001 | M: 44.5 F: 45.8 p = 0.43 | - | ||
Daubert M A et al., 2021 [80] | M: 608 F: 286 | M: 100% F: 100% (All patients LVEF ≤ 40%) | M: 94.7 F: 95.4 p = 0.74 | M: 80.1 F: 78.1 p = 0.53 | M: 50.5 F: 48.4 p = 0.57 | - | ||
Cerlinskaite-Bajore K et al., 2021 [81] | M: 662 F: 416 | M: 72.7% F: 60.1% | M: 37.6 F: 32.5 p = 0.089 | M: 63.0 F: 66.0 p = 0.3102 | M: 94.5 F: 95.2 p = 0.64 | - | ||
Witting et al., 2023 [14] | M: 140,765 F: 3309 | Mean LVEF = 31.7% | M: 73.3 F: 68.9 p < 0.001 | RASi M: 76.4 F: 71.3 p < 0.001 | ARNI M: 22.8 F: 21.5 p = 0.546 | M: 27.8 F: 30.9 p = 0.002 | - | |
Pabon M et al., 2023 [82] | M: 6483 F: 1749 | M: 100% F: 100% (All patients LVEF ≤ 35%) | M: 94.4 F: 93.8 p =0.28 | ACEi M: 50.2 F: 45.3 p < 0.001 ARB M: 18.2 F: 23.6 p < 0.001 | ARNI M: 20.0 F: 17.5 p = 0.020 | M: 78.1 F: 76.4 p = 0.13 | M: 2.9 F: 1.5 p < 0.001 | |
Russo G et al., 2021 [83] | M: 441 F: 167 | M: 100% F: 100% | M: 69.4 F: 70.2 | M: 83.7 F: 83.3 | M: 40.4 F: 38.1 | |||
Kawai et al., 2023 [74] | M: 2357 F: 1586 | (LVEF < 40%) M: 48% F: 29% (40% ≤ LVEF < 50%) M: 18% F: 17% | (LVEF < 40%) M: 87 F: 86 p = 0.84 (40% ≤ LVEF < 50%) M: 83 F: 75 p = 0.022 | (LVEF < 40%) M: 69 F: 68 p = 0.95 (40% ≤ LVEF < 50%) ACEi/ARB M: 66 F: 60 p = 0.088 | (LVEF < 40%) M: 44 F: 46 p = 0.49 (40% ≤ LVEF < 50%) M:29 F:36 p = 0.099 | (LVEF < 40%) RASi + βB M: 62, F: 62 p = 0.78 RASi + βB + MRA M: 30, F: 31 p = 0.68 (40% ≤ LVEF < 50%) RASi + βB M: 56, F: 44 p = 0.002 RASi + βB + MRA M: 18, F: 18 p = 0.96 |
Authors | Region | Number of Patients | LVEF | Outcomes of Women (Compared with Men) | Notes | |
---|---|---|---|---|---|---|
All LVEF | Akcay F et al., 2023 [105] | Turkey | M: 918 F: 688 | All | In-hospital mortality rate ↑ | |
Muhammed T et al., 2021 [106] | Dutch | M: 14,517 F: 11,259 | All | HF hospitalization ↓ All-cause death ↓ | ||
Nozaki A et al., 2017 [100] | Japan | M: 696 F: 354 | All | All-cause death ↑ (Age ≥ 79: ↑, Age < 79: →) | ||
Yamamoto E et al., 2020 [79] | Japan | M: 2057 F: 1671 | All | HF hospitalization → All-cause death → | The percentage of HFrEF patients M: 45.1%, F: 27.5% | |
Basic et al., 2022 [107] | Sweden | M:2781 F:971 | All | all-cause mortality → | Age: 18–54 years | |
Kim et al., 2023 [108] | Korea | M: 2993 F: 2632 | All | In-hospital mortality ↓ CV death ↓ All-cause death ↓ All-cause death + HF rehospitalization ↓ | ||
Cenko E et al., 2019 [109] | European 12 countries | M: 7331 F: 3112 | All | 30-days mortality ↑ Killip class ≥ II ↑ | After STEMI treatment | |
Kawai et al., 2023 [74] | Japan | M: 2357 F: 1586 | All | Cardiac death + HF rehospitalization → | ||
HFrEF | Dewan et al., 2019 [73] | Worldwide | M: 12,058 F: 3357 | LVEF ≤ 40% | HF hospitalization ↓, CV death ↓ All-cause death ↓ KCCQ score ↓ | |
Russo G et al., 2021 [83] | Italy | M: 441 F: 167 | LVEF < 40% | All-cause death → HF progression ↓ | ||
Kawai et al., 2023 [74] | Japan | M: 1142 F: 462 | LVEF < 40% | Cardiac death + HF rehospitalization → | ||
HFmrEF | Russo G et al., 2021 [83] | Italy | M: 300 F: 135 | LVEF 40–49% | All-cause death → HF progression → | |
Kawai et al., 2023 [74] | Japan | M: 434 F: 273 | LVEF 40–49% | Cardiac death + HF rehospitalization ↑ | ||
HFpEF | Lam C S.P. et al., 2012 [110] | Worldwide | M: 1637 F: 2491 | LVEF ≥ 45% | All cause death ↓ All cause hospitalization + death ↓ | Age ≥ 65 |
Zsilinszka et al., 2016 [111] | USA | M: 1353 F: 2808 | LVEF ≥ 40% | 180 day all cause death → Hospitalization due to any cause → | ||
Dewan P et al., 2019 [112] | Worldwide | M: 4010 F: 4458 | LVEF ≥ 45% | HF hospitalization → All-cause death ↓ KCCQ ↓ | ||
Sotomi Y et al., 2021 [101] | Japan | M: 389 F: 481 | LVEF > 50% | All-cause death + HF hospitalization ↑ | ||
Kawai et al., 2023 [74] | Japan | M: 781 F: 851 | LVEF > 50% | Cardiac death + HF rehospitalization → | snEF associated with worse outcome compared to normal EF in women |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawai, A.; Nagatomo, Y.; Yukino-Iwashita, M.; Nakazawa, R.; Yumita, Y.; Taruoka, A.; Takefuji, A.; Yasuda, R.; Toya, T.; Ikegami, Y.; et al. Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure. J. Pers. Med. 2024, 14, 201. https://doi.org/10.3390/jpm14020201
Kawai A, Nagatomo Y, Yukino-Iwashita M, Nakazawa R, Yumita Y, Taruoka A, Takefuji A, Yasuda R, Toya T, Ikegami Y, et al. Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure. Journal of Personalized Medicine. 2024; 14(2):201. https://doi.org/10.3390/jpm14020201
Chicago/Turabian StyleKawai, Akane, Yuji Nagatomo, Midori Yukino-Iwashita, Ryota Nakazawa, Yusuke Yumita, Akira Taruoka, Asako Takefuji, Risako Yasuda, Takumi Toya, Yukinori Ikegami, and et al. 2024. "Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure" Journal of Personalized Medicine 14, no. 2: 201. https://doi.org/10.3390/jpm14020201
APA StyleKawai, A., Nagatomo, Y., Yukino-Iwashita, M., Nakazawa, R., Yumita, Y., Taruoka, A., Takefuji, A., Yasuda, R., Toya, T., Ikegami, Y., Masaki, N., & Adachi, T. (2024). Sex Differences in Cardiac and Clinical Phenotypes and Their Relation to Outcomes in Patients with Heart Failure. Journal of Personalized Medicine, 14(2), 201. https://doi.org/10.3390/jpm14020201