The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Topic-Modeling-Procedure Overview
2.2. Journal Article Search Strategy
2.3. Topic Modeling R
3. Results
3.1. AI Explainability Addresses Ethical Challenges in Healthcare
3.2. Integrating Explainable AI in Healthcare for Trustworthy Precision Medicine
3.3. Advancing Precision Medicine through Deep Learning and Explainable Artificial Intelligence
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, F.S.; Varmus, H. A New Initiative on Precision Medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Larry Jameson, J.; Longo, D.L. Precision Medicine—Personalized, Problematic, and Promising. Obstet. Gynecol. Surv. 2015, 70, 612. [Google Scholar] [CrossRef]
- Hamburg, M.A.; Collins, F.S. The Path to Personalized Medicine. N. Engl. J. Med. 2010, 363, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Clayton, E.A.; Matyunina, L.V.; McDonald, L.D.; Benigno, B.B.; Vannberg, F.; McDonald, J.F. Machine Learning Predicts Individual Cancer Patient Responses to Therapeutic Drugs with High Accuracy. Sci. Rep. 2018, 8, 16444. [Google Scholar] [CrossRef] [PubMed]
- Sheu, Y.; Magdamo, C.; Miller, M.; Das, S.; Blacker, D.; Smoller, J.W. AI-Assisted Prediction of Differential Response to Antidepressant Classes Using Electronic Health Records. Npj Digit. Med. 2023, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Rose, S.M.S.-F.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; et al. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information. PLoS Biol. 2017, 15, e2001402. [Google Scholar] [CrossRef]
- Kvedar, J.; Coye, M.J.; Everett, W. Connected Health: A Review of Technologies and Strategies to Improve Patient Care with Telemedicine and Telehealth. Health Aff. 2014, 33, 194–199. [Google Scholar] [CrossRef]
- Akselrod-Ballin, A.; Chorev, M.; Shoshan, Y.; Spiro, A.; Hazan, A.; Melamed, R.; Barkan, E.; Herzel, E.; Naor, S.; Karavani, E.; et al. Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms. Radiology 2019, 292, 331–342. [Google Scholar] [CrossRef]
- Bohr, A.; Memarzadeh, K. The Rise of Artificial Intelligence in Healthcare Applications. Artif. Intell. Healthc. 2020, 25–60. [Google Scholar] [CrossRef]
- McGuire, A.L.; Gibbs, R.A. No Longer De-Identified. Science 2006, 312, 370–371. [Google Scholar] [CrossRef]
- Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran. J. Public Health 2021, 50, i–v. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Obafemi-Ajayi, T.; Perkins, A.; Nanduri, B.; Wunsch, D.C., II; Foster, J.A.; Peckham, J. No-Boundary Thinking: A Viable Solution to Ethical Data-Driven AI in Precision Medicine. AI Ethics 2022, 2, 635–643. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing Machine Learning in Health Care—Addressing Ethical Challenges. N. Engl. J. Med. 2018, 378, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef] [PubMed]
- Peralta, M.; Jannin, P.; Baxter, J.S.H. Machine Learning in Deep Brain Stimulation: A Systematic Review. Artif. Intell. Med. 2021, 122, 102198. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J. An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kumar, V. Application of Text Mining Techniques on Scholarly Research Articles: Methods and Tools. New Rev. Acad. Librariansh. 2022, 28, 279–302. [Google Scholar] [CrossRef]
- Abdelrazek, A.; Eid, Y.; Gawish, E.; Medhat, W.; Hassan, A. Topic Modeling Algorithms and Applications: A Survey. Inf. Syst. 2023, 112, 102131. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Ishengoma, F. Artificial Intelligence in Digital Health: Issues and Dimensions of Ethical Concerns. Innov. Softw. 2022, 3, 81–108. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Roy, S.; Meena, T.; Lim, S. Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine. Diagnostics 2022, 12, 2549. [Google Scholar] [CrossRef]
- Kosorok, M.R.; Laber, E.B. Precision Medicine. Annu. Rev. Stat. Its Appl. 2019, 6, 263–286. [Google Scholar] [CrossRef]
- Madai, V.I.; Higgins, D.C. Artificial Intelligence in Healthcare: Lost In Translation? arXiv 2021, arXiv:2107.13454. [Google Scholar]
- Kuwaiti, A.A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef]
- Clement, T.; Kemmerzell, N.; Abdelaal, M.; Amberg, M. XAIR: A Systematic Metareview of Explainable AI (XAI) Aligned to the Software Development Process. Mach. Learn. Knowl. Extr. 2023, 5, 78–108. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A Survey of Methods for Explaining Black Box Models. ACM Comput. Surv. 2019, 51, 1–42. [Google Scholar] [CrossRef]
- Jadhav, S.; Deng, G.; Zawin, M.; Kaufman, A.E. COVID-View: Diagnosis of COVID-19 Using Chest CT. IEEE Trans. Vis. Comput. Graph. 2022, 28, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Giuste, F.; Shi, W.; Zhu, Y.; Naren, T.; Isgut, M.; Sha, Y.; Tong, L.; Gupte, M.; Wang, M.D. Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review. IEEE Rev. Biomed. Eng. 2022, 16, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Goodman, B.; Flaxman, S. European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”. AI Mag. 2017, 38, 50–57. [Google Scholar] [CrossRef]
- Article 22 GDPR—Automated Individual Decision-Making, Including Profiling. In General Data Protection Regulation (EU GDPR); European Parliament: Strasbourg, France; Council of the European Union: Brussels, Belgium, 2018.
- Ghassemi, M.; Oakden-Rayner, L.; Beam, A.L. The False Hope of Current Approaches to Explainable Artificial Intelligence in Health Care. Lancet Digit. Health 2021, 3, e745–e750. [Google Scholar] [CrossRef] [PubMed]
- Wellnhofer, E. Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging. Front. Cardiovasc. Med. 2022, 9, 890809. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- Piccialli, F.; Calabrò, F.; Crisci, D.; Cuomo, S.; Prezioso, E.; Mandile, R.; Troncone, R.; Greco, L.; Auricchio, R. Precision Medicine and Machine Learning towards the Prediction of the Outcome of Potential Celiac Disease. Sci. Rep. 2021, 11, 5683. [Google Scholar] [CrossRef] [PubMed]
- Schork, N.J. Artificial Intelligence and Personalized Medicine. Cancer Treat. Res. 2019, 178, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Kimmelman, J.; Tannock, I. The Paradox of Precision Medicine. Nat. Rev. Clin. Oncol. 2018, 15, 341–342. [Google Scholar] [CrossRef]
- Boehm, K.M.; Khosravi, P.; Vanguri, R.; Gao, J.; Shah, S.P. Harnessing Multimodal Data Integration to Advance Precision Oncology. Nat. Rev. Cancer 2021, 22, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Asan, O. Impact of Accountability, Training, and Human Factors on the Use of Artificial Intelligence in Healthcare: Exploring the Perceptions of Healthcare Practitioners in the US. Hum. Factors Healthc. 2022, 2, 100021. [Google Scholar] [CrossRef]
- Poon, A.I.F.; Sung, J.J.Y. Opening the Black Box of AI-Medicine. J. Gastroenterol. Hepatol. 2021, 36, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Bærøe, K.; Miyata-Sturm, A.; Henden, E. How to Achieve Trustworthy Artificial Intelligence for Health. Bull. World Health Organ. 2020, 98, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Towards Trustable Machine Learning. Nat. Biomed. Eng. 2018, 2, 709–710. [CrossRef]
- Laccourreye, P.; Bielza, C.; Larrañaga, P. Explainable Machine Learning for Longitudinal Multi-Omic Microbiome. Mathematics 2022, 10, 1994. [Google Scholar] [CrossRef]
- Carrieri, A.P.; Haiminen, N.; Maudsley-Barton, S.; Gardiner, L.-J.; Murphy, B.; Mayes, A.E.; Paterson, S.; Grimshaw, S.; Winn, M.; Shand, C.; et al. Explainable AI Reveals Changes in Skin Microbiome Composition Linked to Phenotypic Differences. Sci. Rep. 2021, 11, 4565. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Yost, S.E.; Lee, J.S.; Gillece, J.D.; Folkerts, M.; Reining, L.; Highlander, S.K.; Eftekhari, Z.; Mortimer, J.; Yuan, Y. Analysis of Gut Microbiome Using Explainable Machine Learning Predicts Risk of Diarrhea Associated with Tyrosine Kinase Inhibitor Neratinib: A Pilot Study. Front. Oncol. 2021, 11, 604584. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.Y.; Park, C.J.; Kim, J.; Jeong, J.H.; Jang, H.; Kim, K.; Seo, S.W. Prediction of Conversion to Dementia Using Interpretable Machine Learning in Patients with Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2022, 14, 898940. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Wang, R.C.; Wang, Z. Precision Medicine: Disease Subtyping and Tailored Treatment. Cancers 2023, 15, 3837. [Google Scholar] [CrossRef] [PubMed]
- Albahri, A.S.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.S.; Alamoodi, A.H.; Bai, J.; Salhi, A.; et al. A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion. Inf. Fusion 2023, 96, 156–191. [Google Scholar] [CrossRef]
- Martínez-Agüero, S.; Soguero-Ruiz, C.; Alonso-Moral, J.M.; Mora-Jiménez, I.; Álvarez-Rodríguez, J.; Marques, A.G. Interpretable Clinical Time-Series Modeling with Intelligent Feature Selection for Early Prediction of Antimicrobial Multidrug Resistance. Future Gener. Comput. Syst. 2022, 133, 68–83. [Google Scholar] [CrossRef]
- Ho, C.W.-L.; Caals, K. A Call for an Ethics and Governance Action Plan to Harness the Power of Artificial Intelligence and Digitalization in Nephrology. Semin. Nephrol. 2021, 41, 282–293. [Google Scholar] [CrossRef]
- Rostami, M.; Oussalah, M. A Novel Explainable COVID-19 Diagnosis Method by Integration of Feature Selection with Random Forest. Inform. Med. Unlocked 2022, 30, 100941. [Google Scholar] [CrossRef]
- Lucieri, A.; Bajwa, M.N.; Braun, S.A.; Malik, M.I.; Dengel, A.; Ahmed, S. ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis of Skin Lesions. Comput. Methods Programs Biomed. 2022, 215, 106620. [Google Scholar] [CrossRef]
- Müller, H.; Holzinger, A.; Plass, M.; Brcic, L.; Stumptner, C.; Zatloukal, K. Explainability and Causability for Artificial Intelligence-Supported Medical Image Analysis in the Context of the European In Vitro Diagnostic Regulation. New Biotechnol. 2022, 70, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Wesołowski, S.; Lemmon, G.; Hernandez, E.J.; Henrie, A.; Miller, T.A.; Weyhrauch, D.; Puchalski, M.D.; Bray, B.E.; Shah, R.U.; Deshmukh, V.G.; et al. An Explainable Artificial Intelligence Approach for Predicting Cardiovascular Outcomes Using Electronic Health Records. PLoS Digit. Health 2022, 1, e0000004. [Google Scholar] [CrossRef] [PubMed]
- Lucieri, A.; Bajwa, M.N.; Dengel, A.; Ahmed, S. Achievements and Challenges in Explaining Deep Learning Based Computer-Aided Diagnosis Systems. arXiv 2020, arXiv:2011.13169. [Google Scholar]
- Shazly, S.A.; Trabuco, E.C.; Ngufor, C.G.; Famuyide, A.O. Introduction to Machine Learning in Obstetrics and Gynecology. Obstet. Gynecol. 2022, 139, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Gerussi, A.; Scaravaglio, M.; Cristoferi, L.; Verda, D.; Milani, C.; De Bernardi, E.; Ippolito, D.; Asselta, R.; Invernizzi, P.; Kather, J.N.; et al. Artificial Intelligence for Precision Medicine in Autoimmune Liver Disease. Front. Immunol. 2022, 13, 966329. [Google Scholar] [CrossRef]
- Reyes, M.; Meier, R.; Pereira, S.; Silva, C.A.; Dahlweid, F.-M.; von Tengg-Kobligk, H.; Summers, R.M.; Wiest, R. On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol. Artif. Intell. 2020, 2, e190043. [Google Scholar] [CrossRef]
- Zafar, I.; Anwar, S.; Kanwal, F.; Yousaf, W.; Nisa, F.U.; Kausar, T.; Ain, Q.U.; Unar, A.; Kamal, M.A.; Rashid, S.; et al. Reviewing Methods of Deep Learning for Intelligent Healthcare Systems in Genomics and Biomedicine. Biomed. Signal Process. Control 2023, 86, 105263. [Google Scholar] [CrossRef]
- Lötsch, J.; Kringel, D.; Ultsch, A. Explainable Artificial Intelligence (XAI) in Biomedicine: Making AI Decisions Trustworthy for Physicians and Patients. BioMedInformatics 2021, 2, 1–17. [Google Scholar] [CrossRef]
- Kırboğa, K.K.; Abbasi, S. Explainability and White Box in Drug Discovery. Chem. Biol. Drug Des. 2023, 102, 217–233. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Hong, G.-S.; Jang, M.; Kyung, S.; Cho, K.; Jeong, J.; Lee, G.Y.; Shin, K.; Kim, K.D.; Ryu, S.M.; Seo, J.B.; et al. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J. Radiol. 2023, 24, e58. [Google Scholar] [CrossRef]
- van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable Artificial Intelligence (XAI) in Deep Learning-Based Medical Image Analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Chorba, J.S.; Shapiro, A.M.; Le, L.; Maidens, J.; Prince, J.; Pham, S.; Kanzawa, M.M.; Barbosa, D.N.; Currie, C.; Brooks, C.; et al. Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform. J. Am. Heart Assoc. 2021, 10, e019905. [Google Scholar] [CrossRef]
- Zhou, L.-Q.; Wu, X.-L.; Huang, S.-Y.; Wu, G.-G.; Ye, H.-R.; Wei, Q.; Bao, L.-Y.; Deng, Y.-B.; Li, X.-R.; Cui, X.-W. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Radiology 2020, 294, 19–28. [Google Scholar] [CrossRef]
- Hassan, R.; Islam, F.; Uddin, Z.; Ghoshal, G.; Hassan, M.M.; Huda, S.; Fortino, G. Prostate Cancer Classification from Ultrasound and MRI Images Using Deep Learning Based Explainable Artificial Intelligence. Future Gener. Comput. Syst. 2022, 127, 462–472. [Google Scholar] [CrossRef]
- Salih, A.; Boscolo Galazzo, I.; Gkontra, P.; Lee, A.M.; Lekadir, K.; Raisi-Estabragh, Z.; Petersen, S.E. Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models. Circ. Cardiovasc. Imaging 2023, 16, e014519. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1135–1144. [Google Scholar]
- Wickramasinghe, N.; Jayaraman, P.P. A Vision for Leveraging the Concept of Digital Twins to Support the Provision of Personalized Cancer Care. IEEE Internet Comput. 2021, 26, 17–24. [Google Scholar] [CrossRef]
- Baumgartner, A.J.; Thompson, J.A.; Kern, D.S.; Ojemann, S.G. Novel Targets in Deep Brain Stimulation for Movement Disorders. Neurosurg. Rev. 2022, 45, 2593–2613. [Google Scholar] [CrossRef]
- Iqbal, J.D.; Krauthammer, M.; Biller-Andorno, N. The Use and Ethics of Digital Twins in Medicine. J. Law. Med. Ethics 2022, 50, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Payrovnaziri, S.N.; Chen, Z.; Rengifo-Moreno, P.; Miller, T.; Bian, J.; Chen, J.H.; Liu, X.; He, Z. Explainable Artificial Intelligence Models Using Real-World Electronic Health Record Data: A Systematic Scoping Review. J. Am. Med. Inform. Assoc. JAMIA 2020, 27, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI-Explainable Artificial Intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.F.; Leal, A.; Lopes, F.; Pais, J.; Dourado, A.; Sales, F.; Martins, P.; Teixeira, C.A. On the Clinical Acceptance of Black-box Systems for EEG Seizure Prediction. Epilepsia Open 2022, 7, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Gunasekeran, D.V.; Tseng, R.M.W.W.; Tham, Y.-C.; Wong, T.Y. Applications of Digital Health for Public Health Responses to COVID-19: A Systematic Scoping Review of Artificial Intelligence, Telehealth and Related Technologies. Npj Digit. Med. 2021, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Mesko, B. The Role of Artificial Intelligence in Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 239–241. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews. Keele UK Keele Univ. 2004, 33, 1–26. [Google Scholar]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) Study: Imaging Acquisition across 21 Sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef]
Author | Year | Title | Publication Title |
---|---|---|---|
Evans et al. | 2018 | The Challenge of Regulating Clinical Decision Support Software After 21st Century Cures | American Journal of Law & Medicine |
Adadi et al. | 2019 | Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis | Advances in bioinformatics |
Shin et al. | 2019 | Current Status and Future Direction of Digital Health in Korea | The Korean Journal of Physiology& Pharmacology |
Ahirwar et al. | 2020 | Interpretable Machine Learning in Health Care: Survey and Discussions | International Journal of Innovative Research in Technology and Management |
Coppola et al. | 2021 | Human, All Too Human? An All-Around Appraisal of The “Artificial Intelligence Revolution” in Medical Imaging | Frontiers in Psychology |
Wickramasinghe et al. | 2021 | A Vision for Leveraging the Concept of Digital Twins to Support the Provision of Personalized Cancer Care | IEEE Internet Computing |
Bhatt et al. | 2022 | Emerging Artificial Intelligence–Empowered mHealth: Scoping Review | JMIR mHealth and uHealth |
Chun et al. | 2022 | Prediction of Conversion to Dementia Using Interpretable Machine Learning in Patients with Amnestic Mild Cognitive Impairment | Frontiers in Aging Neuroscience |
Gerussi et al. | 2022 | Artificial Intelligence for Precision Medicine in Autoimmune Liver Disease | Frontiers in Immunology |
Iqbal et al. | 2022 | The Use and Ethics of Digital Twins in Medicine | Journal of Law, Medicine & Ethics |
Ishengoma et al. | 2022 | Artificial Intelligence in Digital Health: Issues and Dimensions of Ethical Concerns | Innovación y Software |
Khanna et al. | 2022 | Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment | Healthcare |
Kline et al. | 2022 | Multimodal Machine Learning in Precision Health: A Scoping Review | npj Digital Medicine |
Laccourreye et al. | 2022 | Explainable Machine Learning for Longitudinal Multi-Omic Microbiome | Mathematics |
Roy et al. | 2022 | Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine | Diagnostics |
Shazly et al. | 2022 | Introduction to Machine Learning in Obstetrics and Gynecology | Obstetrics & Gynecology |
Wellnhofer et al. | 2022 | Real-World and Regulatory Perspectives of Artificial Intelligence in Cardiovascular Imaging | Frontiers in Cardiovascular Medicine |
Wesołowski et al. | 2022 | An Explainable Artificial Intelligence Approach for Predicting Cardiovascular Outcomes Using Electronic Health Records | PLOS digital health |
Albahri et al. | 2023 | A Systematic Review of Trustworthy and Explainable Artificial Intelligence in Healthcare: Assessment of Quality, Bias Risk, and Data Fusion | Information Fusion |
Baumgartner et al. | 2023 | Fair and Equitable AI in Biomedical Research and Healthcare: Social Science Perspectives | Artificial Intelligence in Medicine |
Bharati et al. | 2023 | A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When? | IEEE Transactions on Artificial Intelligence |
Hong et al. | 2023 | Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning | Korean Journal of Radiology |
King et al. | 2023 | What Works Where and How for Uptake and Impact of Artificial Intelligence in Pathology: Review of Theories for a Realist Evaluation | Journal of Medical Internet Research |
Kuwaiti et al. | 2023 | A Review of the Role of Artificial Intelligence in Healthcare | Journal of Personalized Medicine |
Narayan et al. | 2023 | A Strategic Research Framework for Defeating Diabetes in India: A 21st-Century Agenda | Journal of the Indian Institute of Science |
Vorisek et al. | 2023 | Artificial Intelligence Bias in Health Care: Web-Based Survey | Journal of Medical Internet Research |
Zafar et al. | 2023 | Reviewing Methods of Deep Learning for Intelligent Healthcare Systems in Genomics and Biomedicine | Biomedical Signal Processing and Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, B. The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review. J. Pers. Med. 2024, 14, 277. https://doi.org/10.3390/jpm14030277
Allen B. The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review. Journal of Personalized Medicine. 2024; 14(3):277. https://doi.org/10.3390/jpm14030277
Chicago/Turabian StyleAllen, Ben. 2024. "The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review" Journal of Personalized Medicine 14, no. 3: 277. https://doi.org/10.3390/jpm14030277
APA StyleAllen, B. (2024). The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review. Journal of Personalized Medicine, 14(3), 277. https://doi.org/10.3390/jpm14030277