The Role of the L-Arginine–Nitric Oxide Molecular Pathway in Autosomal Dominant Polycystic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Determinations
2.3. Statistical Analysis
3. Results
3.1. Arginine and Its Metabolites in ADPKD
3.2. Nitric Oxide and Its Metabolites in ADPKD
3.3. L-Arginine–Nitric Oxide Molecular Pathway and Biological Characteristics of ADPKD
4. Discussion
- -
- Sub-regulation of the enzyme that recycles arginine from precursors;
- -
- Altered capacity of arginine transportation in cells;
- -
- Overregulation of the enzymes that catabolize arginine.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADPKD | Autosomal dominant polycystic kidney disease |
PKD | Polycystic kidney disease |
CPS (E.C. 6.3.4.16) | Carbamoyl-phosphate synthetase |
ASS (E.C. 6.3.4.5) | Arginine-succinate synthetase (E.C. 6.3.4.5) |
ASL (E.C. 4.3.2.1) | Arginine-succinate lyase |
ADI (E.C. 3.5.3.6.) | Arginine deiminase |
ADC (E.C. 4.1.1.19) | Arginine decarboxylase |
NOS (E.C. 1.14.13.39) | Nitric oxide synthase |
AGAT (E.C. 2.1.4.1.) | Arginine:glycine amidinotransferase |
ARG2 (E.C. 5.3.1) | Arginase (E.C. 3.5.3.1) |
OTC (E.C. 2.1.3.3) | Ornithine transcarbamylase |
NO | Nitric oxide |
NADPH | Nicotinamide adenine dinucleotide phosphate |
BH4 | 6R-5,6,7,8-tetrahydrobiopterin |
PC1 and PC2 | Polycystins |
BMI | Body mass index |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
CRP | C-reactive protein |
IL-6 | Interleukin 6 |
UACR | Urinary albumin-to-creatinine ratio |
eGFR | Estimated glomerular filtration rate |
L-Arg | Arginine |
ADMA | Asymmetric dimethylarginine |
SDMA | Symmetric dimethylarginine |
References
- Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szolsarek, P.W. Arginine Deprivation and Argininosuccinate Synthetase Expression in the Treatment of Cancer. Int. J. Cancer 2010, 6, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.; Dimitrova, M.; Froggatt, A.; Estevez-Cebrero, M.; Storer, L.C.D.; Mussai, F.; Paine, S.; Grundy, R.G.; Dandapani, M. Characterisation of Expression the Arginine Pathway Enzymes in Childhood Brain Tumours to Determine Susceptibility to Therapeutic Arginine Depletion. BioMed Res. Int. 2022, 2022, e9008685. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2021, 8, 603837. [Google Scholar] [CrossRef] [PubMed]
- Mondanelli, G.; Iacono, A.; Allegrucci, M.; Puccetti, P.; Grohmann, U. Immunoregulatory Interplay between Arginine and Tryptophan Metabolism in Health and Disease. Front. Immunol. 2019, 10, 1565. [Google Scholar] [CrossRef] [PubMed]
- Szlas, A.; Kurek, J.M.; Krejpcio, Z. The Potential of L-Arginine in Prevention and Treatment of Disturbed Carbohydrate and Lipid Metabolism—A Review. Nutrients 2022, 14, 961. [Google Scholar] [CrossRef] [PubMed]
- Trott, J.F.; Hwang, V.J.; Ishimaru, T.; Chmiel, K.J.; Zhou, J.X.; Shim, K.; Stewart, B.J.; Mahjoub, M.R.; Jen, K.-Y.; Barupal, D.K.; et al. Arginine Reprogramming in ADPKD Results in Arginine-Dependent Cystogenesis. Am. J. Physiol.-Ren. Physiol. 2018, 315, F1855–F1868. [Google Scholar] [CrossRef]
- Murray, P.J. Amino Acid Auxotrophy as a System of Immunological Control Nodes. Nat. Immunol. 2016, 17, 132–139. [Google Scholar] [CrossRef]
- Riess, C.; Shokraie, F.; Classen, C.F.; Kreikemeyer, B.; Fiedler, T.; Junghanss, C.; Maletzki, C. Arginine-Depleting Enzymes—An Increasingly Recognized Treatment Strategy for Therapy-Refractory Malignancies. Cell. Physiol. Biochem. 2018, 51, 854–870. [Google Scholar] [CrossRef]
- Ochocki, J.D.; Khare, S.; Hess, M.; Ackerman, D.; Qiu, B.; Daisak, J.I.; Worth, A.J.; Lin, N.; Lee, P.; Xie, H.; et al. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polriessrieyamine Toxicity. Cell Metab. 2018, 27, 1263–1280.e6. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Pinzon-Guzman, C.; Barbul, A. Arginine Metabolism and Cancer. J. Surg. Oncol. 2017, 115, 273–280. [Google Scholar] [CrossRef]
- Huang, H.-L.; Hsu, H.-P.; Shieh, S.-C.; Chang, Y.-S.; Chen, W.-C.; Cho, C.-Y.; Teng, C.-F.; Su, I.-J.; Hung, W.-C.; Lai, M.-D. Attenuation of Argininosuccinate Lyase Inhibits Cancer Growth via Cyclin A2 and Nitric Oxide. Mol. Cancer Ther. 2013, 12, 2505–2516. [Google Scholar] [CrossRef]
- Xuan, D.T.M.; Wu, C.-C.; Kao, T.-J.; Ta, H.D.K.; Anuraga, G.; Andriani, V.; Athoillah, M.; Chiao, C.-C.; Wu, Y.-F.; Lee, K.-H.; et al. Prognostic and Immune Infiltration Signatures of Proteasome 26S Subunit, Non-ATPase (PSMD) Family Genes in Breast Cancer Patients. Aging 2021, 13, 24882–24913. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Wang, C.-C.; Qiu, J.-D.; Ren, B.; You, L. Arginine Metabolism: A Potential Target in Pancreatic Cancer Therapy. Chin. Med. J. 2020, 134, 28–37. [Google Scholar] [CrossRef]
- Ene, C.D.; Penescu, M.N.; Georgescu, S.R.; Tampa, M.; Nicolae, I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020, 11, 10. [Google Scholar] [CrossRef]
- Ene, C.D.; Nicolae, I. Hypoxia-Nitric Oxide Axis and the Associated Damage Molecular Pattern in Cutaneous Melanoma. J. Pers. Med. 2022, 12, 1646. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.D.; Georgescu, S.; Tampa, M.; Matei, C.; Mitran, C.; Mitran, M.; Penescu, M.; Nicolae, I. Cellular Response against Oxidative Stress, a Novel Insight into Lupus Nephritis Pathogenesis. J. Pers. Med. 2021, 11, 693. [Google Scholar] [CrossRef]
- Wang, J.; Tu, W.; Qiu, J.; Wang, D. Predicting Prognosis and Immunotherapeutic Response of Clear Cell Renal Cell Carcinoma. Front. Pharmacol. 2022, 13, 984080. [Google Scholar] [CrossRef]
- Bednarz-Misa, I.; Fleszar, M.G.; Fortuna, P.; Lewandowski, Ł.; Mierzchała-Pasierb, M.; Diakowska, D.; Krzystek-Korpacka, M. Altered L-Arginine Metabolic Pathways in Gastric Cancer: Potential Therapeutic Targets and Biomarkers. Biomolecules 2021, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
- Haumann, S.; Müller, R.-U.; Liebau, M.C. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int. J. Mol. Sci. 2020, 21, 6093. [Google Scholar] [CrossRef]
- Sriwi, D.; Alabdaljabar, M.S.; Jacob, M.; Mujamammi, A.H.; Gu, X.; Sabi, E.M.; Li, L.; Hussein, M.H.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics Profiling of Cystic Renal Disease towards Biomarker Discovery. Biology 2021, 10, 770. [Google Scholar] [CrossRef]
- Nicolae, I.; Tampa, M.; Ene, C.; Mitran, C.; Mitran, M.; Sarbu, M.; Matei, C.; Ene, C.; Georgescu, S. Correlations between Related-Purine Derivatives and Renal Disorders in Patients with Psoriasis Vulgaris. Exp. Ther. Med. 2018, 17, 1012–1019. [Google Scholar] [CrossRef]
- Ene, C.D.; Penescu, M.; Anghel, A.; Neagu, M.; Budu, V.; Nicolae, I. Monitoring Diabetic Nephropathy by Circulating Gangliosides. J. Immunoass. Immunochem. 2015, 37, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Szefel, J.; Danielak, A.; Kruszewski, W.J. Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv. Med. Sci. 2019, 64, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, A.; Fiume, G.; Pelagalli, A.; Sanità, G.; Ruocco, M.R.; Montagnani, S.; Arcucci, A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk with Tumor Microenvironment. Front. Oncol. 2020, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Barten, T.R.M.; Bernts, L.H.P.; Drenth, J.P.H.; Gevers, T.J.G. New Insights into Targeting Hepatic Cystogenesis in Autosomal Dominant Polycystic Liver and Kidney Disease. Expert Opin. Ther. Targets 2020, 24, 589–599. [Google Scholar] [CrossRef]
- Ene, C.-V.; Nicolae, I.; Geavlete, B.; Geavlete, P.; Ene, C.D. IL-6 Signaling Link between Inflammatory Tumor Microenvironment and Prostatic Tumorigenesis. Anal. Cell. Pathol. 2022, 2022, 5980387. [Google Scholar] [CrossRef] [PubMed]
- Raptis, V.; Loutradis, C.; Sarafidis, P.A. Renal Injury Progression in Autosomal Dominant Polycystic Kidney Disease: A Look beyond the Cysts. Nephrol. Dial. Transplant. 2018, 33, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, V.Y.; Sultanova, R.F.; Sudarikova, A.V.; Ilatovskaya, D.V. Insights into the Molecular Mechanisms of Polycystic Kidney Diseases. Front. Physiol. 2021, 12, 693130. [Google Scholar] [CrossRef]
- Ca, Y.; Duriseti, P.; Chebib, F.T. Management of Autosomal Dominant Polycystic Kidney Disease in the Era of Disease-Modifying Treatment Options. Kidney Res. Clin. Pract. 2022, 41, 422–431. [Google Scholar] [CrossRef]
- Roediger, R.; Dieterich, D.; Chanumolu, P.; Deshpande, P. Polycystic Kidney/Liver Disease. Clin. Liver Dis. 2022, 26, 229–243. [Google Scholar] [CrossRef]
- Hopp, K.; Kleczko, E.K.; Gitomer, B.Y.; Chonchol, M.; Klawitter, J.; Christians, U.; Klawitter, J. Metabolic Reprogramming in a Slowly Developing Orthologous Model of Polycystic Kidney Disease. Am. J. Physiol.-Ren. Physiol. 2022, 322, F258–F267. [Google Scholar] [CrossRef]
- Nowak, K.L.; Hopp, K. Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease: Evidence and Therapeutic Potential. Clin. J. Am. Soc. Nephrol. CJASN 2020, 15, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Park, H.C.; Oh, Y.K. Practical Issues in the Management of Polycystic Kidney Disease: Blood Pressure and Water Balance. Electrolytes Blood Press. 2022, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Ishiko, S.; Morisada, N.; Kondo, A.; Nagai, S.; Aoto, Y.; Okada, E.; Rossanti, R.; Sakakibara, N.; Nagano, C.; Horinouchi, T.; et al. Clinical Features of Autosomal Recessive Polycystic Kidney Disease in the Japanese Population and Analysis of Splicing in PKHD1 Gene for Determination of Phenotypes. Clin. Exp. Nephrol. 2021, 26, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Jdiaa, S.S.; Husainat, N.M.; Mansour, R.; Kalot, M.A.; McGreal, K.; Chebib, F.T.; Perrone, R.D.; Yu, A.; Mustafa, R.A. A Systematic Review of Reported Outcomes in ADPKD Studies. Kidney Int. Rep. 2022, 7, 1964–1979. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Jung, K.-H.; Ryu, H.; Oh, K.-H.; Kim, J.-M.; Lee, S.-T.; Park, K.-I.; Chu, K.; Jung, K.-Y.; Kim, M.; et al. Association of Autosomal Dominant Polycystic Kidney Disease with Cerebral Small Vessel Disease. J. Cereb. Blood Flow Metab. 2021, 41, 3365–3377. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, J.; Pavlyk, I.; Mukherjee, U.; Hall, P.E.; Szlosarek, P.W. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. Lung Cancer Targets Ther. 2022, 13, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Poillet-Perez, L.; Xie, X.; Zhan, L.; Yang, Y.; Sharp, D.W.; Hu, Z.S.; Su, X.; Maganti, A.; Jiang, C.; Lu, W.; et al. Autophagy Maintains Tumour Growth through Circulating Arginine. Nature 2018, 563, 569–573. [Google Scholar] [CrossRef]
- Hajaj, E.; Sciacovelli, M.; Frezza, C.; Erez, A. The Context-Specific Roles of Urea Cycle Enzymes in Tumorigenesis. Mol. Cell 2021, 81, 3749–3759. [Google Scholar] [CrossRef]
- Lee, J.S.; Adler, L.; Karathia, H.; Carmel, N.; Rabinovich, S.; Auslander, N.; Keshet, R.; Stettner, N.; Silberman, A.; Agemy, L.; et al. Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell 2018, 174, 1559–1570.e22. [Google Scholar] [CrossRef]
- Tate, D.J.; Vonderhaar, D.J.; Caldas, Y.A.; Metoyer, T.; Patterson, J.R.; Aviles, D.H.; Zea, A.H. Effect of Arginase II on L-Arginine Depletion and Cell Growth in Murine Cell Lines of Renal Cell Carcinoma. J. Hematol. Oncol. 2008, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhao, X. Argininosuccinate Synthase 1, Arginine Deprivation Therapy and Cancer Management. Front. Pharmacol. 2022, 13, 935553. [Google Scholar] [CrossRef] [PubMed]
- Vardon, A.; Dandapani, M.; Cheng, D.; Cheng, P.; De Santo, C.; Mussai, F. Arginine Auxotrophic Gene Signature in Paediatric Sarcomas and Brain Tumours Provides a Viable Target for Arginine Depletion Therapies. Oncotarget 2017, 8, 63506–63517. [Google Scholar] [CrossRef]
- Keshet, R.; Erez, A. Arginine and the Metabolic Regulation of Nitric Oxide Synthesis in Cancer. Dis. Models Mech. 2018, 11, dmm033332. [Google Scholar] [CrossRef] [PubMed]
- Bowden, S.A.; Rodger, E.J.; Chatterjee, A.; Eccles, M.R.; Stayner, C. Recent Discoveries in Epigenetic Modifications of Polycystic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 13327. [Google Scholar] [CrossRef]
- di Meo, N.A.; Lasorsa, F.; Rutigliano, M.; Loizzo, D.; Ferro, M.; Stella, A.; Bizzoca, C.; Vincenti, L.; Pandolfo, S.D.; Autorino, R.; et al. Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 14360. [Google Scholar] [CrossRef]
- Pagliarini, R.; Podrini, C. Metabolic Reprogramming and Reconstruction: Integration of Experimental and Computational Studies to Set the Path Forward in ADPKD. Front. Med. 2021, 8, 740087. [Google Scholar] [CrossRef]
- Baliga, M.M.; Klawitter, J.; Christians, U.; Hopp, K.; Chonchol, M.; Gitomer, B.Y.; Cadnapaphornchai, M.A.; Klawitter, J. Metabolic Profiling in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease. Sci. Rep. 2021, 11, 6629. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Jia, P.; Liu, C.; Wei, Y.; Song, Y.; Li, S.; Liu, L.; Wang, B.; Shi, H. Association between Serum Arginine Levels and Cancer Risk: A Community-Based Nested Case-Control Study. Front. Nutr. 2022, 9, 1069113. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, M.; Zhou, J.; Lv, J.; Song, S.; Fu, L.; Chen, J.; Yang, M.; Mei, C. Interactions between Macrophages and Cyst-Lining Epithelial Cells Promote Kidney Cyst Growth in Pkd1-Deficient Mice. J. Am. Soc. Nephrol. 2018, 29, 2310–2325. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xiang, J.; Su, L.; Tang, X. The Regulation of Nitric Oxide in Tumor Progression and Therapy. J. Int. Med. Res. 2020, 48, 030006052090598. [Google Scholar] [CrossRef] [PubMed]
- Baylis, C. Nitric Oxide Deficiency in Chronic Kidney Disease. Am. J. Physiol.-Ren. Physiol. 2008, 294, F1–F9. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, L.; Ren, Y.; Huang, Y.; Liu, W.; Lv, Z.; Qian, L.; Yu, Y.; Xiong, Y. Arginase: Shedding Light on the Mechanisms and Opportunities in Cardiovascular Diseases. Cell Death Discov. 2022, 8, 413. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiol. Rev. 2018, 98, 641–665. [Google Scholar] [CrossRef]
- Waddington, S.N. Arginase in Glomerulonephritis. Kidney Int. 2002, 61, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Afshinpour, M.; Mahdiuni, H. Arginine transportation mechanism through cationic amino acid transporter 1: Insights from molecular dynamics studies. J. Biomol. Struct. Dyn. 2023, 41, 13580–13594. [Google Scholar] [CrossRef] [PubMed]
- Kielstein, J.T.; Böger, R.H.; Bode-Böger, S.M.; Frölich, J.C.; Haller, H.; Ritz, E.; Fliser, D. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol. 2002, 13, 170–176. [Google Scholar] [CrossRef]
- Saran, R.; Novak, J.E.; Desai, A.; Abdulhayoglu, E.; Warren, J.S.; Bustami, R.; Handelman, G.J.; Barbato, D.; Weitzel, W.; D’Alecy, L.G.; et al. Impact of vitamin E on plasma asymmetric dimethylarginine (ADMA) in chronic kidney disease (CKD): A pilot study. Nephrol. Dial. Transplant. 2003, 18, 2415–2420. [Google Scholar] [CrossRef]
- Seif, Y.; Choudhary, K.S.; Hefner, Y.; Anand, A.; Yang, L.; Palsson, B.O. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc. Natl. Acad. Sci. USA 2020, 117, 6264–6273. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine: Master and Commander in Innate Immune Responses. Sci. Signal. 2010, 3, pe27. [Google Scholar] [CrossRef]
- Grosse, G.M.; Schwedhelm, E.; Worthmann, H.; Choe, C.U. Arginine Derivatives in Cerebrovascular Diseases. Mechanisms and Clinical Implications. Int. J. Mol. Sci. 2020, 21, 1798. [Google Scholar] [CrossRef] [PubMed]
- Uyanga, V.A.; Sun, L.; Liu, Y.; Zhang, M.; Zhao, J.; Wang, X.; Hongchao, J.; Okanlawon, O.M.; Lin, H. Effects of arginine replacement with L-citrulline on the arginine/nitric oxide metabolism in chickens: An animal model without urea cycle. J. Anim. Sci. Biotechnol. 2023, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Crown Bioscience. Cystopathic Diseases 2023; Premier Translational High Content Screening Drug Discovery Platforms; Crown Bioscience: San Diego, CA, USA, 2023. [Google Scholar]
- Kurbegovic, A.; Pacis, R.C.; Trudel, M. Modeling Pkd1 gene-targeted strategies for correction of polycystic kidney disease. Mol. Ther.-Methods Clin. Dev. 2023, 29, 366–380. [Google Scholar] [CrossRef]
- Ma, C.; Liao, K.; Wang, J.; Li, T.; Liu, L. l-Arginine, as an essential amino acid, is a potential substitute for treating COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. Cell Biosci. 2023, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Nejati, M.; Dehghan, P.; Safari, S.; Jamilian, P.; Zarezadeh, M. The influence of Arginine supplementation on IGF-1: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2023, 55, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ene, C.D.; Nicolae, I.; Penescu, M.; Capusa, C. L-arginine-nitric oxide molecular pathway in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 2023, 38 (Suppl. S1), gfad063c_4542. [Google Scholar] [CrossRef]
- Ene, C.D.; Nicolae, I. The Inflammatory Profile Orchestrated by Inducible Nitric Oxide Synthase in Systemic Lupus Erythematosus. J. Pers. Med. 2023, 13, 934. [Google Scholar] [CrossRef]
- Kurhaluk, N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int. J. Mol. Sci. 2023, 24, 8205. [Google Scholar] [CrossRef]
ADPKD (62 Subjects) | CKD (26 Subjects) | Control (37 Subjects) | p Value | |
---|---|---|---|---|
Patient characteristics | ||||
Female/male | 29/33 | 15/21 | 17/20 | p1 = 0.07 |
p2 = 0.12 | ||||
p3 = 0.19 | ||||
Age (years) | 41.3 ± 10.1 | 42.1 ± 12.6 | 40.8 ± 9.2 | p1 = 0.26 |
p2 = 0.34 | ||||
p3 = 0.09 | ||||
BMI (kg/m2) | 23.1 ± 2.1 | 22.9 ± 3.2 | 22.3 ± 2.9 | p1 = 0.71 |
p2 = 0.56 | ||||
p3 = 0.21 | ||||
Systolic blood pressure (mmHg) | 12.2 ± 1.8 | 12.5 ± 1.4 | 11.8 ± 2.2 | p1 = 0.08 |
p2 = 0.06 | ||||
p3 = 0.13 | ||||
Diastolic blood pressure (mmHg) | 6.2 ± 0.9 | 6.5 ± 0.7 | 6.4 ± 0.7 | p1 = 0.12 |
p2 = 0.37 | ||||
p3 = 0.21 | ||||
Laboratory data | ||||
Hemoglobin (g/L) | 12.9 ± 1.9 | 12.6 ± 2.1 | 13.7 ± 0.9 | p1 = 0.09 |
p2 = 0.11 | ||||
p3 = 0.07 | ||||
Leukocytes (cells/mmc) | 5492.50 ± 1035.7 | 5673 ± 1293 | 4997.3 ± 567.9 | p1 = 0.05 |
p2 = 0.09 | ||||
p3 = 0.16 | ||||
Creatinine (mg/dL) | 1.14 ± 0.39 | 1.21 ± 0.42 | 0.79 ± 0.19 | p1 = 0.01 |
p2 = 0.24 | ||||
p3 = 0.04 | ||||
Albumin (g/dL) | 3.9 ± 0.9 | 4.0 ± 1.2 | 4.2 ± 0.6 | p1 = 0.07 |
p2 = 0.09 | ||||
p3 = 0.52 | ||||
CRP (mg/dL) | 2.8 ± 1.7 | 2.3 ± 2.0 | 0.9 ± 0.9 | p1 = 0.01 |
p2 = 0.21 | ||||
p3 = 0.04 | ||||
IL-6 (ng/dL) | 9.5 ± 5.3 | 8.4 ± 4.7 | 4.2 ± 1.6 | p1 = 0.03 |
p2 = 0.36 | ||||
p3 = 0.04 | ||||
HDL cholesterol (mg/dL) | 39.2 ± 15.3 | 36.0 ± 18.3 | 50.5 ± 10.3 | p1 = 0.04 |
p2 = 0.09 | ||||
p3 = 0.04 | ||||
LDL cholesterol (mg/dL) | 147.4 ± 25.1 | 153.2 ± 33.6 | 109.7 ± 11.3 | p1 = 0.03 |
p2 = 0.11 | ||||
p3 = 0.05 | ||||
Hematuria (SW cells/camp) | 10.5 ± 8.3 | 14.0 ± 12.1 | 5 ± 5 | p1 = 0.04 |
p2 = 0.02 | ||||
p3 = 0.02 | ||||
Leukocyturia (SW cells/camp) | 12.1 ± 10.7 | 14.8 ± 13.5 | 3.5 ± 2.3 | p1 = 0.01 |
p2 = 0.06 | ||||
p3 = 0.04 | ||||
Urinary b2-microglobulin (mg/L) | 0.23 ± 0.09 | 0.28 ± 0.11 | 0.10 ± 0.04 | p1 = 0.02 |
p2 = 0.04 | ||||
p3 = 0.01 | ||||
UACR (mg/g creatinine) | 19.9 ± 5.1 | 24.6 ± 7.8 | 7.3 ± 0.4 | p1 = 0.02 |
p2 = 0.18 | ||||
p3 = 0.01 | ||||
eGFR (mL/min/1.73 m2) | 78.9 ± 15.1 | 74.3 ± 13.8 | 104.9 ± 10.3 | p1 = 0.01 |
p2 = 0.07 | ||||
p3 = −0.01 |
Metabolite | ADPKD (62 Subjects) | CKD (26 Subjects) | Control (37 Subjects) | p Value |
---|---|---|---|---|
Arg (µmols/L) | 47.6 ± 16.8 | 64.6 ± 17.9 | 89.2 ± 12.4 | p1 < 0.001 |
p2 < 0.05 | ||||
p3 < 0.05 |
Metabolites | ADPKD (62 Subjects) | CKD (26 Subjects) | Control (37 Subjects) | p Value |
---|---|---|---|---|
ARG2 (U/L) | 7.9 ± 2.8 | 8.1 ± 3.3 | 8.2 ± 2.5 | p1 > 0.05 |
p2 > 0.05 | ||||
p3 > 0.05 | ||||
ARG2/Arg | 0.165 ± 0.032 | 0.125 ± 0.041 | 0.095 ± 0.014 | p1 > 0.05 |
p2 > 0.05 | ||||
p3 > 0.05 | ||||
NOS2 (U/L) | 10.5 ± 2.9 | 11.8 ± 3.6 | 12.9 ± 1.4 | p1 < 0.01 |
p2 < 0.05 | ||||
p3 = 0.05 | ||||
NOS2/Arg | 0.220 ± 0.049 | 0.182 ± 0.52 | 0.144 ± 0.026 | p1 < 0.001 |
p2 < 0.05 | ||||
p3 < 0.05 | ||||
ADMA (µmols/L) | 0.88 ± 0.33 | 0.67 ± 0.38 | 0.58 ± 0.04 | p1 < 0.02 |
p2 < 0.05 | ||||
p3 < 0.05 | ||||
ADMA/Arg | 0.018 ± 0.003 | 0.010 ± 0.004 | 0.006 ± 0.001 | p1 < 0.001 |
p2 < 0.05 | ||||
p3 < 0.05 | ||||
SDMA (µmols/L) | 1.38 ± 0.36 | 0.96 ± 0.32 | 0.52 ± 0.08 | p1 < 0.01 |
p2 < 0.05 | ||||
p3 < 0.05 | ||||
SDMA/Arg | 0.003 ± 0.001 | 0.004 ± 0.001 | 0.006 ± 0.001 | p1 < 0.001 |
p2 > 0.05 | ||||
p3 < 0.05 |
Metabolite | ADPKD (62 Subjects) | CKD (26 Subjects) | Control (37 Subjects) | p Value |
---|---|---|---|---|
Direct nitrite (µmols/L) | 10.1 ± 2.2 | 14.5 ± 3.2 | 15.3 ± 2.9 | p1 < 0.01 |
p2 < 0.05 | ||||
p3 > 0.0.5 | ||||
Direct nitrite/Arg | 0.212 ± 0.035 | 0.224 ± 0.041 | 0.171 ± 0.024 | p1 < 0.001 |
p2 > 0.05 | ||||
p3 < 0.05 | ||||
Total nitrite (µmols/L) | 23.5 ± 6.6 | 29.7 ± 5.3 | 33.9 ± 3.6 | p1 < 0.01 |
p2 < 0.05 | ||||
p3 < 0.05 | ||||
Total nitrite/Arg | 0.493 ± 0.11 | 0.451 ± 0.09 | 0.380 ± 0.07 | p1 < 0.01 |
p2 > 0.05 | ||||
p3 < 0.05 | ||||
Nitrate (µmols/L) | 13.4 ± 7.8 | 15.2 ± 4.1 | 18.6 ± 4.4 | p1 < 0.01 |
p2 < 0.01 | ||||
p3 < 0.01 | ||||
Nitrate/Arg | 0.281 ± 0.07 | 0.23 ± 0.05 | 0.208 ± 0.03 | p1 < 0.01 |
p2 < 0.05 | ||||
p3 < 0.05 |
Parameters | Arg | ARG2 | NOS2 | Total Nitrite | SDMA | ADMA | |
---|---|---|---|---|---|---|---|
ARG2 | R | −0.43 | - | ||||
p | <0.01 | - | |||||
NOS2 | R | −0.86 | −0.58 | - | |||
p | <0.001 | <0.001 | - | ||||
Total nitrite | R | 0.54 | −0.23 | 0.39 | - | ||
p | <0.001 | 0.01 | <0.01 | - | |||
Nitrate | R | 0.79 | −0.38 | 0.46 | |||
p | <0.001 | 0.02 | <0.001 | ||||
SDMA | R | −0.28 | 0.29 | 0.36 | −0.49 | ||
p | <0.001 | 0.45 | <0.01 | <0.001 | |||
ADMA | R | −0.80 | 0.15 | 0.49 | −0.66 | ||
p | 0 < 0.01 | 0.23 | <0.001 | 0.001 | |||
BMI | R | −0.40 | −0.17 | 0.42 | −0.35 | 0.03 | 0.26 |
p | <0.01 | 0.38 | 0.01 | <0.01 | 0.79 | 0.32 | |
Hb | R | 0.18 | 0.42 | 0.14 | −0.11 | 0.04 | 0.14 |
p | 0.09 | 0.20 | 0.41 | 0.40 | 0.73 | 0.39 | |
Leukocytes | R | 0.13 | 0.19 | 0.14 | 0.01 | 0.04 | 0.12 |
p | 0.42 | 0.23 | 0.71 | 0.95 | 0.71 | 0.58 | |
Creatinine | R | −0.31 | −0.24 | −0.11 | 0.12 | 0.04 | 0.15 |
p | 0.10 | 0.32 | 0.21 | 0.96 | 0.73 | 0.54 | |
Albumin | R | 0.17 | −0.08 | −0.34 | 0.07 | −0.03 | −0.18 |
p | 0.10 | 0.55 | 0.08 | 0.60 | 0.95 | 0.84 | |
CRP | R | −0.27 | 0.19 | 0.26 | −0.25 | 0.34 | 0.19 |
p | 0.011 | 0.16 | 0.15 | 0.08 | 0.89 | 0.12 | |
IL-6 | R | −0.37 | 0.29 | 0.20 | −0.26 | 0.24 | 0.31 |
p | 0.012 | 0.15 | 0.25 | 0.13 | 0.09 | 0.34 | |
HDL cholesterol | R | 0.25 | −0.18 | −0.32 | 0.21 | −0.08 | −0.21 |
p | 0.070 | 0.11 | 0.43 | 0.38 | 0.76 | 0.22 | |
LDL cholesterol | R | −0.41 | 0.27 | 0.28 | 0.18 | 0.01 | 0.26 |
p | 0.030 | 0.28 | 0.13 | 0.20 | 0.90 | 0.43 | |
Hematuria | R | −0.14 | 0.09 | 0.08 | −0.28 | 0.04 | 0.06 |
p | 0.31 | 0.65 | 0.73 | 0.09 | 0.95 | 0.54 | |
Leukocyturia | R | −0.15 | 0.18 | 0.10 | 0.23 | 0.12 | 0.09 |
p | 0.22 | 0.43 | 0.48 | 0.54 | 0.75 | 0.55 | |
Urinary b2-microglobulin | R | −0.26 | 0.35 | 0.32 | 0.08 | 0.26 | 0.33 |
p | 0.32 | 0.04 | 0.09 | 0.82 | 0.65 | 0.23 | |
UACR | R | −0.24 | 0.41 | 0.12 | −0.25 | 0.12 | 0.21 |
p | 0.07 | 0.03 | 0.74 | 0.06 | 0.12 | 0.28 | |
eGFR | R | 0.48 | −0.27 | −0.19 | 0.27 | −0.21 | −0.19 |
p | <0.01 | 0.04 | 0.05 | 0.37 | 0.04 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, C.D.; Penescu, M.; Nicolae, I.; Capusa, C. The Role of the L-Arginine–Nitric Oxide Molecular Pathway in Autosomal Dominant Polycystic Kidney Disease. J. Pers. Med. 2024, 14, 299. https://doi.org/10.3390/jpm14030299
Ene CD, Penescu M, Nicolae I, Capusa C. The Role of the L-Arginine–Nitric Oxide Molecular Pathway in Autosomal Dominant Polycystic Kidney Disease. Journal of Personalized Medicine. 2024; 14(3):299. https://doi.org/10.3390/jpm14030299
Chicago/Turabian StyleEne, Corina Daniela, Mircea Penescu, Ilinca Nicolae, and Cristina Capusa. 2024. "The Role of the L-Arginine–Nitric Oxide Molecular Pathway in Autosomal Dominant Polycystic Kidney Disease" Journal of Personalized Medicine 14, no. 3: 299. https://doi.org/10.3390/jpm14030299
APA StyleEne, C. D., Penescu, M., Nicolae, I., & Capusa, C. (2024). The Role of the L-Arginine–Nitric Oxide Molecular Pathway in Autosomal Dominant Polycystic Kidney Disease. Journal of Personalized Medicine, 14(3), 299. https://doi.org/10.3390/jpm14030299