A Prospective Study on Neural Biomarkers in Patients with Long-COVID Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Samples and Biomarker Measurements
2.3. Assessment of Cognition, Mental Health, and HQoL
2.4. Statistical Methods
3. Results
3.1. Long-COVID and Neural Biomarker Levels
3.2. Long-COVID Reported Symptoms
3.3. Long-COVID and Cognition, Mental Health, and HQoL
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological Associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Ellul, M.; Varatharaj, A.; Nicholson, T.R.; Pollak, T.A.; Thomas, N.; Easton, A.; Zandi, M.S.; Manji, H.; Solomon, T.; Carson, A.; et al. Defining Causality in COVID-19 and Neurological Disorders. J. Neurol. Neurosurg. Psychiatry 2020, 91, 811–812. [Google Scholar] [CrossRef] [PubMed]
- Tom, J.; Bao, M.; Tsai, L.; Qamra, A.; Summers, D.; Carrasco-Triguero, M.; McBride, J.; Rosenberger, C.M.; Lin, C.J.F.; Stubbings, W.; et al. Prognostic and Predictive Biomarkers in Patients with Coronavirus Disease 2019 Treated with Tocilizumab in a Randomized Controlled Trial∗. Crit. Care Med. 2022, 50, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central Nervous System Involvement by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020, 92, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Savarraj, J.; Park, E.S.; Colpo, G.D.; Hinds, S.N.; Morales, D.; Ahnstedt, H.; Paz, A.S.; Assing, A.; Liu, F.; Juneja, S.; et al. Brain Injury, Endothelial Injury and Inflammatory Markers Are Elevated and Express Sex-Specific Alterations after COVID-19. J. Neuroinflammation 2021, 18, 277. [Google Scholar] [CrossRef] [PubMed]
- Perrin, P.; Collongues, N.; Baloglu, S.; Bedo, D.; Bassand, X.; Lavaux, T.; Gautier-Vargas, G.; Keller, N.; Kremer, S.; Fafi-Kremer, S.; et al. Cytokine Release Syndrome-Associated Encephalopathy in Patients with COVID-19. Eur. J. Neurol. 2021, 28, 248–258. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A Clinical Case Definition of Post-COVID-19 Condition by a Delphi Consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Schou, T.M.; Joca, S.; Wegener, G.; Bay-Richter, C. Psychiatric and Neuropsychiatric Sequelae of COVID-19—A Systematic Review. Brain Behav. Immun. 2021, 97, 328–348. [Google Scholar] [CrossRef]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Michetti, F.; Corvino, V.; Geloso, M.C.; Lattanzi, W.; Bernardini, C.; Serpero, L.; Gazzolo, D. The S100B Protein in Biological Fluids: More than a Lifelong Biomarker of Brain Distress. J. Neurochem. 2012, 120, 644–659. [Google Scholar] [CrossRef]
- Pase, M.P.; Beiser, A.S.; Himali, J.J.; Satizabal, C.L.; Aparicio, H.J.; Decarli, C.; Chêne, G.; Dufouil, C.; Seshadri, S. Assessment of Plasma Total Tau Level as a Predictive Biomarker for Dementia and Related Endophenotypes. JAMA Neurol. 2019, 76, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Klinkhammer, S.; Horn, J.; Duits, A.A.; Visser-Meily, J.M.A.; Verwijk, E.; Slooter, A.J.C.; Postma, A.A.; van Heugten, C.M.; Aries, M.J.H.; van Bussel, B.C.T.; et al. Neurological and (Neuro)Psychological Sequelae in Intensive Care and General Ward COVID-19 Survivors. Eur. J. Neurol. 2023, 30, 1880–1890. [Google Scholar] [CrossRef] [PubMed]
- Messing, A.; Brenner, M. GFAP at 50. ASN Neuro 2020, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Needham, E.J.; Ren, A.L.; Digby, R.J.; Norton, E.J.; Ebrahimi, S.; Outtrim, J.G.; Chatfield, D.A.; Manktelow, A.E.; Leibowitz, M.M.; Newcombe, V.F.J.; et al. Brain Injury in COVID-19 Is Associated with Dysregulated Innate and Adaptive Immune Responses. Brain 2022, 145, 4097–4107. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 Proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.M. A Review of the Clinical Utility of Serum S100B Protein Levels in the Assessment of Traumatic Brain Injury. Acta Neurochir. 2017, 159, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Aceti, A.; Margarucci, L.M.; Scaramucci, E.; Orsini, M.; Salerno, G.; Di Sante, G.; Gianfranceschi, G.; Di Liddo, R.; Valeriani, F.; Ria, F.; et al. Serum S100B Protein as a Marker of Severity in COVID-19 Patients. Sci. Rep. 2020, 10, 18665. [Google Scholar] [CrossRef]
- Köglsberger, S.; Cordero-Maldonado, M.L.; Antony, P.; Forster, J.I.; Garcia, P.; Buttini, M.; Crawford, A.; Glaab, E. Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and Phosphorylation: Possible Implications for Tauopathies. Mol. Neurobiol. 2017, 54, 7979–7993. [Google Scholar] [CrossRef]
- Tavares-Júnior, J.W.L.; de Souza, A.C.C.; Borges, J.W.P.; Oliveira, D.N.; Siqueira-Neto, J.I.; Sobreira-Neto, M.A.; Braga-Neto, P. COVID-19 Associated Cognitive Impairment: A Systematic Review. Cortex 2022, 152, 77–97. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Olssøn, I.; Mykletun, A.; Dahl, A.A. The Hospital Anxiety and Depression Rating Scale: A Cross-Sectional Study of Psychometrics and Case Finding Abilities in General Practice. BMC Psychiatry 2005, 5, 46. [Google Scholar] [CrossRef]
- Creamer, M.; Bell, R.; Failla, S. Psychometric Properties of the Impact of Event Scale-Revised. Behav. Res. Ther. 2003, 41, 1489–1496. [Google Scholar] [CrossRef]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Telser, J.; Grossmann, K.; Weideli, O.C.; Hillmann, D.; Aeschbacher, S.; Wohlwend, N.; Velez, L.; Kuhle, J.; Maleska, A.; Benkert, P.; et al. Concentrations of Serum Brain Injury Biomarkers Following SARS-CoV-2 Infection in Individuals with and without Long-COVID—Results from the Prospective Population-Based COVI-GAPP Study. Diagnostics 2023, 13, 2167. [Google Scholar] [CrossRef]
- Bark, L.; Larsson, I.M.; Wallin, E.; Simrén, J.; Zetterberg, H.; Lipcsey, M.; Frithiof, R.; Rostami, E.; Hultström, M. Central Nervous System Biomarkers GFAp and NfL Associate with Post-Acute Cognitive Impairment and Fatigue Following Critical COVID-19. Sci. Rep. 2023, 13, 13144. [Google Scholar] [CrossRef] [PubMed]
- de Boni, L.; Odainic, A.; Gancarczyk, N.; Kaluza, L.; Strassburg, C.P.; Kersting, X.A.K.; Johnson, J.M.; Wüllner, U.; Schmidt, S.V.; Nattermann, J.; et al. No Serological Evidence for Neuronal Damage or Reactive Gliosis in Neuro-COVID-19 Patients with Long-Term Persistent Headache. Neurol. Res. Pract. 2022, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Sorci, G.; Giovannini, G.; Riuzzi, F.; Bonifazi, P.; Zelante, T.; Zagarella, S.; Bistoni, F.; Donato, R.; Romani, L. The Danger Signal S100B Integrates Pathogen- and Danger-Sensing Pathways to Restrain Inflammation. PLoS Pathog. 2011, 7, e1001315. [Google Scholar] [CrossRef] [PubMed]
- Vrettou, C.S.; Vassiliou, A.G.; Pratikaki, M.; Keskinidou, C.; Tsipilis, S.; Gallos, P.; Jahaj, E.; Orfanos, S.E.; Kotanidou, A.; Dimopoulou, I. Comparative Evaluation and Prognostic Utility of Neuronal Injury Biomarkers in COVID-19 Patients: A Prospective Study. Shock 2022, 58, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.X.T.; Lee, J.K.W. S100B as a Marker for Brain Damage and Blood-Brain Barrier Disruption Following Exercise. Sports Med. 2014, 44, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Lennol, M.P.; Ashton, N.J.; Moreno-Pérez, O.; García-Ayllón, M.S.; Ramos-Rincon, J.M.; Andrés, M.; León-Ramírez, J.M.; Boix, V.; Gil, J.; Blennow, K.; et al. Transient Changes in the Plasma of Astrocytic and Neuronal Injury Biomarkers in COVID-19 Patients without Neurological Syndromes. Int. J. Mol. Sci. 2023, 24, 2715. [Google Scholar] [CrossRef]
- Hampshire, A.; Trender, W.; Chamberlain, S.R.; Jolly, A.E.; Grant, J.E.; Patrick, F.; Mazibuko, N.; Williams, S.C.; Barnby, J.M.; Hellyer, P.; et al. Cognitive Deficits in People Who Have Recovered from COVID-19. eClinicalMedicine 2021, 39, 101044. [Google Scholar] [CrossRef] [PubMed]
- Fazzini, B.; Battaglini, D.; Carenzo, L.; Pelosi, P.; Cecconi, M.; Puthucheary, Z. Physical and Psychological Impairment in Survivors of Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Br. J. Anaesth. 2022, 129, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae among Patients with COVID-19 Four Months after Hospital Discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Sasannejad, C.; Ely, E.W.; Lahiri, S. Long-Term Cognitive Impairment after Acute Respiratory Distress Syndrome: A Review of Clinical Impact and Pathophysiological Mechanisms. Crit. Care 2019, 23, 352. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of Stress throughout the Lifespan on the Brain, Behaviour and Cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Franks, K.H.; Rowsthorn, E.; Bransby, L.; Lim, Y.Y.; Chong, T.T.J.; Pase, M.P. Association of Self-Reported Psychological Stress with Cognitive Decline: A Systematic Review. Neuropsychol. Rev. 2023, 33, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Maes, M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Encephalomyelitis Disseminata/Multiple Sclerosis Show Remarkable Levels of Similarity in Phenomenology and Neuroimmune Characteristics. BMC Med. 2013, 11, 205. [Google Scholar] [CrossRef]
- Komaroff, A.L.; Fagioli, L.R.; Doolittle, T.H.; Gandek, B.; Gleit, M.A.; Guerriero, R.T.; Kornish, R.J.; Ware, N.C.; Ware, J.E.; Bates, D.W. Health Status in Patients with Chronic Fatigue Syndrome and in General Population and Disease Comparison Groups. Am. J. Med. 1996, 101, 281–290. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, Risk Factors and Recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
Characteristics | Value |
---|---|
Number of patients | 65 |
Age (years) | 56 (45–63) |
Sex | |
Male | 36 (55.4%) |
Female | 29 (44.6%) |
Hospitalization status during acute illness | |
ICU | 32 (49.2%) |
Mechanical ventilation | 29 (44.6%) |
High-flow oxygen therapy | 3 (4.6%) |
Ward | 15 (23.1%) |
Outpatients | 18 (27.7%) |
Smoking habit at the time of enrollment | |
Yes | 8 (12.3%) |
No | 57 (87.7%) |
Comorbidities | |
Hyperlipidemia | 22 (33.8%) |
Hypertension | 17 (26.2%) |
Diabetes | 8 (12.3%) |
COPD | 7(10.8%) |
Cancer | 5 (7.7%) |
Coronary artery disease | 3 (4.6%) |
Chronic renal failure | 1 (1.5%) |
Long-COVID symptoms | |
Fatigue | 59 (90.8%) |
Dyspnea | 45 (69.2%) |
Arthralgia | 32 (49.2%) |
Alopecia | 30 (46.1%) |
Insomnia | 29 (44.6%) |
Chest pain | 20 (30.8%) |
Cough | 19 (29.2%) |
Loss of taste/smell | 19 (29.2%) |
Headache | 17 (26.1%) |
Confusion | 15 (23.1%) |
Nausea | 9 (13.8%) |
Other symptoms * | 9 (14.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrettou, C.S.; Vassiliou, A.G.; Keskinidou, C.; Mourelatos, P.; Asimakos, A.; Spetsioti, S.; Diamantopoulos, A.; Jahaj, E.; Antonoglou, A.; Katsaounou, P.; et al. A Prospective Study on Neural Biomarkers in Patients with Long-COVID Symptoms. J. Pers. Med. 2024, 14, 313. https://doi.org/10.3390/jpm14030313
Vrettou CS, Vassiliou AG, Keskinidou C, Mourelatos P, Asimakos A, Spetsioti S, Diamantopoulos A, Jahaj E, Antonoglou A, Katsaounou P, et al. A Prospective Study on Neural Biomarkers in Patients with Long-COVID Symptoms. Journal of Personalized Medicine. 2024; 14(3):313. https://doi.org/10.3390/jpm14030313
Chicago/Turabian StyleVrettou, Charikleia S., Alice G. Vassiliou, Chrysi Keskinidou, Panagiotis Mourelatos, Andreas Asimakos, Stavroula Spetsioti, Aristidis Diamantopoulos, Edison Jahaj, Archontoula Antonoglou, Paraskevi Katsaounou, and et al. 2024. "A Prospective Study on Neural Biomarkers in Patients with Long-COVID Symptoms" Journal of Personalized Medicine 14, no. 3: 313. https://doi.org/10.3390/jpm14030313
APA StyleVrettou, C. S., Vassiliou, A. G., Keskinidou, C., Mourelatos, P., Asimakos, A., Spetsioti, S., Diamantopoulos, A., Jahaj, E., Antonoglou, A., Katsaounou, P., Vassiliadi, D. A., Kotanidou, A., & Dimopoulou, I. (2024). A Prospective Study on Neural Biomarkers in Patients with Long-COVID Symptoms. Journal of Personalized Medicine, 14(3), 313. https://doi.org/10.3390/jpm14030313