Implications of the Matrix Metalloproteinases, Their Tissue Inhibitors and Some Other Inflammatory Mediators Expression Levels in Children Obesity-Related Phenotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA Isolation and Real Time PCR Technique
2.2. MMP Activity Assay
2.3. ELISA Method
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trojanek, J.B. Role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in hypertension. Pathogenesis of hypertension and obesity. Post. Biochem. 2015, 61, 356–363. [Google Scholar]
- Ebbeling, C.B.; Pawlak, D.B.; Ludwig, D.S. Childhood obesity: Public-health crisis, common sense cure. Lancet 2002, 360, 473–482. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef]
- Deng, T.; Lyon, C.J.; Bergin, S.; Caligiuri, M.C.; Hsueh, W.A. Obesity, inflammation and cancer. Annu. Rev. Pathol. Mech. Dis. 2016, 11, 421–449. [Google Scholar] [CrossRef]
- Jaoude, J.; Koh, Y. Matrix metalloproteinases in exercise and obesity. Review. Vasc. Health Risk Manag. 2016, 12, 287–295. [Google Scholar] [PubMed]
- Boumiza, S.; Chahed, K.; Tabka, A.; Jacob, M.P.; Norel, X.; Ozen, G. MMPs and TIMPs level are correlated with anthropometric parameters, blood pressure, and endothelial function in obesity. Sci. Rep. 2021, 11, 20052. [Google Scholar] [CrossRef]
- Mirica, R.M.; Ionescu, M.; Mirica, A.; Ginghina, O.; Iosifescu, R.; Vacarasu, A.B.; Ciotarla, D.C.; Rosca, A.; Zagrean, L.; Iordache, N. Pathophysiology of metalloproteinase matrix in relation to morbid obesity and associated pathologies. Eur. Res. J. 2022, 8, 411–419. [Google Scholar] [CrossRef]
- Gioia, M.; Monaco, S.; Van Den Steen, P.E.; Sbardella, D.; Grasso, G.; Marini, S.; Overall, C.M.; Opdenakker, G.; Coletta, M. The collagen binding domain of gelatinase A modulates degradation of collagen IV by gelatinase B. J. Mol. Biol. 2009, 386, 419–434. [Google Scholar] [CrossRef]
- Bouloumié, A.; Sengenès, C.; Portolan, G.; Galitzky, J.; Lafontan, M. Adipocyte produces matrix metalloproteinases 2 and 9: Involvement in adipose differentiation. Diabetes 2001, 50, 2080–2086. [Google Scholar] [CrossRef]
- Derosa, G.; Ferrari, I.; D’Angelo, A.; Tinelli, C.; Salvadeo, S.A.T.; Ciccarelli, L.; Piccinni, M.N.; Gravina, A.; Ramondetti, F.; Maffioli, P.; et al. Matrix Metalloproteinase-2 and -9 Levels in Obese Patients. J. Endo. Cell Res. 2008, 15, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Sillat, T.; Saat, R.; Pöllänen, R.; Hukkanen, M.; Takagi, M.; Konttinen, Y.T. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J. Cell Mol. Med. 2012, 16, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Buache, E.; Thai, R.; Wendling, C.; Alpy, F.; Page, A.; Chenard, M.-P.; Dive, V.; Ruff, M.; Dejaegere, A.; Tomasetto, C.; et al. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med. 2014, 3, 1197–1210. [Google Scholar] [CrossRef]
- Li, Z.; Gurung, M.; Rodrigues, R.R.; Padiadpu, J.; Newman, N.K.; Manes, N.P.; Pederson, J.W.; Greer, R.L.; Vasquez-Perez, S.; You, H.; et al. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J. Exp. Med. 2022, 219, 20220017. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-T.; Pamir, N.; Liu, N.-C.; Kirk, E.A.; Averill, M.M.; Becker, L.; Larson, I.; Hagman, D.K.; Foster-Schubert, K.E.; van Yserloo, B.; et al. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase. Endocrinology 2014, 155, 3409–3420. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; la Rosa, C.C.-D.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Review. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef] [PubMed]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Review. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Hopps, E.; Lo Presti, R.; Montana, M.; Noto, D.; Averna, M.R.; Caimi, G. Gelatinases and Their Tissue Inhibitors in a Group of Subjects with Metabolic Syndrome. J. Investig. Med. 2013, 61, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Pffafl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Trojanek, J.B.; Cobos-Correa, A.; Diemer, S.; Kormann, M.; Schubert, S.C.; Zhou-Suckow, Z.; Agrawal, R.; Duerr, J.; Wagner, C.J.; Schatterny, J.; et al. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema. Am. J. Respir. Cell Mol. Biol. 2014, 51, 709–720. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, L.; Han, J.; Zhang, Y.; Sun, Z.; Zhao, W.; Wang, Z.; Zheng, L. Beta-adrenoceptor activation by norepinephrine enhances lipopolysaccharide-induced matrix metalloproteinase 9 expression through the ERK/JNK-c-Fos pathway in human THP-1 cells. J. Atheroscler. Thromb. 2016, 23, 55–67. [Google Scholar] [CrossRef]
- Denner, D.R.; Udan-Johns, M.L.; Nichols, M.R. Inhibition of matrix metalloproteinase-9 secretion by dimethylsulforide and cyclic adenosine monophosphate in human monocytes. World J. Biol. Chem. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Snoek-van Beurden, P.A.M.; Von den Hoff, J.W. Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 2005, 38, 73–83. [Google Scholar] [CrossRef]
- Vandooren, J.; Geurts, N.; Martens, E.; Van den Steen, P.; Opdenakker, G. Zymography methods for visualizing hydrolytic enzymes. Nat. Meth. 2013, 10, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Chen, J.; Khalil, R.A. Zymography as a research tool in the study of matrix metalloproteinase inhibitors. Meth. Mol. Biol. 2017, 1626, 79–102. [Google Scholar]
- Sezgin, S.B.A.; Bayoglu, B.; Ersoz, F.; Sarici, M.; Niyazoglu, M.; Dirican, A.; Cengiz, M. Downregulation of MMP-2 and MMP-9 genes in obesity patients and their relation with obesity-related phenotypes. Turk. J. Biochem. 2022, 47, 425–433. [Google Scholar] [CrossRef]
- Gonçalves, P.R.; Nascimento, L.D.; Gerlach, R.F.; Rodrigues, K.E.; Prado, A.F. Matrix metalloproteinase 2 as a pharmacological target in heart failure. Pharmaceuticals 2022, 15, 920. [Google Scholar] [CrossRef] [PubMed]
- Bräuninger, H.; Krüger, S.; Bacmeister, L.; Nyström, A.; Eyerich, K.; Westermann, D.; Lindner, D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res. Cardio. 2023, 118, 18. [Google Scholar] [CrossRef]
- Trojanek, J.B.; Michałkiewicz, J.; Grzywa-Czuba, R.; Jańczyk, W.; Gackowska, L.; Kubiszewska, I.; Helmin-Basa, A.; Wierzbicka-Rucińska, A.; Szalecki, M.; Socha, P. Expression of Matrix Metalloproteinases and Their Tissue Inhibitors in Peripheral Blood Leukocytes and Plasma of Children with Nonalcoholic Fatty Liver Disease. Mediators Inflamm. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Ministrini, S.; Andreozzi, F.; Montecucco, F.; Minetti, S.; Bertolotto, M.; Liberale, L.; Mannino, G.C.; Succurro, E.; Cassano, V.; Miceli, S.; et al. Neutrophil degranulation biomarkers characterize restrictive echocardiographic pattern with diastolic dysfunction in patients with diabetes. Eur. J. Clin. Investig. 2021, 51, e13640. [Google Scholar] [CrossRef]
- Mantovani ASica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef]
- Kern, L.; Mittenbühler, M.J.; Vesting, A.J.; Ostermann, A.L.; Wunderlich, C.M.; Wunderlich, F.T. Obesity-induced TNF-α and IL-6 signaling: The missing link between obesity and inflammation—Driven liver and colorectal cancers. Review. Cancers 2018, 11, 24. [Google Scholar] [CrossRef]
- Kwon, H.; Pessin, J. Adipokines mediate inflammation and insulin resistance. Review. Front. Endocrin. 2013, 4, 71. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Liorens, S.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Talebi, M.; Shakibaei, M.; Samarghandian, S. An overview of the role of adipokines in cardiometabolic disease. Review. Molecules 2020, 25, 5218. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.; Kpughur-Tule, N.; Ravichandar, E.; Dorta Torres, G.; Tiesenga, F. Challenges in the Management of Perianal Hidradenitis Suppurativa in an African American Male: A Case Report. Cureus 2023, 15, e45788. [Google Scholar] [CrossRef] [PubMed]
- Moliere, S.; Jaulin, A.; Tomasetto, C.-L.; Youcef, N.D. Roles of matrix metalloproteinases and their natural inhibitors in metabolism: Insights into health and disease. Review. Int. J. Mol. Sci. 2023, 24, 10649. [Google Scholar] [CrossRef]
- Bar-Or, A.; Nuttall, R.K.; Duddy, M.; Alter, A.; Kim, H.J.; Ifergan, I.; Pennington, C.J.; Bourgoin, P.; Edwards, D.R.; Yong, V.W. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 2003, 126, 2738–2749. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Eren, F. Serum Biomarkers of Fibrosis and Extracellular Matrix Remodeling in Patients with Nonalcoholic Fatty Liver Disease: Association with Liver Histology. Eur. J. Gastroenterol. Hepatol. 2019, 31, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Benegiamo, G.; von Alvensleben, G.V.G.; Rodríguez-López, S.; Goeminne, L.J.E.; Bachmann, A.M.; Morel, J.-D.; Broeckx, E.; Ma, J.Y.; Carreira, V.; Youssef, S.A.; et al. The Genetic Background Shapes the Susceptibility to Mitochondrial Dysfunction and NASH Progression. J. Exp. Med. 2023, 220, e20221738. [Google Scholar] [CrossRef]
- Munsterman, I.D.; Kendall, T.J.; Khelil, N.; Popa, M.; Lomme, R.; Drenth, J.P.H.; Tjwa, E.T.T.L. Extracellular Matrix Components Indicate Remodelling Activity in Different Fibrosis Stages of Human Non-Alcoholic Fatty Liver Disease. Histopathology 2018, 73, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Kant, S.; Panaley, S.; Entesham, N.Z. Resistin in metabolism, inflammation and disease. FEBS J. 2020, 287, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Gebru, Y.A.; Gupta, H.; Kim, H.S.; Eom, J.A.; Kwon, G.H.; Park, E.; Jeong, J.-J.; Won, S.-M.; Sharma, S.P.; Ganesan, R.; et al. T cell subsets and natural killer cells in the pathogenesis of nonalcoholic fatty liver disease. Review. Int. J. Mol. Sci. 2021, 22, 12190. [Google Scholar] [CrossRef] [PubMed]
- Tinahones, F.J.; Coín-Aragüez, L.; Mayas, M.D.; Garcia-Fuentes, E.; Hurtado-del-Pozo, C.; Vendrell, J.; Cardona, F.; Calvo, R.-M.; Obregon, M.-J.; El Bekay, R. Obesity-Associated Insulin Resistance Is Correlated to Adipose Tissue Vascular Endothelial Growth Factors and Metalloproteinase Levels. BMC Physiol. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Unal, R.; Yao-Borengasser, A.; Varma, V.; Rasouli, N.; Labbate, C.; Kern, P.A.; Ranganathan, G. Matrix Metalloproteinase-9 Is Increased in Obese Subjects and Decreases in Response to Pioglitazone. J. Clin. Endocrinol. Metab. 2010, 95, 2993–3001. [Google Scholar] [CrossRef]
OBESITY | CONTROL | p Value | |
---|---|---|---|
No of boys | 26 | 19 | |
Age (years) | 12.3 ± 2.6 | 13.8 ± 3.1 | 0.077 |
Height (cm) | 155 ± 15 | 168 ± 21 | 0.029 |
Weight (kg) | 70.8 ± 19.9 | 61 ± 20 | 0.023 |
BMI (kg/m2) | 28.9 ± 4.9 | 20.9 ± 3.3 | 0.0001 |
SDS-BMI | 2.5 ± 1.1 | 0.37 ± 0.74 | 0.0001 |
ALT (IU/L) | 18.3 ± 6.9 | 20.3 ± 6.7 | 0.15 |
AST (IU/L) | 20.6 ± 4.3 | 22.1 ± 6.6 | 0.078 |
GGTP (IU/L) | 16.6 ± 2.3 | 21.6 ± 4.2 | 0.007 |
Cholesterol (mg/dL) | 165 ± 34 | 177 ± 36 | 0.012 |
TTG (mg/dL) | 88.1 ± 44.6 | 95 ± 45.5 | 0.063 |
HDL (mg/dL) | 51.6 ± 28.4 | 43.5 ± 8.9 | 0.595 |
LDL (mg/dL) | 95.1 ± 32.6 | 116 ± 36 | 0.12 |
hsCRP (mg/dL) | 0.22 ± 0.20 | 0.17 ± 0.08 | 0.59 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
MMP-2 | TGA TCT TGA CCA GAA TAC CAT CGA | GGC TTG CGA GGG AAG AAG TT |
MMP-9 | CAA CAT CAC CTA TTG GAT CC | CGG GTG TAG AGT CTC TCG CT |
MMP-12 | TTC CCC TGA ACA GCT CTA CAA GCC TGG AAA | GAT CCA GGT CCA AAA GCA TGG GCT AGG ATT |
MMP-14 | CGC TAC GCC ATC CAG GGT CTC AAA | CGC TAC GCC ATC CAG GGT CTC AAA |
TIMP-1 | CTT CTG GCA TCC TGT TGT TG | AGA AGG CCG TCT GTG GGT |
TIMP-2 | CGA CAT TTA TGG CAA CCC TAT CA | CAG GCC CTT TGA ACA TCT TTA TCT |
IL-6 | TGA AAG CAG CAA AGA GGC ACT | GGC AAG TCT CCT CAT TGA ATC C |
G3PDH | GCG GGG CTC TCC AGA ACA TCA T | CCA GCC CCA GCG TCA AAG GTG |
Obesity Patients (n = 26) | Control (n = 19) | p Value | |
---|---|---|---|
MMP-9 | 2.35 (0.58–7.43) | 1.00 (0.94–1.05) | 0.054 |
TIMP-1 | 1.38 (0.67–2.04) | 1.00 (0.98–1.04) | 0.048 |
MMP-2 | 0.25 (0.10–0.69) | 1.01 (0.98–1.03) | 0.002 |
TIMP-2 | 1.06 (0.76–1.55) | 1.00 (0.97–1.04) | 0.645 |
MMP-12 | 1.29 (0.80–1.95) | 1.00 (0.97–1.02) | 0.368 |
MMP-14 | 1.34 (0.65–2.69) | 1.00 (0.97–1.04) | 0.372 |
IL-6 | 1.07 (0.57–2.01) | 1.02 (0.94–1.04) | 0.434 |
Children Group | MMP-9 ng/mL | TIMP-1 ng/mL | IL-1β pg/mL | IL-6 pg/mL | TNFα pg/mL | Leptin ng/mL | Resistin ng/mL | MMP2/ TIMP2 ng/mL | MMP9/ TIMP1 ng/mL |
---|---|---|---|---|---|---|---|---|---|
Obesity [n = 26) | 47.3 ± 21.3 * | 110.8 ± 71.3 | 7.4 ± 7.0 | 7.6 ± 4.5 | 21.3 ± 15.6 * | 13.7 ± 6.5 * | 3.85 ± 1.2 | 90.8 ± 29.7 * | 5.2 ± 3.7 * |
Control [n = 23] | 39.5 ± 17.3 | 98.7± 53.6 | 6.1± 2.7 | 8.3 ± 4.2 | 32.9 ± 9.25 | 2.4 ± 1.7 | 3.78 ± 1.3 | 122.3 ± 43.3 | 3.0 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbicka-Rucińska, A.; Kubiszewska, I.; Grzywa-Czuba, R.; Gackowska, L.; Szalecki, M.; Michałkiewicz, J.; Trojanek, J.B. Implications of the Matrix Metalloproteinases, Their Tissue Inhibitors and Some Other Inflammatory Mediators Expression Levels in Children Obesity-Related Phenotypes. J. Pers. Med. 2024, 14, 317. https://doi.org/10.3390/jpm14030317
Wierzbicka-Rucińska A, Kubiszewska I, Grzywa-Czuba R, Gackowska L, Szalecki M, Michałkiewicz J, Trojanek JB. Implications of the Matrix Metalloproteinases, Their Tissue Inhibitors and Some Other Inflammatory Mediators Expression Levels in Children Obesity-Related Phenotypes. Journal of Personalized Medicine. 2024; 14(3):317. https://doi.org/10.3390/jpm14030317
Chicago/Turabian StyleWierzbicka-Rucińska, Aldona, Izabela Kubiszewska, Renata Grzywa-Czuba, Lidia Gackowska, Mieczysław Szalecki, Jacek Michałkiewicz, and Joanna Beata Trojanek. 2024. "Implications of the Matrix Metalloproteinases, Their Tissue Inhibitors and Some Other Inflammatory Mediators Expression Levels in Children Obesity-Related Phenotypes" Journal of Personalized Medicine 14, no. 3: 317. https://doi.org/10.3390/jpm14030317
APA StyleWierzbicka-Rucińska, A., Kubiszewska, I., Grzywa-Czuba, R., Gackowska, L., Szalecki, M., Michałkiewicz, J., & Trojanek, J. B. (2024). Implications of the Matrix Metalloproteinases, Their Tissue Inhibitors and Some Other Inflammatory Mediators Expression Levels in Children Obesity-Related Phenotypes. Journal of Personalized Medicine, 14(3), 317. https://doi.org/10.3390/jpm14030317