Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Beckmann, D.; Lowman, K.L.; Nargiso, J.; McKowen, J.; Watt, L.; Yule, A.M. Substance-induced Psychosis in Youth. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 131–143. [Google Scholar] [CrossRef]
- Dragogna, F.; Oldani, L.; Buoli, M.; Altamura, A.C. A case of severe psychosis induced by novel recreational drugs. F1000Research 2014, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Szigeti, A.; Kearney, A.; Clarke, M. Clinical characteristics of primary psychotic disorders with concurrent substance abuse and substance-induced psychotic disorders: A systematic review. Schizophr. Res. 2018, 197, 78–86. [Google Scholar] [CrossRef]
- Starzer, M.S.K.; Nordentoft, M.; Hjorthøj, C. Rates and Predictors of Conversion to Schizophrenia or Bipolar Disorder Following Substance-Induced Psychosis. Am. J. Psychiatry 2018, 175, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Aas, M.; Melle, I.; Bettella, F.; Djurovic, S.; Le Hellard, S.; Bjella, T.; Ringen, P.A.; Lagerberg, T.V.; Smeland, O.B.; Agartz, I.; et al. Psychotic patients who used cannabis frequently before illness onset have higher genetic predisposition to schizophrenia than those who did not. Psychol. Med. 2018, 48, 43–49. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Radhakrishnan, R.; Sherif, M.; Cortes-Briones, J.; Cahill, J.; Gupta, S.; Skosnik, P.D.; Ranganathan, M. Cannabinoids and Psychosis. Curr. Pharm. Des. 2016, 22, 6380–6391. [Google Scholar] [CrossRef] [PubMed]
- Buoli, M.; Cesana, B.M.; Fagiolini, A.; Albert, U.; Maina, G.; de Bartolomeis, A.; Pompili, M.; Bondi, E.; Steardo, L., Jr.; Amore, M.; et al. Which factors delay treatment in bipolar disorder? A nationwide study focussed on duration of untreated illness. Early Interv. Psychiatry 2021, 15, 1136–1145. [Google Scholar] [CrossRef]
- Inchausti, L.; Gorostiza, I.; Gonzalez Torres, M.A.; Oraa, R. Diagnostic stability in substance-induced psychosis. Rev. Psiquiatr. Salud Ment. Engl. Ed. 2022; online ahead of print. [Google Scholar] [CrossRef]
- McKetin, R.; McLaren, J.; Lubman, D.I.; Hides, L. The prevalence of psychotic symptoms among methamphetamine users. Addiction 2006, 101, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Gicas, K.M.; Parmar, P.K.; Fabiano, G.F.; Mashhadi, F. Substance-induced psychosis and cognitive functioning: A systematic review. Psychiatry Res. 2022, 308, 114361. [Google Scholar] [CrossRef]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar] [CrossRef]
- Voce, A.; Calabria, B.; Burns, R.; Castle, D.; McKetin, R. A Systematic Review of the Symptom Profile and Course of Methamphetamine-Associated PsychosisSubstance Use and Misuse. Subst. Use Misuse 2019, 54, 549–559. [Google Scholar] [CrossRef]
- Aagaard, N.K.; Thøgersen, T.; Grøfte, T.; Greisen, J.; Vilstrup, H. Alcohol acutely down-regulates urea synthesis in normal men. Alcohol Clin. Exp. Res. 2004, 28, 697–701. [Google Scholar] [CrossRef]
- Stankewicz, H.A.; Richards, J.R.; Salen, P. Alcohol Related Psychosis. In StatPearls. Treasure Island (FL); StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Tsai, G.; Gastfriend, D.R.; Coyle, J.T. The glutamatergic basis of human alcoholism. Am. J. Psychiatry 1995, 152, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Bohnsack, J.P.; Pandey, S.C. Histone modifications, DNA methylation, and the epigenetic code of alcohol use disorder. Int. Rev. Neurobiol. 2021, 156, 1–62. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Johnston, M.; Terpstra, K.; Bureau, Y. Cannabis and psychosis: Neurobiology. Indian J. Psychiatry 2014, 56, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, B.; Diederen, K.; Bhattacharyya, S. Cannabinoids, reward processing, and psychosis. Psychopharmacology 2022, 239, 1157–1177. [Google Scholar] [CrossRef] [PubMed]
- Morton, W.A. Cocaine and Psychiatric Symptoms. Prim Care Companion. J. Clin. Psychiatry 1999, 1, 109–113. [Google Scholar] [CrossRef]
- Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M.E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef]
- Tanaka, M.; Tóth, F.; Polyák, H.; Szabó, Á.; Mándi, Y.; Vécsei, L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef]
- Pollak, T.A.; Rogers, J.P.; Nagele, R.G.; Peakman, M.; Stone, J.M.; David, A.S.; McGuire, P. Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders. Schizophr. Bull. 2019, 45, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pinilla, P.; López-Gil, J.; Crespo-Facorro, B. Immune system: A possible nexus between cannabinoids and psychosis. Brain Behav. Immun. 2014, 40, 269–282. [Google Scholar] [CrossRef]
- Nair, M.P.; Figueroa, G.; Casteleiro, G.; Muñoz, K.; Agudelo, M. Alcohol Versus Cannabinoids: A Review of Their Opposite Neuro-Immunomodulatory Effects and Future Therapeutic Potentials. J. Alcohol. Drug Depend. 2015, 3, 184. [Google Scholar] [CrossRef]
- Pascual, M.; Baliño, P.; Aragón, C.M.; Guerri, C. Cytokines and chemokines as biomarkers of ethanol-induced neuroinflammation and anxiety-related behavior: Role of TLR4 and TLR2. Neuropharmacology 2015, 89, 352–359. [Google Scholar] [CrossRef]
- Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res. 2017, 120, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Fernàndez-Castillo, N.; Cabana-Domínguez, J.; Corominas, R.; Cormand, B. Molecular genetics of cocaine use disorders in humans. Mol. Psychiatry 2022, 27, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, P.; Liao, K.; Kook, Y.H.; Niu, F.; Callen, S.E.; Guo, M.L.; Buch, S. Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol. Neurobiol. 2018, 55, 3196–3210. [Google Scholar] [CrossRef] [PubMed]
- Chivero, E.T.; Sil, S.; Kumar, M.; Buch, S. Substance use, microbiome and psychiatric disorders. Pharmacol. Biochem. Behav. 2022, 219, 173432. [Google Scholar] [CrossRef] [PubMed]
- Barkin, J.L.; Osborne, L.M.; Buoli, M.; Bridges, C.C.; Callands, T.A.; Ezeamama, A.E. Training Frontline Providers in the Detection and Management of Perinatal Mood and Anxiety Disorders. J. Womens Health 2020, 29, 889–890. [Google Scholar] [CrossRef]
- Buoli, M.; Dell’osso, B.; Zaytseva, Y.; Gurovich, I.Y.; Movina, L.; Dorodnova, A.; Shmuckler, A.; Altamura, A.C. Duration of untreated illness (DUI) and schizophrenia sub-types: A collaborative study between the universities of Milan and Moscow. Int. J. Soc. Psychiatry 2013, 59, 765–770. [Google Scholar] [CrossRef]
- Fiorentini, A.; Cantù, F.; Crisanti, C.; Cereda, G.; Oldani, L.; Brambilla, P. Substance-Induced Psychoses: An Updated Literature Review. Front. Psychiatry 2021, 12, 694863. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Arteel, G.E. Effect of ethanol on lipid metabolism. J. Hepatol. 2019, 70, 237–248. [Google Scholar] [CrossRef]
- Donroe, J.H.; Edelman, E.J. Alcohol Use. Ann. Intern. Med. 2022, 175, ITC145–ITC160. [Google Scholar] [CrossRef]
- Ibarretxe, D.; Masana, L. Triglyceride metabolism and classification of hypertriglyceridemias. Clínica Investig. Arterioscler. 2021, 33 (Suppl. 2), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.E.; Gomaa, S.; Alhazmi, A.; ElKalla, I.; Khalil, D. Metabolic profile in first episode drug naïve patients with psychosis and its relation to cognitive functions and social cognition: A case control study. Sci. Rep. 2023, 13, 5435. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.Y.; Smith, M.M.; Sherry, S.B.; Seno, M.; Moore, M.L.; Stewart, S.H. Alcohol use and death by suicide: A meta-analysis of 33 studies. Suicide Life Threat. Behav. 2022, 52, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Mattisson, C.; Bogren, M.; Öjehagen, A.; Nordström, G.; Horstmann, V. Mortality in alcohol use disorder in the Lundby Community Cohort—A 50 year follow-up. Drug Alcohol Depend. 2011, 118, 141–147. [Google Scholar] [CrossRef]
- Mowbray, O.; Quinn, A.; Cranford, J.A. Social networks and alcohol use disorders: Findings from a nationally representative sample. Am. J. Drug Alcohol Abus. 2014, 40, 181–186. [Google Scholar] [CrossRef]
- Smith, M.J.; Thirthalli, J.; Abdallah, A.B.; Murray, R.M.; Cottler, L.B. Prevalence of psychotic symptoms in substance users: A comparison across substances. Compr. Psychiatry 2009, 50, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Di Forti, M.; Marconi, A.; Carra, E.; Fraietta, S.; Trotta, A.; Bonomo, M.; Bianconi, F.; Gardner-Sood, P.; O’Connor, J.; Russo, M.; et al. Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: A case-control study. Lancet Psychiatry 2015, 2, 233–238. [Google Scholar] [CrossRef]
- Hindocha, C.; Lawn, W.; Freeman, T.P.; Curran, H.V. Individual and combined effects of cannabis and tobacco on drug reward processing in non-dependent users. Psychopharmacology 2017, 234, 3153–3163. [Google Scholar] [CrossRef]
- Castañé, A.; Valjent, E.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 2002, 43, 857–867. [Google Scholar] [CrossRef]
- Lampron, M.C.; Desbiens-Tremblay, C.; Loubaki, L. In vitro exposure of whole blood to a cannabinoid mixture impairs the quality of red blood cells and platelets. Blood Transfus. 2022, 21, 240. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Ju, P.; Gao, J.; Zhang, L.; Li, J.; Wang, K.; Zhang, J.; Li, C.; Xia, Q.; et al. Network Association of Biochemical and Inflammatory Abnormalities With Psychiatric Symptoms in First-Episode Schizophrenia Patients. Front. Psychiatry 2022, 13, 834539. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef]
- Caldiroli, A.; Capuzzi, E.; Barkin, J.L.; Grassi, S.; Esposito, C.M.; Auxilia, A.M.; Russo, S.; Tagliabue, I.; Carnevali, G.S.; Mucci, F.; et al. Is there an association between inflammatory/anti-oxidant markers and the presence of psychotic symptoms or severity of illness in mood and psychotic disorders? A multi-centric study on a drug-free sample. Brain Behav. Immun. Health 2022, 22, 100453. [Google Scholar] [CrossRef]
- Chen, S.; Xia, H.S.; Zhu, F.; Yin, G.Z.; Qian, Z.K.; Jiang, C.X.; Gu, X.C.; Yin, X.Y.; Tang, W.J.; Zhang, T.H.; et al. Association between decreased serum albumin levels and depressive symptoms in patients with schizophrenia in a Chinese Han population: A pilot study. Psychiatry Res. 2018, 270, 438–442. [Google Scholar] [CrossRef]
- Labad, J.; Stojanovic-Pérez, A.; Montalvo, I.; Solé, M.; Cabezas, Á.; Ortega, L.; Moreno, I.; Vilella, E.; Martorell, L.; Reynolds, R.M.; et al. Stress biomarkers as predictors of transition to psychosis in at-risk mental states: Roles for cortisol, prolactin and albumin. J. Psychiatr. Res. 2015, 60, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Bonfiglio, N.S.; Portoghese, I.; Renati, R.; Mascia, M.L.; Penna, M.P. Polysubstance Use Patterns among Outpatients Undergoing Substance Use Disorder Treatment: A Latent Class Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16759. [Google Scholar] [CrossRef]
- Budisavljevic, M.N.; Stewart, L.; Sahn, S.A.; Ploth, D.W. Hyponatremia associated with 3,4-methylenedioxymethylamphetamine (“Ecstasy”) abuse. Am. J. Med. Sci. 2003, 326, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, D.; Capogrosso, C.A.; Guzzi, P.; Bernasconi, G.; Re, M.; Misiak, B.; Crocamo, C.; Bartoli, F.; Carrà, G. Blood concentrations of anterior pituitary hormones in drug-naïve people with first-episode psychosis: A systematic review and meta-analysis. Psychoneuroendocrinology 2023, 158, 106392. [Google Scholar] [CrossRef]
- Valente, M.J.; Carvalho, F.; Bastos, M.; de Pinho, P.G.; Carvalho, M. Contribution of oxidative metabolism to cocaine-induced liver and kidney damage. Curr. Med. Chem. 2012, 19, 5601–5606. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, N.A.; Kruse, G.R.; Livingstone-Banks, J.; Hartmann-Boyce, J. Treatment of Tobacco Smoking: A Review. JAMA 2022, 327, 566–577. [Google Scholar] [CrossRef]
- Khoury, R.; Nasrallah, H.A. Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): State or trait? Schizophr. Res. 2018, 199, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Coentre, R.; Fonseca, A.; Mendes, T.; Rebelo, A.; Fernandes, E.; Levy, P.; Góis, C.; Figueira, M.L. Suicidal behaviour after first-episode psychosis: Results from a 1-year longitudinal study in Portugal. Ann. Gen. Psychiatry 2021, 20, 35. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Sample N = 218 | Alcohol-Induced Psychosis N = 31 (14.2%) | Psychostimulant-Induced Psychosis N = 71 (32.6%) | Cannabis-Induced Psychosis N = 116 (53.2%) | F or χ2 | p-Value | |
---|---|---|---|---|---|---|---|
Gender Missing = 0 | Male | 191 (87.6%) | 28 (90.3%) | 59 (83.1%) | 104 (89.7%) | 1.99 | 0.40 |
Female | 27 (12.4%) | 3 (9.7%) | 12 (16.9%) | 12 (10.3%) | |||
Age (years) Missing = 0 | 33.89 (±12.21) | 45.42 (±13.64) | 35.41 (±11.91) | 29.87 (± 9.63) | 25.29 | <0.01 | |
Age at illness onset (years) Missing = 15 | 28.09 (±10.97) | 33.28 (±12.90) | 30.38 (±11.58) | 25.20 (±9.07) | 9.08 | <0.01 | |
Duration of hospitalization (days) Missing = 60 | 11.59 (±9.57) | 8.92 (±6.38) | 13.63 (±12.51) | 10.99 (±7.57) | 2.43 | 0.09 | |
Duration of untreated illness (years) Missing = 61 | 1.18 (±2.74) | 0.63 (±1.61) | 1.36 (±3.19) | 1.23 (±2.68) | 0.62 | 0.54 | |
Duration of SUD (years) Missing = 15 | 5.83 (±8.81) | 11.83 (±14.64) | 4.97 (±7.42) | 4.74(±6.75) | 8.43 | <0.01 | |
Presence of previous hospitalizations Missing = 8 | 133 (63.3%) | 21 (67.8%) | 39 (57.4%) | 73 (65.8%) | 1.59 | 0.45 | |
Number of previous hospitalizations Missing = 8 | 2.18 (±4.73) | 3.71 (±7.05) | 1.71 (±1.48) | 2.38 (±5.13) | 3.36 | 0.04 | |
Presence of family history of psychiatric disorders Missing = 60 | 55 (34.8%) | 10 (40.0%) | 13 (23.2%) | 32 (41.6%) | 5.16 | 0.08 | |
Presence of family history of multiple psychiatric disorders Missing = 60 | 33 (20.9%) | 5 (20.0%) | 10 (17.9%) | 18 (23.4%) | 0.61 | 0.74 | |
Presence of family history of substance use disorders Missing = 60 | 24 (15.2%) | 4 (16.0%) | 12 (21.4%) | 8 (10.4%) | 3.08 | 0.20 | |
Presence of lifetime history of poly-substance use disorders Missing = 0 | 118 (54.1%) | 7 (22.6%) | 54 (76.1%) | 57 (49.1%) | 27.34 | <0.01 | |
Presence of tobacco smoke Missing = 5 | 106 (48.6%) | 15 (48.4%) | 24 (34.3%) | 67 (59.8%) | 11.26 | <0.01 | |
Current prescription of benzodiazepines Missing = 60 | 120 (75.8%) | 15 (60.0%) | 46 (82.1%) | 59 (76.7%) | 4.68 | 0.10 | |
Current treatment with more than one psychotropic drug Missing = 60 | 153 (96.8%) | 23 (92.0%) | 54 (96.4%) | 76 (98.7%) | 2.81 | 0.25 | |
Comorbidity with at least one psychiatric diagnosis Missing = 60 | 66 (41.8%) | 12 (48.0%) | 25 (44.6%) | 29 (60.4%) | 1.12 | 0.60 | |
Comorbidity with more than one psychiatric diagnosis Missing = 60 | 21 (13.2%) | 5 (20.0%) | 6 (10.7%) | 10 (12.9%) | 1.31 | 0.50 | |
Presence of comorbid personality disorders Missing = 60 | 37 (17.0%) | 3 (12%) | 16 (28.6%) | 18 (23.4%) | 2.65 | 0.27 | |
Presence of lifetime suicide attempts Missing = 0 | 29 (13.3%) | 6 (19.4%) | 10 (14.1%) | 13 (11.2%) | 1.46 | 0.48 | |
Number of lifetime suicide attempts Missing = 0 | 0.17 (±0.56) | 0.23 (±0.50) | 0.18 (±0.66) | 0.16 (±0.50) | 0.21 | 0.81 | |
Comorbidity with other medical conditions Missing = 60 | 69 (59.2%) | 17 (68.0%) | 28 (50.0%) | 24 (31.2%) | 11.82 | <0.01 | |
Comorbidity with multiple medical conditions Missing = 60 | 23 (14.6%) | 6 (24.0%) | 8 (14.3%) | 9 (11.7%) | 2.31 | 0.32 | |
Presence of hypothyroidism Missing = 60 | 9 (5.7%) | 0 (0.0%) | 6 (10.7%) | 3 (3.9%) | 4.60 | 0.10 | |
Presence of hypercholesterolemia Missing = 0 | 32 (14.7%) | 10 (32.3%) | 8 (11.3%) | 14 (12.1%) | 8.94 | 0.01 | |
Presence of diabetes Missing = 60 | 11 (7.0%) | 3 (12.0%) | 6 (10.7%) | 2 (2.6%) | 4.46 | 0.11 | |
Presence of obesity Missing = 0 | 5 (2.3%) | 1 (3.2%) | 1 (1.4%) | 3 (2.6%) | 0.41 | 0.81 | |
Lifetime psychotherapy Missing = 60 | 12 (7.6%) | 1 (4.0%) | 2 (3.6%) | 9 (11.7%) | 3.59 | 0.17 | |
History of obstetric complications Missing = 0 | 25 (11.5%) | 5 (16.1%) | 4 (5.6%) | 16 (13.8%) | 3.66 | 0.16 | |
GAF score Missing = 61 | 46.37 (±15.20) | 58.04 (±15.83) | 53.71 (±16.66) | 54.87 (±13.3) | 0.73 | 0.49 | |
PANSS score Missing = 61 | 61.83 (±15.16) | 60.76 (±15.33) | 59.45 (±16.49) | 63.93 (±13.94) | 1.50 | 0.23 | |
BPRS score Missing = 46 | 43.97 (±12.13) | 46.61 (±11.62) | 41.27 (±12.04) | 44.96 (±12.16) | 2.54 | 0.08 | |
MSPS score Missing = 61 | 2.49 (±1.09) | 3.16(±1.21) | 2.29 (±1.02) | 2.42 (±1.04) | 6.19 | <0.01 | |
MOAS score Missing = 1 | 4.34 (±4.91) | 4.03 (±5.04) | 4.72 (±4.88) | 4.19 (±4.93) | 0.32 | 0.73 |
Variables | Total Sample N = 218 | Alcohol-Induced Psychosis N = 31 (14.2%) | Psychostimulant-Induced Psychosis N = 71 (32.6%) | Cannabis-Induced Psychosis N = 116 (53.2%) | F | p-Value |
---|---|---|---|---|---|---|
Sodium (Na) (mEq/L) Missing = 84 | 141.45 (±2.50) | 142.08 (±2.71) | 140.80 (±2.90) | 141.70 (±2.00) | 2.66 | 0.07 |
Potassium (K) (mEq/L) Missing = 84 | 4.23 (±0.38) | 4.26 (±0.41) | 4.24 (±0.34) | 4.21 (±0.39) | 0.22 | 0.81 |
Na/K ratio Missing = 86 | 33.72 (±3.04) | 33.69 (±3.17) | 33.47 (±2.64) | 33.91 (±3.28) | 0.29 | 0.75 |
Number of lymphocytes (109/L) Missing = 64 | 2.58 (±1.59) | 2.08 (±0.68) | 2.55 (±0.76) | 2.75 (±2.07) | 1.70 | 0.19 |
Number of neutrophils (109/L) Missing = 64 | 5.00 (±2.60) | 4.98 (±2.51) | 5.13 (±2.74) | 4.93 (±2.57) | 0.09 | 0.91 |
NLR Missing = 77 | 2.19 (±1.32) | 2.77 (±2.03) | 2.01(±1.09) | 2.13(±1.17) | 2.47 | 0.09 |
Number of RBCs (1012/L) Missing = 25 | 4.86 (±0.57) | 4.81 (±0.61) | 4.74 (±0.57) | 4.94 (±0.54) | 2.52 | 0.08 |
Number of WBCs (109/L) Missing = 25 | 8.56 (±3.11) | 8.15 (±2.56) | 8.68 (±3.19) | 8.60 (±3.22) | 0.30 | 0.75 |
MCV (fL) Missing = 86 | 87.61 (±6.85) | 89.65 (±9.36) | 87.43 (±6.27) | 87.03 (±6.21) | 1.22 | 0.30 |
HB (g/dL) Missing = 29 | 14.49 (±1.55) | 14.36 (±1.68) | 14.15 (±1.62) | 14.73 (±1.44) | 2.77 | 0.07 |
Number of PLTs (109/L) Missing = 79 | 254.13 (±85.54) | 259.73 (±122.87) | 265.23 (±71.31) | 244.91 (±80.44) | 0.85 | 0.43 |
MPV (fL) Missing = 86 | 10.57 (±1.10) | 10.28 (±0.90) | 10.67 (±1.21) | 10.60 (±1.08) | 0.97 | 0.38 |
Glycemia (mg/dL) Missing = 27 | 90.37 (±22.79) | 93.75 (±25.21) | 91.21 (±25.10) | 88.91 (±20.62) | 0.55 | 0.58 |
Creatinine (mg/dL) Missing = 32 | 0.90 (±0.15) | 0.89 (±0.16) | 0.92 (±0.16) | 0.89 (±0.15) | 0.68 | 0.51 |
Urea (mg/dL) Missing = 63 | 27.64 (±9.08) | 31.56 (±11.03) | 27.92 (±10.23) | 26.10 (±7.03) | 3.79 | 0.03 |
Uric acid (mg/dL) Missing = 96 | 5.50 (±1.60) | 6.06 (±1.29) | 5.18 (±1.46) | 5.50 (±1.76) | 2.16 | 0.12 |
ALT (U/L) Missing = 29 | 32.19 (±30.43) | 31.59 (±28.20) | 36.90 (±41.76) | 29.60 (±22.05) | 1.08 | 0.34 |
AST (U/L) Missing = 59 | 39.68 (±45.91) | 40.81 (±54.97) | 39.34 (±40.69) | 39.51 (±46.07) | 0.01 | 0.99 |
GGT (U/L) Missing = 36 | 29.69 (±38.97) | 33.54 (±32.40) | 37.38 (±60.32) | 24.12 (±18.83) | 2.29 | 0.10 |
Bilirubin (mg/dL) Missing = 44 | 0.68 (±0.42) | 0.61 (±0.30) | 0.61 (±0.39) | 0.73 (±0.46) | 1.77 | 0.17 |
Total plasmatic proteins (g/dL) Missing = 97 | 6.88 (±0.55) | 6.91 (±0.54) | 6.84 (±0.66) | 6.89 (±0.49) | 0.16 | 0.85 |
Albumin (g/dL) Missing = 87 | 4.42 (±0.46) | 4.38 (±0.59) | 4.30 (±0.44) | 4.51 (±0.40) | 2.74 | 0.07 |
Total cholesterol (mg/dL) Missing = 57 | 170.72 (±44.23) | 192.92 (±49.51) | 169.00 (±53.78) | 165.31 (±34.16) | 3.98 | 0.02 |
Triglycerides (mg/dL) Missing = 128 | 112.96 (±77.20) | 159.13 (±112.31) | 102.55 (±65.15) | 103.13 (±64.29) | 3.69 | 0.03 |
LDH (mU/mL) Missing = 96 | 207.61 (±94.58) | 205.02 (±102.96) | 220.38 (±110.85) | 199.34 (±77.81) | 0.61 | 0.55 |
CPK (U/L) Missing = 54 | 511.76 (±890.42) | 292.82 (±366.90) | 392.79 (±530.87) | 674.59 (±1163.05) | 2.11 | 0.13 |
PChE (U/L)Missing = 104 | 7523.62 (±2084.10) | 8001.14 (±2115.56) | 7431.03 (±1654.13) | 7405.73 (±2323.45) | 0.67 | 0.51 |
TSH (mcU/mL) Missing = 111 | 1.81 (±1.35) | 1.51 (±0.85) | 2.03 (±1.73) | 1.78 (±1.22) | 0.99 | 0.37 |
Variables | B | S.E. | Wald | p | OR | 95% CI for OR |
---|---|---|---|---|---|---|
Age at hospital admission | −0.064 | 0.042 | 2.343 | 0.126 | 0.938 | 0.864–1.018 |
Age at illness onset | 0.018 | 0.043 | 0.171 | 0.679 | 1.018 | 0.936–1.106 |
Number of previous hospitalizations | 0.221 | 0.172 | 1.651 | 0.199 | 1.248 | 0.890–1.748 |
BPRS score | 0.082 | 0.028 | 8.8606 | 0.003 | 1.085 | 1.027–1.146 |
Sodium (Na) | 0.343 | 0.137 | 6.308 | 0.012 | 1.409 | 1.078–1.842 |
Number of RBCs | −0.324 | 0.567 | 0.327 | 0.567 | 0.723 | 0.238–2.198 |
Hb | 0.440 | 0.214 | 4.222 | 0.040 | 1.553 | 1.021–2.362 |
GGT | −0.014 | 0.014 | 1.048 | 0.306 | 0.986 | 0.959–1.013 |
Albumin | 0.735 | 0.686 | 1.147 | 0.284 | 2.085 | 0.543–7.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paolo, M.; Calabrese, A.; Nosari, G.; Ciappolino, V.; Cirella, L.; Caldiroli, A.; Capuzzi, E.; Clerici, M.; Buoli, M. Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. J. Pers. Med. 2024, 14, 325. https://doi.org/10.3390/jpm14030325
Di Paolo M, Calabrese A, Nosari G, Ciappolino V, Cirella L, Caldiroli A, Capuzzi E, Clerici M, Buoli M. Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. Journal of Personalized Medicine. 2024; 14(3):325. https://doi.org/10.3390/jpm14030325
Chicago/Turabian StyleDi Paolo, Martina, Antonia Calabrese, Guido Nosari, Valentina Ciappolino, Luisa Cirella, Alice Caldiroli, Enrico Capuzzi, Massimo Clerici, and Massimiliano Buoli. 2024. "Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse" Journal of Personalized Medicine 14, no. 3: 325. https://doi.org/10.3390/jpm14030325
APA StyleDi Paolo, M., Calabrese, A., Nosari, G., Ciappolino, V., Cirella, L., Caldiroli, A., Capuzzi, E., Clerici, M., & Buoli, M. (2024). Clinical Variables and Peripheral Biomarkers Associated with Substance-Induced Psychotic Disorder: Differences Related to Alcohol, Cannabis, and Psychostimulant Abuse. Journal of Personalized Medicine, 14(3), 325. https://doi.org/10.3390/jpm14030325