The “Can Do, Do Do” Framework Applied to Assess the Association between Physical Capacity, Physical Activity and Prospective Falls, Subsequent Fractures, and Mortality in Patients Visiting the Fracture Liaison Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Can Do, Do Do Framework
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Time to First Fall
3.3. Time to First Subsequent Fracture
3.4. Time to Death
3.5. Composite Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Staa, T.P.; Dennison, E.M.; Leufkens, H.G.; Cooper, C. Epidemiology of fractures in England and Wales. Bone 2001, 29, 517–522. [Google Scholar] [CrossRef]
- Kanis, J.A.; Norton, N.; Harvey, N.C.; Jacobson, T.; Johansson, H.; Lorentzon, M.; McCloskey, E.V.; Willers, C.; Borgström, F. SCOPE 2021: A new scorecard for osteoporosis in Europe. Arch. Osteoporos. 2021, 16, 82. [Google Scholar] [CrossRef] [PubMed]
- Schene, M.R.; Wyers, C.E.; Driessen, A.M.H.; Souverein, P.C.; Gemmeke, M.; van den Bergh, J.P.; Willems, H.C. Imminent fall risk after fracture. Age Ageing 2023, 52, afad201. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.K.; Sami, A.; Lems, W.; Mitchell, P.; Thomas, T.; Singer, A.; Speerin, R.; Fujita, M.; Pierroz, D.D.; Akesson, K.; et al. A patient-level key performance indicator set to measure the effectiveness of fracture liaison services and guide quality improvement: A position paper of the IOF Capture the Fracture Working Group, National Osteoporosis Foundation and Fragility Fracture Network. Osteoporos. Int. 2020, 31, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Hiligsmann, M.; Boonen, A.; van Oostwaard, M.M.; de Bot, R.; Wyers, C.E.; Bours, S.P.G.; van den Bergh, J.P. The impact of fracture liaison services on subsequent fractures and mortality: A systematic literature review and meta-analysis. Osteoporos. Int. 2021, 32, 1517–1530. [Google Scholar] [CrossRef] [PubMed]
- Geusens, P.; Bours, S.P.G.; Wyers, C.E.; van den Bergh, J.P. Fracture liaison programs. Best. Pract. Res. Clin. Rheumatol. 2019, 33, 278–289. [Google Scholar] [CrossRef]
- Ganda, K. Fracture liaison services: Past, present and future: Editorial relating to: The impact of Fracture Liaison Services on subsequent fractures and mortality: A systematic literature review and meta-analysis. Osteoporos. Int. 2021, 32, 1461–1464. [Google Scholar] [CrossRef]
- Lems, W.F.; Dreinhöfer, K.E.; Bischoff-Ferrari, H.; Blauth, M.; Czerwinski, E.; da Silva, J.; Herrera, A.; Hoffmeyer, P.; Kvien, T.; Maalouf, G.; et al. EULAR/EFORT recommendations for management of patients older than 50 years with a fragility fracture and prevention of subsequent fractures. Ann. Rheum. Dis. 2017, 76, 802–810. [Google Scholar] [CrossRef]
- Vranken, L.; Wyers, C.E.; Van der Velde, R.Y.; Janzing, H.M.J.; Kaarsemakers, S.; Driessen, J.; Eisman, J.; Center, J.R.; Nguyen, T.V.; Tran, T.; et al. Association between incident falls and subsequent fractures in patients attending the fracture liaison service after an index fracture: A 3-year prospective observational cohort study. BMJ Open 2022, 12, e058983. [Google Scholar] [CrossRef]
- Boyé, N.D.; Mattace-Raso, F.U.; Van der Velde, N.; Van Lieshout, E.M.; De Vries, O.J.; Hartholt, K.A.; Kerver, A.J.; Bruijninckx, M.M.; Van der Cammen, T.J.; Patka, P.; et al. Circumstances leading to injurious falls in older men and women in the Netherlands. Injury 2014, 45, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef] [PubMed]
- Koolen, E.H.; van Hees, H.W.; van Lummel, R.C.; Dekhuijzen, R.; Djamin, R.S.; Spruit, M.A.; van ‘t Hul, A.J. “Can do” versus “do do”: A Novel Concept to Better Understand Physical Functioning in Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2019, 8, 340. [Google Scholar] [CrossRef] [PubMed]
- van Lummel, R.C.; Walgaard, S.; Pijnappels, M.; Elders, P.J.; Garcia-Aymerich, J.; van Dieën, J.H.; Beek, P.J. Physical Performance and Physical Activity in Older Adults: Associated but Separate Domains of Physical Function in Old Age. PLoS ONE 2015, 10, e0144048. [Google Scholar] [CrossRef]
- Schene, M.R.; Meijer, K.; Cheung, D.; Willems, H.C.; Driessen, J.H.M.; Vranken, L.; van den Bergh, J.P.; Wyers, C.E. Physical Functioning in Patients with a Recent Fracture: The “Can Do, Do Do” Framework Applied to Explore Physical Capacity, Physical Activity and Fall Risk Factors. Calcif. Tissue Int. 2023, 113, 195–206. [Google Scholar] [CrossRef]
- Lusardi, M.M.; Fritz, S.; Middleton, A.; Allison, L.; Wingood, M.; Phillips, E.; Criss, M.; Verma, S.; Osborne, J.; Chui, K.K. Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. J. Geriatr. Phys. Ther. 2017, 40, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar] [CrossRef]
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will my patient fall? Jama 2007, 297, 77–86. [Google Scholar] [CrossRef]
- Cöster, M.E.; Karlsson, M.; Ohlsson, C.; Mellström, D.; Lorentzon, M.; Ribom, E.; Rosengren, B. Physical function tests predict incident falls: A prospective study of 2969 men in the Swedish Osteoporotic Fractures in Men study. Scand. J. Public Health 2020, 48, 436–441. [Google Scholar] [CrossRef]
- Alajlouni, D.A.; Bliuc, D.; Tran, T.S.; Blank, R.D.; Center, J.R. Muscle strength and physical performance contribute to and improve fracture risk prediction in older people: A narrative review. Bone 2023, 172, 116755. [Google Scholar] [CrossRef]
- Alajlouni, D.; Tran, T.; Bliuc, D.; Blank, R.D.; Cawthon, P.M.; Orwoll, E.S.; Center, J.R. Muscle Strength and Physical Performance Improve Fracture Risk Prediction Beyond Garvan and FRAX: The Osteoporotic Fractures in Men (MrOS) Study. J. Bone Miner. Res. 2021, 37, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public. Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Heesch, K.C.; Byles, J.E.; Brown, W.J. Prospective association between physical activity and falls in community-dwelling older women. J. Epidemiol. Community Health 2008, 62, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Klenk, J.; Kerse, N.; Rapp, K.; Nikolaus, T.; Becker, C.; Rothenbacher, D.; Peter, R.; Denkinger, M.D. Physical Activity and Different Concepts of Fall Risk Estimation in Older People--Results of the ActiFE-Ulm Study. PLoS ONE 2015, 10, e0129098. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.; Kwok, W.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Ng, C.; Bauman, A. Evidence on physical activity and falls prevention for people aged 65+ years: Systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 144. [Google Scholar] [CrossRef]
- Lu, Z.; Lam, F.M.H.; Leung, J.C.S.; Kwok, T.C.Y. The U-Shaped Relationship Between Levels of Bouted Activity and Fall Incidence in Community-Dwelling Older Adults: A Prospective Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, e145–e151. [Google Scholar] [CrossRef] [PubMed]
- Carl, J.; Schultz, K.; Janssens, T.; von Leupoldt, A.; Pfeifer, K.; Geidl, W. The “can do, do do” concept in individuals with chronic obstructive pulmonary disease: An exploration of psychological mechanisms. Respir. Res. 2021, 22, 260. [Google Scholar] [CrossRef]
- Janssen, S.M.J.; Spruit, M.A.; Antons, J.C.; Djamin, R.S.; Abbink, J.J.; van Helvoort, H.A.C.; van ‘t Hul, A.J. “Can Do” Versus “Do Do” in Patients with Asthma at First Referral to a Pulmonologist. J. Allergy Clin. Immunol. Pract. 2021, 9, 1278–1284. [Google Scholar] [CrossRef]
- Vaes, A.W.; Spruit, M.A.; Koolen, E.H.; Antons, J.C.; de Man, M.; Djamin, R.S.; van Hees, H.W.H.; van ‘t Hul, A.J. “Can Do, Do Do” Quadrants and 6-Year All-Cause Mortality in Patients with COPD. Chest 2022, 161, 1494–1504. [Google Scholar] [CrossRef]
- Dutch Institute for Healthcare Improvement CBO. Richtlijn Osteoporose en Fractuurpreventie, Derde Herziening [Dutch]; Dutch Institute for Healthcare Improvement CBO: Utrecht, The Netherlands, 2011. [Google Scholar]
- World Health Organisation. ICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision, 2nd ed.; World Health Organisation: Geneva, Switzerland, 2004. [Google Scholar]
- Center, J.R.; Nguyen, T.V.; Schneider, D.; Sambrook, P.N.; Eisman, J.A. Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet 1999, 353, 878–882. [Google Scholar] [CrossRef]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Rikli, R.E.; Jones, C.J. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J. Aging Phys. Act. 1998, 6, 363–375. [Google Scholar] [CrossRef]
- Overgaard, J.A.; Larsen, C.M.; Holtze, S.; Ockholm, K.; Kristensen, M.T. Interrater Reliability of the 6-Minute Walk Test in Women With Hip Fracture. J. Geriatr. Phys. Ther. 2017, 40, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Beekman, E.; Mesters, I.; Gosselink, R.; Klaassen, M.P.; Hendriks, E.J.; Van Schayck, O.C.; de Bie, R.A. The first reference equations for the 6-minute walk distance over a 10 m course. Thorax 2014, 69, 867–868. [Google Scholar] [CrossRef] [PubMed]
- Bijnens, W.; Aarts, J.; Stevens, A.; Ummels, D.; Meijer, K. Optimization and Validation of an Adjustable Activity Classification Algorithm for Assessment of Physical Behavior in Elderly. Sensors 2019, 19, 5344. [Google Scholar] [CrossRef]
- van der Weegen, S.; Essers, H.; Spreeuwenberg, M.; Verwey, R.; Tange, H.; de Witte, L.; Meijer, K. Concurrent validity of the MOX activity monitor compared to the ActiGraph GT3X. Telemed. J. E Health 2015, 21, 259–266. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organisation. Factsheet Falls. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 17 May 2021).
- Verduijn, M.; Grootendorst, D.C.; Dekker, F.W.; Jager, K.J.; le Cessie, S. The analysis of competing events like cause-specific mortality--beware of the Kaplan-Meier method. Nephrol. Dial. Transplant. 2011, 26, 56–61. [Google Scholar] [CrossRef]
- Barbour, K.E.; Lui, L.Y.; McCulloch, C.E.; Ensrud, K.E.; Cawthon, P.M.; Yaffe, K.; Barnes, D.E.; Fredman, L.; Newman, A.B.; Cummings, S.R.; et al. Trajectories of Lower Extremity Physical Performance: Effects on Fractures and Mortality in Older Women. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1609–1615. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Fullman, R.L.; Marshall, L.; Mackey, D.C.; Fink, H.A.; Cauley, J.A.; Cummings, S.R.; Orwoll, E.S.; Ensrud, K.E. Physical performance and risk of hip fractures in older men. J. Bone Miner. Res. 2008, 23, 1037–1044. [Google Scholar] [CrossRef]
- Harvey, N.C.; Odén, A.; Orwoll, E.; Lapidus, J.; Kwok, T.; Karlsson, M.K.; Rosengren, B.E.; Ribom, E.; Cooper, C.; Cawthon, P.M.; et al. Measures of Physical Performance and Muscle Strength as Predictors of Fracture Risk Independent of FRAX, Falls, and aBMD: A Meta-Analysis of the Osteoporotic Fractures in Men (MrOS) Study. J. Bone Miner. Res. 2018, 33, 2150–2157. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. Jama 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Yazdanyar, A.; Aziz, M.M.; Enright, P.L.; Edmundowicz, D.; Boudreau, R.; Sutton-Tyrell, K.; Kuller, L.; Newman, A.B. Association Between 6-Minute Walk Test and All-Cause Mortality, Coronary Heart Disease-Specific Mortality, and Incident Coronary Heart Disease. J. Aging Health 2014, 26, 583–599. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Fontana, L.; Trevisan, C.; Bolzetta, F.; Rui, M.; Sartori, L.; Musacchio, E.; Zambon, S.; Maggi, S.; et al. A Comparison of Objective Physical Performance Tests and Future Mortality in the Elderly People. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, C.H.; Buzková, P.; Robbins, J.A.; Patel, K.V.; Newman, A.B. Predicting late-life disability and death by the rate of decline in physical performance measures. Age Ageing 2012, 41, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, B.D.; Williamson, D.A.; Singh, N.A.; Hansen, R.D.; Diamond, T.H.; Finnegan, T.P.; Allen, B.J.; Grady, J.N.; Stavrinos, T.M.; Smith, E.U.; et al. Recurrent and injurious falls in the year following hip fracture: A prospective study of incidence and risk factors from the Sarcopenia and Hip Fracture study. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.T.; Foss, N.B.; Kehlet, H. Timed “up & go” test as a predictor of falls within 6 months after hip fracture surgery. Phys. Ther. 2007, 87, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Dewan, N.; MacDermid, J.C.; Grewal, R.; Beattie, K. Risk factors predicting subsequent falls and osteoporotic fractures at 4 years after distal radius fracture-a prospective cohort study. Arch. Osteoporos. 2018, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Alajlouni, D.A.; Bliuc, D.; Tran, T.S.; Blank, R.D.; Cawthon, P.M.; Ensrud, K.E.; Lane, N.E.; Orwoll, E.S.; Cauley, J.A.; Center, J.R. Muscle Strength and Physical Performance Are Associated with Risk of Postfracture Mortality But Not Subsequent Fracture in Men. J. Bone Miner. Res. 2022, 37, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Center, J.R.; Bliuc, D.; Nguyen, T.V.; Eisman, J.A. Risk of subsequent fracture after low-trauma fracture in men and women. Jama 2007, 297, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Bliuc, D.; Nguyen, N.D.; Milch, V.E.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 2009, 301, 513–521. [Google Scholar] [CrossRef]
- Iconaru, L.; Moreau, M.; Baleanu, F.; Kinnard, V.; Charles, A.; Mugisha, A.; Surquin, M.; Benoit, F.; Karmali, R.; Paesmans, M.; et al. Risk factors for imminent fractures: A substudy of the FRISBEE cohort. Osteoporos. Int. 2021, 32, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- CBS Statline. Overlevingskansen; Geslacht, Leeftijd (Dutch). Available online: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70701ned/table?fromstatwebdate (accessed on 12 February 2024).
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. Bmj 2019, 366, l4570. [Google Scholar] [CrossRef]
- Buchner, D.M.; Rillamas-Sun, E.; Di, C.; LaMonte, M.J.; Marshall, S.W.; Hunt, J.; Zhang, Y.; Rosenberg, D.E.; Lee, I.M.; Evenson, K.R.; et al. Accelerometer-Measured Moderate to Vigorous Physical Activity and Incidence Rates of Falls in Older Women. J. Am. Geriatr. Soc. 2017, 65, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.; Iliffe, S.; Kendrick, D.; Kerse, N.; Trost, S.; Lennon, L.T.; Ash, S.; Sartini, C.; Morris, R.W.; Wannamethee, S.G.; et al. How are falls and fear of falling associated with objectively measured physical activity in a cohort of community-dwelling older men? BMC Geriatr. 2014, 14, 114. [Google Scholar] [CrossRef]
- Tricco, A.C.; Thomas, S.M.; Veroniki, A.A.; Hamid, J.S.; Cogo, E.; Strifler, L.; Khan, P.A.; Robson, R.; Sibley, K.M.; MacDonald, H.; et al. Comparisons of Interventions for Preventing Falls in Older Adults: A Systematic Review and Meta-analysis. Jama 2017, 318, 1687–1699. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 1, Cd012424. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, P.; van Haard, P.M.M.; Geusens, P.P.; van den Bergh, J.P.; Schweitzer, D.H. Challenges and opportunities to improve fracture liaison service attendance: Fracture registration and patient characteristics and motivations. Osteoporos. Int. 2019, 30, 1597–1606. [Google Scholar] [CrossRef]
- Eekman, D.A.; van Helden, S.H.; Huisman, A.M.; Verhaar, H.J.; Bultink, I.E.; Geusens, P.P.; Lips, P.; Lems, W.F. Optimizing fracture prevention: The fracture liaison service, an observational study. Osteoporos. Int. 2014, 25, 701–709. [Google Scholar] [CrossRef] [PubMed]
Total Population | Can Do, Do Do | Can’t Do, Do Do | Can Do, Don’t Do | Can’t Do, Don’t Do | p-Value | |
---|---|---|---|---|---|---|
Number of patients b | 400 (100) | 278 (69.5) | 77 (19.3) | 12 (3.0) | 33 (8.3) | <0.001 * |
Females b | 283 (70.8) | 191 (67.5) | 53 (18.7) | 12 (4.2) | 27 (9.5) | <0.001 * |
Males b | 117 (29.2) | 87 (74.4) | 24 (20.5) | 0 (0) | 6 (5.1) | <0.001 * |
Age a | 64.6 ± 8.6 | 62.7 ± 7.9 | 68.6 ± 9.0 | 67.4 ± 8 | 70.4 ± 8.2 | <0.001 * |
BMI a | 27.2 ± 4.4 | 27.3 ± 4.2 | 29.0 ± 4.2 | 26.2 ± 5.0 | 27.2 ± 6.0 | 0.02 * |
Time since fracture (days) a | 108.0 ± 30.2 | 107.1 ± 29.2 | 110.6 ± 31.4 | 105.7 ± 30.3 | 110.4 ± 35.8 | 0.77 |
Alcohol use b | 316 (79.0) | 239 (86.0) | 50 (64.9) | 7 (58.3) | 20 (60.6) | <0.001 * |
Smoking b | 269 (67.3) | 190 (68.3) | 54 (70.1) | 4 (33.3) | 21 (63.6) | 0.08 |
Fracture type b | <0.001 * | |||||
Hip | 20 (5) | 6 (2.2) | 5 (6.5) | 1 (8.3) | 8 (24.2) | |
Major | 80 (20) | 39 (14.0) | 22 (28.6) | 4 (33.3) | 15 (45.5) | |
Minor | 250 (62.5) | 191 (68.7) | 45 (58.4) | 6 (50.0) | 8 (24.2) | |
Finger and toe | 50 (12.5) | 42 (15.1) | 5 (6.5) | 1 (8.3) | 2 (6.1) | |
BMD b | <0.001 * | |||||
Normal BMD | 112 (28.0) | 87 (31.3) | 21 (27.3) | 2 (16.7) | 2 (6.1) | |
Osteopenia | 200 (50.0) | 142 (51.1) | 40 (51.9) | 5 (41.7) | 13 (39.4) | |
Osteoporosis | 88 (22) | 49 (17.6) | 16 (20.8) | 5 (41.7) | 18 (54.4) | |
≥1 Prevalent VF gr 2–3 b | 49 (12.3) | 23 (8.3) | 15 (19.5) | 1 (8.3) | 10 (30.3) | <0.001 * |
AOM treatment b | 135 (33.7) | 79 (28.4) | 24 (31.4) | 7 (58.3) | 25 (75.8) | <0.001 * |
Cardiovascular comorbidity b | 163 (40.8) | 99 (35.6) | 41 (53.2) | 2 (16.7) | 21 (63.6) | <0.001 * |
Asthma/COPD b | 40 (10.0) | 21 (7.6) | 12 (15.6) | 0 | 7 (21.2) | 0.019 * |
Diabetes b | 29 (72) | 13 (4.7) | 10 (13.0) | 0 | 6 (18.2) | 0.006 * |
Fracture caused by a fall b | 346 (86.5) | 241 (86.7) | 66 (85.7) | 11 (91.7) | 28 (84.8) | 0.97 |
≥2 Falls in past year b | 51 (12.8) | 32 (11.6) | 14 (18.2) | 1 (8.3) | 4 (12.1) | 0.46 |
Dizziness–balance b | 94 (25.3) | 52 (20.2) | 25 (34.2) | 5 (45.5) | 12 (40.0) | 0.006 * |
Walking aid b | 15 (3.8) | 2 (0.7) | 7 (9.1) | 0 | 6 (18.2) | <0.001 * |
Fear of falling b | 39 (9.8) | 16 (5.8) | 15 (19.7) | 0 | 8 (24.2) | <0.001 * |
MVPA-VPA (Av. min/day) a | 56 (26.3–87.0) | 70 (48–100) | 43 (32–59) | 12 (11–18) | 14 (8–18) | <0.001 * |
6MWD (m) a | 428 (364.3–489.8) | 465 (420–510) | 330 (299–354) | 419 (396–476) | 280 (218–330) | <0.001 * |
Can Do, Do Do | Can’t Do, Do Do | Can Do, Don’t Do | Can’t Do, Don’t Do | p-Value | |
---|---|---|---|---|---|
Number of patients | 278 (69.5) | 77 (19.3) | 12 (3.0) | 33 (8.3) | |
First fall by follow-up † | |||||
1 year | 112 (40.3) | 28 (40.0) | 5 (41.5) | 8 (24.2) | 0.31 |
2 years | 146 (53.5) | 35 (50.0) | 6 (50.0) | 13 (39.4) | 0.49 |
3 years | 170 (62.3) | 45 (64.3) | 7 (58.3) | 18 (54.5) | 0.78 |
First fracture by follow-up | |||||
1 year | 14 (5.0) | 5 (6.5) | 0 (0) | 2 (6.1) | 0.84 |
2 years | 19 (6.8) | 5 (6.5) | 0 (0) | 4 (12.1) | 0.80 |
3 years | 32 (11.5) | 9 (11.7) | 0 (0) | 5 (15.2 | 0.65 |
6 years | 60 (21.6) | 14 (18.2) | 1 (8.3) | 6 (18.2) | 0.76 |
Mortality by follow-up | |||||
1 year | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
2 years | 0 (0) | 1 (1.3) | 0 (0) | 0 (0) | 0.30 |
3 years | 0 (0) | 1 (1.3) | 0 (0) | 0 (0) | 0.30 |
6 years | 8 (2.9) | 7 (9.1) | 0 (0) | 4 (12.1) | 0.019 * |
Time to First Fall | Time to First Subsequent | Time to Death | ||||
---|---|---|---|---|---|---|
Fracture | ||||||
Univariate | Multivariate | Univariate | Multivariate | Univariate | Multivariate | |
HR 95% CI | HR 95% CI | HR 95% CI | HR 95% CI | HR 95% CI | HR 95% CI | |
Can do, do do (ref) | - | - | - | - | - | - |
Can’t do, do do | 0.99 (0.71, 1.38) | 0.99 (0.70, 1.39) | 0.86 (0.48, 1.53) | 0.80 (0.43, 1.48) | 3.29 (1.19, 9.07) * | 1.55 (0.53. 4.56) |
Can do, don’t do | 0.74 (0.41, 1.88) | 0.83 (0.39, 1.78) | 0.34 (0.05, 2.48) | 0.25 (0.04, 1.84) | - | - |
Can’t do, don’t do | 0.76 (0.47, 1.24) | 0.75 (0.45, 1.23) | 0.88 (0.37, 2.04) | 0.58 (0.24, 1.41) | 4.40 (1.33, 4.62) * | 1.19 (0.54, 6.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schene, M.R.; Wyers, C.E.; Driessen, J.H.M.; Vranken, L.; Meijer, K.; van den Bergh, J.P.; Willems, H.C. The “Can Do, Do Do” Framework Applied to Assess the Association between Physical Capacity, Physical Activity and Prospective Falls, Subsequent Fractures, and Mortality in Patients Visiting the Fracture Liaison Service. J. Pers. Med. 2024, 14, 337. https://doi.org/10.3390/jpm14040337
Schene MR, Wyers CE, Driessen JHM, Vranken L, Meijer K, van den Bergh JP, Willems HC. The “Can Do, Do Do” Framework Applied to Assess the Association between Physical Capacity, Physical Activity and Prospective Falls, Subsequent Fractures, and Mortality in Patients Visiting the Fracture Liaison Service. Journal of Personalized Medicine. 2024; 14(4):337. https://doi.org/10.3390/jpm14040337
Chicago/Turabian StyleSchene, Merle R., Caroline E. Wyers, Johanna H. M. Driessen, Lisanne Vranken, Kenneth Meijer, Joop P. van den Bergh, and Hanna C. Willems. 2024. "The “Can Do, Do Do” Framework Applied to Assess the Association between Physical Capacity, Physical Activity and Prospective Falls, Subsequent Fractures, and Mortality in Patients Visiting the Fracture Liaison Service" Journal of Personalized Medicine 14, no. 4: 337. https://doi.org/10.3390/jpm14040337
APA StyleSchene, M. R., Wyers, C. E., Driessen, J. H. M., Vranken, L., Meijer, K., van den Bergh, J. P., & Willems, H. C. (2024). The “Can Do, Do Do” Framework Applied to Assess the Association between Physical Capacity, Physical Activity and Prospective Falls, Subsequent Fractures, and Mortality in Patients Visiting the Fracture Liaison Service. Journal of Personalized Medicine, 14(4), 337. https://doi.org/10.3390/jpm14040337