Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Oropharyngeal Specimen Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Abundance Analysis Results
3.3. Alpha and Beta Diversity Analysis Results
3.4. LEfSe Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef]
- Kaeuffer, C.; Le Hyaric, C.; Fabacher, T.; Mootien, J.; Dervieux, B.; Ruch, Y.; Hugerot, A.; Zhu, Y.J.; Pointurier, V.; Clere-Jehl, R.; et al. Clinical characteristics and risk factors associated with severe COVID-19: Prospective analysis of 1045 hospitalised cases in North-Eastern France, March 2020. Euro Surveill. 2020, 25, 2000895. [Google Scholar] [CrossRef]
- Wingert, A.; Pillay, J.; Gates, M.; Guitard, S.; Rahman, S.; Beck, A.; Vandermeer, B.; Hartling, L. Risk factors for severity of COVID-19: A rapid review to inform vaccine prioritisation in Canada. BMJ Open 2021, 11, e044684. [Google Scholar] [CrossRef]
- Milota, T.; Sobotkova, M.; Smetanova, J.; Bloomfield, M.; Vydlakova, J.; Chovancova, Z.; Litzman, J.; Hakl, R.; Novak, J.; Malkusova, I.; et al. Risk Factors for Severe COVID-19 and Hospital Admission in Patients with Inborn Errors of Immunity—Results from a Multicenter Nationwide Study. Front. Immunol. 2022, 13, 835770. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Gao, Z.; Kang, Y.; Yu, J.; Ren, L. Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genom. Proteom. Bioinform. 2014, 12, 144–150. [Google Scholar] [CrossRef]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Yagi, K.; Huffnagle, G.B.; Lukacs, N.W.; Asai, N. The Lung Microbiome during Health and Disease. Int. J. Mol. Sci. 2021, 22, 10872. [Google Scholar] [CrossRef]
- Wei, N.; Zhu, G.; Zhao, T.; Wang, Y.; Lou, H.; Li, H.; Yang, Z.; Zhang, Z.; Wang, Q.; Han, M.; et al. Characterization of oral bacterial and fungal microbiome in recovered COVID-19 patients. BMC Microbiol. 2023, 23, 123. [Google Scholar] [CrossRef]
- Li, J.; Jing, Q.; Li, J.; Hua, M.; Di, L.; Song, C.; Huang, Y.; Wang, J.; Chen, C.; Wu, A.R. Assessment of microbiota in the gut and upper respiratory tract associated with SARS-CoV-2 infection. Microbiome 2023, 11, 388. [Google Scholar] [CrossRef]
- Ancona, G.; Alagna, L.; Alteri, C.; Palomba, E.; Tonizzo, A.; Pastena, A.; Muscatello, A.; Gori, A.; Bandera, A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front. Immunol. 2023, 14, 1080043. [Google Scholar] [CrossRef]
- Ling, L.; Lai, C.K.C.; Lui, G.; Yeung, A.C.M.; Chan, H.C.; Cheuk, C.H.S.; Cheung, A.N.; Chang, L.C.; Chiu, L.C.S.; Zhang, J.Z.; et al. Characterization of upper airway microbiome across severity of COVID-19 during hospitalization and treatment. Front. Cell Infect. Microbiol. 2023, 13, 1205401. [Google Scholar] [CrossRef]
- Merenstein, C.; Bushman, F.D.; Collman, R.G. Alterations in the respiratory tract microbiome in COVID-19: Current observations and potential significance. Microbiome 2022, 10, 165. [Google Scholar] [CrossRef]
- Lagkouvardos/IMNGS-Toolbox. Available online: https://github.com/Lagkouvardos/IMNGS-toolbox (accessed on 1 November 2023).
- IMNGS Web Platform. Available online: https://www.imngs.org/ (accessed on 1 November 2023).
- Lagkouvardos, I.; Fischer, S.; Kumar, N.; Clavel, T. Rhea: A transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 2017, 5, e2836. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Bourumeau, W.; Tremblay, K.; Jourdan, G.; Girard, C.; Laprise, C. Bacterial Biomarkers of the Oropharyngeal and Oral Cavity during SARS-CoV-2 Infection. Microorganisms 2023, 11, 2703. [Google Scholar] [CrossRef]
- Kim, J.G.; Zhang, A.; Rauseo, A.M.; Goss, C.W.; Mudd, P.A.; O’Halloran, J.A.; Wang, L. The salivary and nasopharyngeal microbiomes are associated with SARS-CoV-2 infection and disease severity. J. Med. Virol. 2023, 95, e28445. [Google Scholar] [CrossRef]
- Merenstein, C.; Liang, G.; Whiteside, S.A.; Cobián-Güemes, A.G.; Merlino, M.S.; Taylor, L.J.; Glascock, A.; Bittinger, K.; Tanes, C.; Graham-Wooten, J.; et al. Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. mBio 2021, 12, e0177721. [Google Scholar] [CrossRef]
- Bellato, M.; Cappellato, M.; Longhin, F.; Del Vecchio, C.; Brancaccio, G.; Cattelan, A.M.; Brun, P.; Salaris, C.; Castagliuolo, I.; Di Camillo, B. Uncover a microbiota signature of upper respiratory tract in patients with SARS-CoV-2+. Sci. Rep. 2023, 13, 16867. [Google Scholar] [CrossRef]
- Candel, S.; Tyrkalska, S.D.; Álvarez-Santacruz, C.; Mulero, V. The nasopharyngeal microbiome in COVID-19. Emerg. Microbes Infect. 2023, 12, e2165970. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, X.; Jiang, G.; Tang, H.; Ming, S.; Tang, L.; Lu, J.; Guo, C.; Shan, H.; Huang, X. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.K.C.; Cheung, M.K.; Lui, G.C.Y.; Ling, L.; Chan, J.Y.K.; Ng, R.W.Y.; Chan, H.C.; Yeung, A.C.M.; Ho, W.C.S.; Boon, S.S.; et al. Limited Impact of SARS-CoV-2 on the Human Naso-Oropharyngeal Microbiota in Hospitalized Patients. Microbiol. Spectr. 2022, 10, e02196222. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Halevi, S.; Hadar, R.; Efroni, G.; Glick Saar, E.; Keller, N.; Amir, A.; Amit, S.; Haberman, Y. SARS-CoV-2 does not have a strong effect on the nasopharyngeal microbial composition. Sci. Rep. 2021, 11, 8922. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Terán, A.; Mejía-Nepomuceno, F.; Herrera, M.T.; Barreto, O.; García, E.; Castillejos, M.; Boukadida, C.; Matias-Florentino, M.; Rincón-Rubio, A.; Avila-Rios, S.; et al. Dysbiosis and structural disruption of the respiratory microbiota in COVID-19 patients with severe and fatal outcomes. Sci. Rep. 2021, 11, 21297. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Pandit, R.; Sharma, S.; Raval, J.; Patel, Z.; Joshi, M.; Joshi, C.G. Nasopharyngeal microbiome of COVID-19 patients revealed a distinct bacterial profile in deceased and recovered individuals. Microb. Pathog. 2022, 173, 105829. [Google Scholar] [CrossRef]
- Yasir, M.; Al-Sharif, H.A.; Al-Subhi, T.; Sindi, A.A.; Bokhary, D.H.; El-Daly, M.M.; Alosaimi, B.; Hamed, M.E.; Karim, A.M.; Hassan, A.M.; et al. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J. Infect. Public Health 2023, 16, 680–688. [Google Scholar] [CrossRef]
- Mostafa, H.H.; Fissel, J.A.; Fanelli, B.; Bergman, Y.; Gniazdowski, V.; Dadlani, M.; Carroll, K.C.; Colwell, R.R.; Simner, P.J. Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients. mBio 2020, 11, e01969-20. [Google Scholar] [CrossRef]
- Szabo, D.; Ostorhazi, E.; Stercz, B.; Makra, N.; Penzes, K.; Kristof, K.; Antal, I.; Rethelyi, J.M.; Zsigmond, R.I.; Birtalan, E.; et al. Specific nasopharyngeal Corynebacterium strains serve as gatekeepers against SARS-CoV-2 infection. Geroscience 2023, 45, 2927–2938. [Google Scholar] [CrossRef]
- Ventero, M.P.; Cuadrat, R.R.C.; Vidal, I.; Andrade, B.G.N.; Molina-Pardines, C.; Haro-Moreno, J.M.; Coutinho, F.H.; Merino, E.; Regitano, L.C.A.; Silveira, C.B.; et al. Nasopharyngeal Microbial Communities of Patients Infected with SARS-CoV-2 That Developed COVID-19. Front. Microbiol. 2021, 12, 637430. [Google Scholar] [CrossRef]
- Bradley, E.S.; Zeamer, A.L.; Bucci, V.; Cincotta, L.; Salive, M.C.; Dutta, P.; Mutaawe, S.; Anya, O.; Tocci, C.; Moormann, A.; et al. Oropharyngeal microbiome profiled at admission is predictive of the need for respiratory support among COVID-19 patients. Front. Microbiol. 2022, 13, 1009440. [Google Scholar] [CrossRef] [PubMed]
- Horn, K.J.; Schopper, M.A.; Drigot, Z.G.; Clark, S.E. Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung. Nat. Commun. 2022, 13, 3321. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhou, Y.; Hu, Y.; Wang, J.; Li, H.; Lin, Y.; Wang, D.; Xian, J.; Zhao, S.; Ma, J.; et al. Metatranscriptomic analysis revealed Prevotella as a potential biomarker of oropharyngeal microbiomes in SARS-CoV-2 infection. Front. Cell Infect. Microbiol. 2023, 13, 1161763. [Google Scholar] [CrossRef] [PubMed]
Hospitalized Patients with COVID-19 | Patients with COVID-19 Managed as Outpatients | |
---|---|---|
Subjects, N | 27 | 16 |
Age, years ± SD (range) | 70 ± 18.7 (30–93) | 39.1 ± 21.3 (11–76) |
Male: Female | 18/9 | 10/6 |
Phylum | Family, N | Genus, N | Species, N |
---|---|---|---|
Firmicutes | 20 | 49 | 154 |
Proteobacteria | 25 | 59 | 116 |
Actinobacteria | 8 | 11 | 58 |
Bacteroidetes | 4 | 8 | 45 |
Saccharibacteria TM7 | 1 | 2 | 7 |
Fusobacteria | 2 | 2 | 6 |
Spirochaetes | 1 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siasios, P.; Giosi, E.; Ouranos, K.; Christoforidi, M.; Dimopoulou, I.; Leshi, E.; Exindari, M.; Anastassopoulou, C.; Gioula, G. Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. J. Pers. Med. 2024, 14, 369. https://doi.org/10.3390/jpm14040369
Siasios P, Giosi E, Ouranos K, Christoforidi M, Dimopoulou I, Leshi E, Exindari M, Anastassopoulou C, Gioula G. Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. Journal of Personalized Medicine. 2024; 14(4):369. https://doi.org/10.3390/jpm14040369
Chicago/Turabian StyleSiasios, Panagiotis, Evangelia Giosi, Konstantinos Ouranos, Maria Christoforidi, Ifigenia Dimopoulou, Enada Leshi, Maria Exindari, Cleo Anastassopoulou, and Georgia Gioula. 2024. "Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study" Journal of Personalized Medicine 14, no. 4: 369. https://doi.org/10.3390/jpm14040369
APA StyleSiasios, P., Giosi, E., Ouranos, K., Christoforidi, M., Dimopoulou, I., Leshi, E., Exindari, M., Anastassopoulou, C., & Gioula, G. (2024). Oropharyngeal Microbiome Analysis in Patients with Varying SARS-CoV-2 Infection Severity: A Prospective Cohort Study. Journal of Personalized Medicine, 14(4), 369. https://doi.org/10.3390/jpm14040369