Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Analysis for the Study
2.2. DNA Extraction and Exome Analysis
2.3. Selection of Genes and Variants
2.4. Bioinformatics Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers 2019, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on recurrence at 10 years and death from breast cancer at 15 years: Meta-analysis of individual patient data for 10,801 women in 17 randomized trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [PubMed]
- Rosenstein, B.S. Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity. Semin. Radiat. Oncol. 2017, 27, 300–309. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Iyer, N.G. Genomics of radiation sensitivity in squamous cell carcinomas. Pharmacogenomics 2019, 20, 457–466. [Google Scholar] [CrossRef]
- Holgersson, G.; Bergström, S.; Liv, P.; Nilsson, J.; Edlund, P.; Blomberg, C.; Nyman, J.; Friesland, S.; Ekman, S.; Asklund, T.; et al. Effect of Increased Radiotoxicity on Survival of Patients with Non-small Cell Lung Cancer Treated with Curatively Intended Radiotherapy. Anticancer Res. 2015, 35, 5491–5497. [Google Scholar] [PubMed]
- Goričar, K.; Dugar, F.; Dolžan, V.; Marinko, T. NBN, RAD51, and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers 2022, 14, 4365. [Google Scholar] [CrossRef] [PubMed]
- Mališić, E.; Petrović, N.; Brengues, M.; Azria, D.; Matić, I.Z.; Srbljak Ćuk, I.; Kopčalić, K.; Stanojković, T.; Nikitović, M. Association of polymorphisms in TGFB1, XRCC1, XRCC3 genes and CD8 T-lymphocyte apoptosis with adverse effect of radiotherapy for prostate cancer. Sci. Rep. 2022, 12, 21306. [Google Scholar] [CrossRef] [PubMed]
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human radiosensitivity and radiosusceptibility: What are the differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef] [PubMed]
- Guhlich, M.; Hubert, L.; Mergler, C.P.N.; Rave-Fraenk, M.; Dröge, L.H.; Leu, M.; Schmidberger, H.; Rieken, S.; Hille, A.; Schirmer, M.A. Identification of Risk Loci for Radiotoxicity in Prostate Cancer by Comprehensive Genotyping of TGFB1 and TGFBR1. Cancers 2021, 13, 5585. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, J.; Li, K.; Liu, J.; Jing, X.; Tang, M. Insights into the theranostic value of precision medicine on advanced radiotherapy to breast cancer. Int. J. Med. Sci. 2021, 18, 626–638. [Google Scholar] [CrossRef]
- Bai, X.; Wang, B.; Wang, S.; Wu, Z.; Gou, C.; Hou, Q. Radiotherapy dose distribution prediction for breast cancer using deformable image registration. BioMedical Engineering OnLine 2020, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.E.G.; Wang, S.; Marrero, A.R.; Salzano, F.M.; Ruiz-Linares, A.; Bortolini, M.C. X-Chromosomal Genetic Diversity and Linkage Disequilibrium Patterns in Amerindians and Non-Amerindian Populations. Am. J. Hum. Biol. 2011, 23, 299–304. [Google Scholar] [CrossRef] [PubMed]
- BRAZIL. Ministry of Indigenous Peoples. Data from the 2022 Census Reveals that Brazil has 1.7 Million Indigenous People. 2023. Available online: https://en.wikipedia.org/wiki/Ministry_of_Native_People_(Brazil) (accessed on 20 February 2024).
- Rodrigues, J.C.G.; Fernandes, M.R.; Guerreiro, J.F.; da Silva, A.L.D.C.; Ribeiro-Dos-Santos, Â.; Santos, S.; Santos, N.P.C.D. Polymorphisms of ADME-related genes and their implications for drug safety and efficacy in Amazonian Amerindians. Sci. Rep. 2019, 9, 7201. [Google Scholar] [CrossRef]
- Moore, S.P.; Forman, D.; Piñeros, M.; Fernández, S.M.; de Oliveira Santos, M.; Bray, F. Cancer in indigenous people in Latin America and the Caribbean: A review. Cancer Med. 2014, 3, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harb. Protoc. 2017, 2017, pdb-prot093450. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, A.; Sakakini, N.; Atifi, M.E.; Le Clec’h, C.; Bräuer-Krisch, E.; Rogalev, L.; Laissue, J.A.; Rihet, P.; Le Duc, G.; Pelletier, L. Identification of AREG and PLK1 pathway modulation as a potential key of the response of intracranial 9L tumor to microbeam radiation therapy. Int. J. Cancer 2015, 136, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- García, M.E.G.; Kirsch, D.G.; Reitman, Z.J. Targeting the ATM Kinase to Enhance the Efficacy of Radiotherapy and Outcomes for Cancer Patients. Semin. Radiat. Oncol. 2022, 32, 3–14. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Shi, F.; Li, C.; Zhang, K.; Liu, J.; Wang, G.; Yin, J.; Li, Z. Genetic polymorphism contributes to 131I radiotherapy-induced toxicities in patients with differentiated thyroid cancer. Pharmacogenomics 2018, 19, 1335–1344. [Google Scholar] [CrossRef]
- Massacci, G.; Perfetto, L.; Sacco, F. The Cyclin-dependent kinase 1: More than a cell cycle regulator. Br. J. Cancer 2023, 129, 1707–1716. [Google Scholar] [CrossRef]
- Huang, R.X.; Zhou, P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [CrossRef]
- Zaman, N.; Dass, S.S.; Du Parcq, P.; Macmahon, S.; Gallagher, L.; Thompson, L.; Khorashad, J.S.; LimbÄck-Stanic, C. The KDR (VEGFR-2) Genetic Polymorphism Q472H and c-KIT Polymorphism M541L Are Associated with More Aggressive Behaviour in Astrocytic Gliomas. Cancer Genom. Proteom. 2020, 17, 715–727. [Google Scholar] [CrossRef]
- Bohanes, P.; Rankin, C.J.; Blanke, C.D.; Winder, T.; Ulrich, C.M.; Smalley, S.R.; Rich, T.A.; Martensen, J.A.; Benson, A.B., III; Mayer, R.J.; et al. Pharmacogenetic Analysis of INT 0144 Trial: Association of Polymorphisms with Survival and Toxicity in Rectal Cancer Patients Treated with 5-FU and Radiation. Clin Cancer Res. 2015, 21, 1583–1590. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Gholami, M.H.; Mirzaei, S.; Zabolian, A.; Haddadi, A.; Farahani, M.V.; Kashani, S.H.; Hushmandi, K.; Najafi, M.; Zarrabi, A.; et al. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci. 2021, 270, 119006. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Z.; Zhao, Y.; Jin, Y.; An, L.; Wu, B.; Liu, Z.; Chen, X.; Chen, X.; Zhou, H.; et al. Genetic polymorphisms of genes in the lncRNA-p53 regulatory network are associated with concomitant toxicities and efficacy of chemoradiotherapy in patients with nasopharyngeal carcinoma. Sci. Rep. 2017, 7, 8320. [Google Scholar] [CrossRef] [PubMed]
- Gene. Bethesda (MD): National Library of Medicine (USA), National Center for Biotechnology Information; 2004. Available online: https://www.ncbi.nlm.nih.gov/gene/5581#summary (accessed on 27 February 2024).
- Pu, X.; Wang, L.; Chang, J.Y.; Hildebrandt, M.A.; Ye, Y.; Lu, C.; Skinner, H.D.; Niu, N.; Jenkins, G.D.; Komaki, R.; et al. Inflammation-related genetic variants predict toxicity following definitive radiotherapy for lung cancer. Clin. Pharmacol. Ther. 2014, 96, 609–615. [Google Scholar] [CrossRef]
- Greenhough, L.A.; Liang, C.C.; Belan, O.; Kunzelmann, S.; Maslen, S.; Rodrigo-Brenni, M.C.; Anand, R.; Skehel, M.; Boulton, S.J.; West, S.C. Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumor suppressor. Nature 2023, 619, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, Y.; Shi, Y.; Liu, S. Comprehensive Analysis of Prognostic and Immune Infiltrates for RAD51 in Human Breast Cancer. Crit. Rev. Eukaryot. Gene Expr. 2021, 31, 71–79. [Google Scholar] [CrossRef]
- Xu, H.; Xiong, C.; Chen, Y.; Zhang, C.; Bai, D. Identification of RAD51 as a prognostic biomarker correlated with immune infiltration in hepatocellular carcinoma. Bioengineered 2021, 12, 2664–2675. [Google Scholar] [CrossRef]
- Data for This Paper Were Retrieved from the Alliance of Genome Resources. Version 6.0.0. Available online: https://www.alliancegenome.org (accessed on 20 February 2024).
- Fachal, L.; Gómez-Caamaño, A.; Barnett, G.C.; Peleteiro, P.; Carballo, A.M.; Calvo-Crespo, P.; Kerns, S.L.; Sánchez-García, M.; Lobato-Busto, R.; Dorling, L.; et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat. Genet. 2014, 46, 891–894. [Google Scholar] [CrossRef]
- Aula, H.; Skyttä, T.; Tuohinen, S.; Luukkaala, T.; Hämäläinen, M.; Virtanen, V.; Raatikainen, P.; Moilanen, E.; Kellokumpu-Lehtinen, P.L. Decreases in TGF-β1 and PDGF levels are associated with echocardiographic changes during adjuvant radiotherapy for breast cancer. Radiat. Oncol. 2018, 13, 201. [Google Scholar] [CrossRef]
- Delgado, B.D.; Enguix-Riego, M.V.; de Bobadilla, J.C.F.; Rivera, D.H.; Gómez, J.M.N.G.; Praena-Fernández, J.M.; Del Campo, E.R.; Gordillo, M.J.O.; Fernandez, M.D.C.F.; Guerra, J.L.L. Association of single nucleotide polymorphisms at HSPB1 rs7459185 and TGFB1 rs11466353 with radiation esophagitis in lung cancer. Radiother. Oncol. 2019, 135, 161–169. [Google Scholar] [CrossRef]
- Talibova, G.; Bilmez, Y.; Ozturk, S. Increased double-strand breaks in aged mouse male germ cells may result from altered expression of genes essential for homologous recombination or nonhomologous end-joining repair. Histochem. Cell Biol. 2023, 159, 127–147. [Google Scholar] [CrossRef]
- Wen, Y.; Dai, G.; Wang, L.; Fu, K.; Zuo, S. Silencing of XRCC4 increases the radiosensitivity of triple-negative breast cancer cells. Biosci. Rep. 2019, 39, BSR20180893. [Google Scholar] [CrossRef]
- Rodrigues, J.C.G.; de Souza, T.P.; Pastana, L.F.; dos Santos, A.M.R.; Fernandes, M.R.; Pinto, P.; Wanderley, A.V.; de Souza, S.J.; Kroll, J.E.; Pereira, A.L.; et al. Identification of NUDT15 gene variant in Amazonian Amerindians and admixed individuals from northern Brazil. PLoS ONE 2020, 15, e0231651. [Google Scholar] [CrossRef]
- Ribeiro-dos-Santos, A.M.; Vidal, A.F.; Vinasco-Sandoval, T.; Guerreiro, J.; Santos, S.; Ribeiro-dos-Santos, Â.; De Souza, S.J. Exome Sequencing of Native Populations from the Amazon Reveals Patterns on the Peopling of South America. Front. Genet. 2020, 11, 548507. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, Y.; Wang, R.; Wang, T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 2023, 22, 96. [Google Scholar] [CrossRef]
- Lee, E.; Eum, S.Y.; Slifer, S.H.; Martin, E.R.; Takita, C.; Wright, J.L.; Hines, R.B.; Hu, J.J. Association between polymorphisms in DNA damage repair genes and radiation therapy–induced early adverse skin reactions in a breast cancer population: A polygenic risk score approach. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Jandu, H.K.; Veal, C.D.; Fachal, L.; Luccarini, C.; Aguado-Barrera, M.E.; Altabas, M.; Azria, D.; Baten, A.; Bourgier, C.; Bultijnck, R.; et al. Genome-wide association study of treatment-related toxicity two years following radiotherapy for breast cancer. Radiother. Oncol. 2023, 187, 109806. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.C.; Urban, T.J. Understanding Human Variation in Susceptibility to Infectious Diseases through Clinical and Cellular GWAS. PLoS Pathog. 2013, 9, e1003424. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive genome-wide association meta-analysis of 1000 coronary artery disease genomes. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar]
- El Naqa, I.; Pandey, G.; Aerts, H.; Chien, J.T.; Andreassen, C.N.; Niemierko, A.; Ten Haken, R.K. Radiotherapy outcome models in the era of radiomics and radiogenomics: Uncertainties and validation. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1070–1073. [Google Scholar] [CrossRef]
- Kerns, S.L.; Fachal, L.; Dorling, L.; Barnett, G.C.; Baran, A.; Peterson, D.R.; Hollenberg, M.; Hao, K.; Narzo, A.D.; Ahsen, M.E.; et al. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J. Natl. Cancer Inst. 2020, 112, 179–190. [Google Scholar] [CrossRef]
- Ranjha, L.; Howard, S.M.; Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 2018, 127, 187–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, Q.; Zhu, L.; Xie, S.; Tu, L.; Yang, Y.; Wu, K.; Zhao, Y.; Wang, Y.; Xu, Y.; et al. SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer. Cancer Lett. 2022, 524, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.R.; Rodrigues, J.C.G.; Maroñas, O.; Latorre-Pellicer, A.; Cruz, R.; Guerreiro, J.F.; Burbano, R.M.R.; Assumpção, P.P.D.; Ribeiro-dos-Santos, A.; Santos, S.E.B.D.; et al. Genetic Diversity of Drug-Related Genes in Native Americans of the Brazilian Amazon. Pharmacogenom. Pers. Med. 2021, 14, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Chorev, M.; Carmel, L. The function of introns. Front. Genet. 2012, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chaldebas, M.; Ogishi, M.; Al Qureshah, F.; Ponsin, K.; Feng, Y.; Rinchai, D.; Milisavljevic, B.; Han, J.E.; Moncada-Vélez, M.; et al. Genome-wide detection of human intronic AG-gain variants located between splicing branch points and canonical splice acceptor sites. Proc. Natl. Acad. Sci. USA 2023, 120, e2314225120. [Google Scholar] [CrossRef]
- Mumbrekar, K.D.; Goutham, H.V.; Vadhiraja, B.M.; Bola Sadashiva, S.R. Polymorphisms in double-strand break repair related genes influence radiosensitivity phenotype in lymphocytes from healthy individuals. DNA Repair 2016, 40, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Zhang, W.; Zhou, Y.; Yu, D.; Chen, X.; Chang, J.; Qiao, Y.; Zhang, M.; Huang, Y.; Wu, C.; et al. Associations of ATM Polymorphisms with Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 181–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wang, M.; Tian, H.; Su, K.; Cui, J.; Dong, L.; Han, F. Single Nucleotide Polymorphism rs1801516 in Ataxia Telangiectasia-Mutated Gene Predicts Late Fibrosis in Cancer Patients after Radiotherapy: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine 2016, 95, e3267. [Google Scholar] [CrossRef]
- McDuff, S.G.R.; Bellon, J.R.; Shannon, K.M.; Gadd, M.A.; Dunn, S.; Rosenstein, B.S.; Ho, A.Y. ATM Variants in Breast Cancer: Implications for Breast Radiation Therapy Treatment Recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.N.; Rosenstein, B.S.; Kerns, S.L.; Ostrer, H.; De Ruysscher, D.; Cesaretti, J.A.; Barnett, G.C.; Dunning, A.M.; Dorling, L.; West, C.M.; et al. International Radiogenomics Consortium. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother. Oncol. 2016, 121, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Tinhofer, I.; Stenzinger, A.; Eder, T.; Konschak, R.; Niehr, F.; Endris, V.; Distel, L.; Hautmann, M.G.; Mandic, R.; Stromberger, C.; et al. Targeted next-generation sequencing identifies molecular subgroups in squamous cell carcinoma of the head and neck with distinct outcomes after concurrent chemoradiation. Ann. Oncol. 2016, 27, 2262–2268. [Google Scholar] [CrossRef] [PubMed]
- Butkiewicz, D.; Gdowicz-Kłosok, A.; Krześniak, M.; Rutkowski, T.; Krzywon, A.; Cortez, A.J.; Domińczyk, I.; Składowski, K. Association of Genetic Variants in ANGPT/TEK and VEGF/VEGFR with Progression and Survival in Head and Neck Squamous Cell Carcinoma Treated with Radiotherapy or Radiochemotherapy. Cancers 2020, 12, 1506. [Google Scholar] [CrossRef]
- Xiao, Y.; Yuan, X.; Qiu, H.; Li, Q. Single-nucleotide polymorphisms of TGFβ1 and ATM associated with radiation-induced pneumonitis: A prospective cohort study of thoracic cancer patients in China. Int. J. Clin. Exp. Med. 2015, 8, 16403–16413. [Google Scholar] [PubMed]
- Niu, Z.; Sun, P.; Liu, H.; Wei, P.; Wu, J.; Huang, Z.; Gross, N.D.; Shete, S.; Wei, Q.; Zafereo, M.E.; et al. Functional Genetic Variants in TGFβ1 and TGFβR1 in miRNA-Binding Sites Predict Outcomes in Patients with HPV-positive Oropharyngeal Squamous Cell Carcinoma. Clin. Cancer Res. 2023, 29, 3081–3091. [Google Scholar] [CrossRef] [PubMed]
- Pastana, L.F.; Silva, T.A.; Gellen, L.P.A.; Vieira, G.M.; de Assunção, L.A.; Leitão, L.P.C.; da Silva, N.M.; Coelho, R.D.C.C.; de Alcântara, A.L.; Vinagre, L.W.M.S.; et al. The Genomic Profile Associated with Risk of Severe Forms of COVID-19 in Amazonian Native American Populations. J. Pers. Med. 2022, 12, 554. [Google Scholar] [CrossRef]
- Aguiar, K.E.C.; Oliveira, I.D.S.; Cohen-Paes, A.D.N.; Coelho, R.D.C.C.; Vinagre, L.W.M.S.; Rodrigues, J.C.G.; Ribeiro-Dos-Santos, A.M.; De Souza, S.J.; Ribeiro-Dos-Santos, Â.; Guerreiro, J.F.; et al. Molecular Profile of Variants in CDH1, TP53, PSCA, PRKAA1 and TTN Genes Related to Gastric Cancer Susceptibility in Amazonian Indigenous Population. J. Pers. Med. 2023, 13, 1364. [Google Scholar] [CrossRef]
- Coelho, R.d.C.C.; Martins, C.L.e.L.P.; Pastana, L.F.; Rodrigues, J.C.G.; Aguiar, K.E.C.; Cohen-Paes, A.d.N.; Gellen, L.P.A.; Moraes, F.C.A.d.; Calderaro, M.C.L.; de Assunção, L.A.; et al. Molecular Profile of Variants Potentially Associated with Severe Forms of COVID-19 in Amazonian Indigenous Populations. Viruses 2024, 16, 359. [Google Scholar] [CrossRef]
- Cohen-Paes, A.; de Alcântara, A.L.; de Souza Menezes, E.; Moreira, F.C.; Fernandes, M.R.; Guerreiro, J.F.; Ribeiro-Dos-Santos, Â.; Dos Santos, S.E.B.; Santos, N.P.C.D. Characterization of DNA Polymerase Genes in Amazonian Amerindian Populations. Genes 2022, 14, 53. [Google Scholar] [CrossRef]
- O’Sullivan, N.J.; Kelly, M.E. Radioomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions. Curr. Oncol. 2023, 30, 4936–4945. [Google Scholar] [CrossRef] [PubMed]
- Badic, B.; Tixier, F.; Cheze Le Rest, C.; Hatt, M.; Visvikis, D. Radiogenomics in Colorectal Cancer. Cancers 2021, 13, 973. [Google Scholar] [CrossRef] [PubMed]
Gene | Description |
---|---|
AREG | Related to epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). The protein interacts with the EGF/TGF-alpha receptor, promotes the growth of normal epithelial cells, and inhibits the growth of carcinoma cell lines. Studies indicate that this gene is involved in tumor escape and radiation resistance and is significantly overexpressed after radiotherapy [17]. |
ATM | Favors the interruption of the cell cycle, senescence, and apoptosis and acts on the cellular response to DNA double-strand breaks, occasionally caused by radiotherapy. Therefore, inhibiting ATM seems to increase the effectiveness of radiotherapy [18]. SNPs (rs620815 and rs11212570) in the gene are associated with an increased risk of gastrointestinal toxicity and odynophagia in individuals treated with radiotherapy [19]. |
CDK1 | Cyclin-dependent kinase (CDK1), a cell cycle regulator, is intimately involved in several cellular events vital for cell survival, such as the regulation of gene expression. CDK1 is responsible for regulating the transition between the G2 phase and mitosis [20]. CDK1 is inactivated when DNA damage occurs due to ionizing irradiation to arrest the cell cycle at the G2 checkpoint and facilitate the repair of double-strand breaks, which may be beneficial in radiotherapy treatment [21]. |
KDR | The kinase insert domain receptor, also known as VEGFR (vascular endothelial growth factor), acts to promote angiogenesis in normal and pathological conditions, such as cancer [22]. An SNP (rs1870377) in the gene was associated with mucositis in patients treated with chemoradiotherapy [23]. |
MEG3 | A tumor suppressor that negatively regulates proteins such as p53 and STAT3, consequently affecting cell proliferation and metastasis and promoting apoptosis [24,25]. The rs1032552 variant of MEG3 has been associated with toxicities such as dermatitis and anemia in individuals treated with chemoradiotherapy [25]. |
PRKCE | Members of the PKC family phosphorylate a wide variety of protein targets and are involved in cellular signaling pathways such as neuron channel activation and apoptosis [26]. Furthermore, the literature indicates that the PRKCE gene is also associated with radiation toxicity in lung cancer [27]. |
RAD51 | Acts on DNA repair and, when there is interference in the binding to ATPase and single-stranded DNA, generates genomic instability [4,28]. Gene expression is more frequent in certain tumor tissues and implies a lower survival rate, tumor progression, immunosuppression, radioresistance, and worse prognosis [29,30]. It is associated with radiotoxicity in HER2-positive breast cancer [6]. |
TANC1 | Tetratricopeptide repeat, ankyrin repeat, and coiled-coil containing 1 is a protein-coding gene, considered a scaffold component related to the regulation post-synapse [31]. It is involved in the repair of damaged muscle cells, suggesting that its biological mechanism is associated with the greater development of radiation toxicity; this is due to its potential role in the regeneration of radio-induced damage in muscle tissue [32]. |
TGFB1 | Growth factor β 1 acts to control growth, proliferation, differentiation, and apoptosis. It appears to be a marker of radiosensitivity, where its reduction during radiotherapy treatment is associated with a positive response [33]. It plays an important role in inflammation and cell proliferation, which may be related to radiation-induced fibrosis [34]. |
XRCC4 | Acts in the repair of DNA double-strand breaks [35]. Studies have indicated that reducing XRCC4 expression delays the repair of DNA damage. Furthermore, the protein is a radiosensitivity marker and a promising study object for radiogenomics [36]. |
Impact | Gene | dbSNP | Region | Var Type | Change in Nucleotide | Frequencies | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
INDG | AFR | AMR | EAS | EUR | SAS | ||||||
High | KDR | rs41452948 | Protein_Structural_Interaction_ Locus | SNV | G > A | 0.0517 | 0 | 0 | 0.004 | 0 | 0 |
High | XRCC4 | rs1805377 | Splice_Site_Acceptor+Intron | SNV | G > A | 0.6667 | 0.476 | 0.333 | 0.704 | 0.140 | 0.172 |
Modifier | AREG | rs368667736 | Intron | SNV | C > T | 0.1000 | 0.226 | 0.242 | 0.522 | 0.145 | 0.242 |
Modifier | ATM | rs672655 | Intron | SNV | A > G | 0.1250 | 0.216 | 0.640 | 0.420 | 0.617 | 0.626 |
Modifier | ATM | rs58978479 | Intron | INDEL | AT > A | 0.2459 | 0.005 | 0.025 | 0.030 | - | 0.030 |
Modifier | ATM | rs2066734 | Intron | INDEL | TAA > T | 0.6230 | 0.123 | 0.532 | 0.384 | 0.451 | 0.549 |
Modifier | ATM | rs664143 | Intron | SNV | A > G | 0.2105 | 0.700 | 0.683 | 0.447 | 0.627 | 0.679 |
Modifier | ATM | rs3218681 | Intron | INDEL | AA > AAA | 0.0000 | 0.430 | 0.643 | 0.408 | 0.625 | 0.667 |
Modifier | MEG3 | rs142677044 | Intragenic | SNV | G > C | 0.1897 | 0 | 0.045 | 0.014 | 0 | 0 |
Modifier | MEG3 | rs139003317 | Intron | INDEL | CCCT > C | 0.0541 | 0.606 | 0.173 | 0.001 | 0.210 | 0.182 |
Modifier | MEG3 | rs56363527 | Intron | SNV | C > T | 0.0571 | 0.061 | 0.321 | 0.237 | 0.335 | 0.276 |
Modifier | MEG3 | rs7160821 | Intragenic | SNV | G > A | 0.1905 | 0.216 | 0.461 | 0.325 | 0.344 | 0.333 |
Modifier | KDR | rs2305946 | Intron | SNV | C > T | 0.0135 | 0.104 | 0.140 | 0.454 | 0.238 | 0.152 |
Modifier | KDR | rs2219471 | Intron | SNV | T > C | 0.0469 | 0.135 | 0.147 | 0.459 | 0.240 | 0.121 |
Modifier | KDR | rs3816584 | Intron | SNV | A > G | 0.0135 | 0.103 | 0.140 | 0.454 | 0.238 | 0.152 |
Modifier | KDR | rs7655964 | Intron | SNV | A > C | 0.6406 | 0.108 | 0.496 | 0.313 | 0.363 | 0.306 |
Modifier | KDR | rs17085310 | Intron | SNV | G > A | 0.2344 | 0.001 | 0.112 | 0.074 | 0.005 | 0.055 |
Modifier | KDR | rs3214870 | Intron | INDEL | GG > GGG | 0.0635 | 0.197 | 0.146 | 0.453 | 0.239 | 0.152 |
Modifier | KDR | rs7692791 | Intron | SNV | C > T | 0.0857 | 0.390 | 0.464 | 0.630 | 0.545 | 0.721 |
Modifier | RAD51 | rs45455000 | Intron | SNV | T > G | 0.0000 | 0.116 | 0.081 | 0.133 | 0.075 | 0.126 |
Modifier | PRKCE | rs60465117 | Intron | SNV | A > C | 0.0000 | 0.066 | 0.017 | 0.085 | 0.005 | 0.084 |
Modifier | PRKCE | rs4953294 | Intron | SNV | G > A | 0.0270 | 0.067 | 0.183 | 0.087 | 0.267 | 0.337 |
Modifier | PRKCE | rs1987070 | Intron | SNV | C > A | 0.0139 | 0.152 | 0.141 | 0.219 | 0.273 | 0.197 |
Modifier | PRKCE | rs201731045 | Intron | SNV | T > C | 0.0806 | 0.003 | 0.001 | 0 | 0 | 0 |
Modifier | PRKCE | rs2249505 | Intron | SNV | C > T | 0.6471 | 0.014 | 0.398 | 0.584 | 0.216 | 0.195 |
Modifier | PRKCE | rs10495929 | Intron | SNV | G > A | 0.0147 | 0.186 | 0.133 | 0.059 | 0.149 | 0.215 |
Modifier | TANC1 | rs34344829 | Intron | SNV | A > G | 0.0270 | 0.023 | 0.287 | 0.048 | 0.513 | 0.186 |
Modifier | TANC1 | rs146371641 | Intron | INDEL | CCC > CCCC | 0.0405 | 0.185 | 0.295 | 0.048 | 0.514 | 0.186 |
Modifier | RAD51 | rs45457497 | Intron | SNV | T > G | 0.5000 | 0.275 | 0.393 | 0.644 | 0.153 | 0.342 |
Modifier | RAD51 | rs200723181 | Intron | INDEL | T > TCT | 0.0000 | 0.301 | 0.341 | 0.569 | 0.150 | 0.268 |
Moderate | ATM | rs1801516 | Non_Synonymous_Coding | SNV | G > A | 0.0000 | 0.008 | 0.097 | 0.016 | 0.162 | 0.080 |
Moderate | KDR | rs1870377 | Non_Synonymous_Coding | SNV | T > A | 0.0469 | 0.090 | 0.131 | 0.465 | 0.235 | 0.149 |
Moderate | TANC1 | rs34588551 | Non_Synonymous_Coding | SNV | C > T | 0.0323 | 0.030 | 0.249 | 0.003 | 0.347 | 0.122 |
Moderate | TANC1 | rs4664277 | Non_Synonymous_Coding | SNV | A > G | 0.9453 | 0.461 | 0.610 | 0.618 | 0.373 | 0.535 |
Moderate | TGFB1 | rs1800470 | Non_Synonymous_Coding | SNV | G > A | 0.2143 | 0.586 | 0.494 | 0.445 | 0.618 | 0.554 |
Gene | Chromosome | Position | Var Type | Region Detailed | Reference | Variant | Impact | Protein Change | Variant Allele Frequency |
---|---|---|---|---|---|---|---|---|---|
PRKCE | chr2 | 45652078 | SNV | 5UTR | G | C | MODIFIER | c.-23G > C | 0.0833 |
PRKCE | chr2 | 45652096 | INDEL | 5UTR | C | CCCCCCAGGGT | MODIFIER | c.-5_-4insCCCCCAGGGT | 0.0833 |
PRKCE | chr2 | 45652087 | SNV | 5UTR | T | C | MODIFIER | c.-14T > C | 0.0833 |
PRKCE | chr2 | 45652092 | SNV | 5UTR | G | C | MODIFIER | c.-9G > C | 0.1667 |
GENE | dbSPN | INDG × AFR * | INDG × AMR * | INDG × EAS * | INDG × EUR * | INDG × SAS * |
---|---|---|---|---|---|---|
PRKCE | rs2249505 | 2.17 × 10−29 | 2.40 × 10−4 | - | 2.58 × 10−11 | 1.18 × 10−12 |
KDR | rs2305946 | 1.06 × 10−2 | 5.43 × 10−4 | 1.23 × 10-17 | 1.56 × 10−7 | 2.88 × 10−4 |
TANC1 | rs34344829 | 6.22 × 10−9 | 6.81 × 10−20 | - | - | 5.17 × 10−5 |
KDR | rs3816584 | 1.06 × 10−2 | 5.43 × 10−4 | 1.23 × 10−17 | 1.56 × 10−7 | 2.88 × 10−4 |
TANC1 | rs34588551 | 1.07 × 10−6 | - | 1.83 × 10−10 | 1.50 × 10−2 | |
KDR | rs2219471 | 4.08 × 10−2 | 1.72 × 10−2 | 2.51 × 10−14 | 2.82 × 10−5 | - |
PRKCE | rs60465117 | 1.21 × 10−2 | - | 1.62 × 10−3 | - | 1.62 × 100−3 |
PRKCE | rs4953294 | - | 1.00 × 10−4 | - | 5.65 × 10−8 | 6.14 × 10−11 |
TANC1 | rs146371641 | 5.63 × 10−4 | 7.86 × 10−8 | - | 6.18 × 10−18 | 5.63 × 10−4 |
MEG3 | rs142677044 | 1.31 × 10−7 | 1.50 × 10−3 | 1.08 × 10−5 | 1.31 × 10−7 | 1.31 × 10−7 |
MEG3 | rs139003317 | 1.90 × 10−21 | 9.17 × 10−3 | 2.28 × 10−2 | 7.49 × 10−4 | 5.70 × 10−3 |
KDR | rs7655964 | 3.81 × 10−18 | 3.55 × 10-2 | 7.25 × 10−7 | 2.92 × 10−5 | 3.75 × 10−7 |
TANC1 | rs4664277 | 1.51 × 10−17 | 2.25 × 10−10 | 4.70 × 10−10 | 2.36 × 10−22 | 6.04 × 10−14 |
KDR | rs17085310 | 1.31 × 10−9 | 2.04 × 10−2 | 8.51 × 10−4 | 2.07 × 10−8 | 1.49 × 10−4 |
PRKCE | rs1987070 | 2.88 × 10−4 | 5.43 × 10−4 | 6.57 × 10−7 | 4.13 × 10−9 | 5.43 × 10−6 |
PRKCE | rs201731045 | 3.12 × 10−3 | 3.12 × 10−3 | 3.12 × 10−3 | 3.12 × 10−3 | 3.12 × 10−3 |
XRCC4 | rs1805377 | 6.73 × 10−3 | 7.42 × 10−7 | - | 4.44 × 10−17 | 6.88 × 10−15 |
KDR | rs3214870 | 4.60 × 10−3 | - | 1.63 × 10−12 | 2.22 × 10−4 | - |
MEG3 | rs56363527 | - | 1.44 × 10−7 | 1.49 × 10−4 | 3.89 × 10−8 | 7.28 × 10−6 |
KDR | rs7692791 | 3.91 × 10−8 | 5.38 × 10−11 | 9.11 × 10−20 | 4.71 × 10−15 | 3.10 × 10−25 |
MEG3 | rs7160821 | - | 1.25 × 10−5 | 2.34 × 10−2 | 1.21 × 10−2 | 1.72 × 10−2 |
PRKCE | rs10495929 | 1.08 × 10−5 | 1.00 × 10−3 | - | 2.88 × 10−4 | 6.57 × 10−7 |
AREG | rs368667736 | 1.79 × 10−2 | 8.23 × 10−3 | 1.05 × 10−12 | - | 8.23 × 10−3 |
KDR | rs1870377 | - | 4.08 × 10−2 | 1.05 × 10−14 | 5.17 × 10−5 | 1.72 × 10−2 |
KDR | rs41452948 | 2.28 × 10−2 | 2.28 × 10−2 | - | 2.28 × 10−2 | 2.28 × 10−2 |
ATM | rs672655 | - | 6.04 × 10−17 | 4.11 × 10−7 | 1.17 × 10−15 | 4.38 × 10−16 |
ATM | rs1801516 | - | 8.12 × 10−4 | - | 1.21 × 10−6 | 3.12 × 10−3 |
ATM | rs58978479 | 9.43 × 10−9 | 4.53 × 10−7 | 2.11 × 10−6 | - | 2.11 × 10−6 |
TGFB1 | rs1800470 | 5.18 × 10−9 | 1.07 × 10−5 | 2.45 × 10−4 | 2.48 × 10−10 | 8.16 × 10−8 |
RAD51 | rs45455000 | 1.02 × 10−4 | 3.12 × 10−3 | 2.39 × 10−5 | 3.12 × 10−3 | 4.99 × 10−5 |
ATM | rs2066734 | 4.38 × 10−16 | - | 3.84 × 10−4 | 1.43 × 10−2 | - |
ATM | rs664143 | 1.45 × 10−14 | 2.64 × 10−13 | 2.45 × 10−4 | 1.13 × 10−10 | 2.64 × 10−13 |
RAD51 | rs45457497 | 6.74 × 10−4 | - | 4.70 × 10−2 | 2.40 × 10−8 | 2.52 × 10−2 |
ATM | rs3218681 | 4.41 × 10−19 | 5.56 × 10−32 | 7.45 × 10−18 | 6.51 × 10−0 | 1.17 × 10−33 |
RAD51 | rs200723181 | 7.85 × 10−13 | 1.05 × 10−14 | 3.03 × 10−27 | 5.43 × 10−6 | 5.36 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, M.C.; de Castro, C.C.; Aguiar, K.E.C.; Monte, N.; Nunes, G.G.d.C.; Costa, A.C.A.d.; Rodrigues, J.C.G.; Guerreiro, J.F.; Ribeiro-dos-Santos, Â.; Assumpção, P.P.d.; et al. Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. J. Pers. Med. 2024, 14, 484. https://doi.org/10.3390/jpm14050484
de Lima MC, de Castro CC, Aguiar KEC, Monte N, Nunes GGdC, Costa ACAd, Rodrigues JCG, Guerreiro JF, Ribeiro-dos-Santos Â, Assumpção PPd, et al. Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. Journal of Personalized Medicine. 2024; 14(5):484. https://doi.org/10.3390/jpm14050484
Chicago/Turabian Stylede Lima, Milena Cardoso, Cinthia Costa de Castro, Kaio Evandro Cardoso Aguiar, Natasha Monte, Giovanna Gilioli da Costa Nunes, Ana Caroline Alves da Costa, Juliana Carla Gomes Rodrigues, João Farias Guerreiro, Ândrea Ribeiro-dos-Santos, Paulo Pimentel de Assumpção, and et al. 2024. "Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population" Journal of Personalized Medicine 14, no. 5: 484. https://doi.org/10.3390/jpm14050484
APA Stylede Lima, M. C., de Castro, C. C., Aguiar, K. E. C., Monte, N., Nunes, G. G. d. C., Costa, A. C. A. d., Rodrigues, J. C. G., Guerreiro, J. F., Ribeiro-dos-Santos, Â., Assumpção, P. P. d., Burbano, R. M. R., Fernandes, M. R., dos Santos, S. E. B., & dos Santos, N. P. C. (2024). Molecular Profile of Important Genes for Radiogenomics in the Amazon Indigenous Population. Journal of Personalized Medicine, 14(5), 484. https://doi.org/10.3390/jpm14050484