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Abstract: An elevated serum β2-microglobulin (β2M) level is indicative of impaired glomerular
filtration and prerenal diseases, such as malignant tumors, autoimmune disorders, and liver dis-
eases. An elevated serum β2M level has been shown to promote metastasis via the induction of
epithelial–mesenchymal transition (EMT) in cancer cells. However, the therapeutic potential of tar-
geting β2M remains unclear. Here, we aimed to investigate the efficacy of Filtor, a small polymethyl
methacrylate fiber-based β2M removal column, in reducing the β2M level and suppressing cancer
cell-induced EMT and metastasis. We assessed the effects of Filtor on the changes in metastasis
based on the number of circulating tumor cells (CTCs), which reflects the post-EMT cancer cell
population. We performed therapeutic apheresis using Filtor on a male patient with sinonasal
neuroendocrine carcinoma, a female patient with a history of colorectal cancer, and another female
patient with a history of pancreatic ductal adenocarcinoma. Significantly low serum β2M levels
and CTC counts were observed immediately and 4 weeks after treatment compared with those
in the pretreatment phase. Moreover, the CTC count immediately after therapeutic intervention
was markedly reduced, likely because Filtor had trapped CTCs directly. These findings suggest
that therapeutic apheresis with Filtor can prevent cancer metastasis and recurrence by directly
removing CTCs.

Keywords: β2-microglobulin; circulating tumor cell; metastasis; recurrence; therapeutic apheresis

1. Introduction

Understanding the mechanisms underlying cancer cell metastasis and developing
effective inhibitory strategies are critical for addressing the challenges of cancer man-
agement globally. β2-icroglobulin (β2M), a non-sugar low-molecular-weight protein
(11,800 Da) comprising 99 amino acid residues [1], is widely distributed on the plasma
membrane surface of all nucleated cells. β2M is noncovalently bound to H chains, in the
form of HLA antigen class I (HLA-I) L chains, without being anchored to the surface of the
plasma membrane, allowing for dissociation and equilibrium-based exchange with soluble
β2M circulating in the extracellular fluid [2]. In disease states, such as infections and
cancers, enhanced antigen presentation-induced increases in HLA-I expression promote
the dissociation of β2M from HLA-I, leading to elevated serum β2M levels [3]. β2M
is largely absorbed by the renal tubules because its low molecular weight allows it to
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easily pass through the renal glomerular basement membrane. β2M released from the cell
surface passes freely through the glomeruli, and 99.9% of it is reabsorbed by the proximal
tubules and degraded into amino acids, resulting in only trace amounts being detected
in the urine of healthy individuals [3,4]. The half-life of β2M in blood is 2.5 h [4]. β2M
reabsorption can be impaired by a decline in renal function and glomerular filtration [3,4],
thereby increasing the levels of β2M that are eliminated via urine [3,4]. Therefore, urinary
β2M is considered an important marker of tubular damage, especially proximal tubular
damage [3,4]. An increased abundance of β2M in lymphocytes and monocytes leads to
high serum β2M levels in lymphoid tumors, such as multiple myeloma and autoimmune
diseases, indicating that β2M plays an important role in immune response [5]. Moreover,
recent studies have demonstrated that serum β2M facilitates the progression of multiple
solid tumors, including lung, stomach, and colon cancers, as well as that of blood can-
cer [5,6]. Therefore, we hypothesized that the removal of circulating β2M inhibits cancer
growth and metastasis.

β2M has been implicated in tumor metastasis via the induction of epithelial–mesenchymal
transition (EMT)—a process by which epithelial cancer cells acquire mesenchymal, stemness,
and metastatic features [7,8]. Most invasive epithelial cancer cells invade blood and lymph
vessels in the form of circulating tumor cells (CTCs) [7], which undergo EMT, followed by
engraftment into surrounding and distant organs during metastasis [9]. Moreover, CTCs
have been shown to diffuse into the blood even during early tumor development [10]. The
presence of CTCs in the blood is considered an indicator of the presence or development
of cancer. Additionally, accumulating evidence suggests that CTCs serve as biomarkers
in cancer diagnosis and prognosis, as well as surrogate biomarkers of many solid cancers,
particularly breast, prostate, lung, and kidney cancers [11]. Thus, testing for circulating
CTCs may not only help in predicting cancer metastasis and prognosis but also enable early
diagnosis [12]. The simplicity of CTC-based diagnostic tests, which only require blood
samples, makes them less invasive than tissue biopsies and are amenable to continuous
monitoring for tumor grading purposes [13].

In line with the above reports, we hypothesized that the removal of β2M would
suppress EMT and decrease CTC counts. To test this hypothesis, we aimed to investigate
whether the removal of circulating β2M via apheresis can reduce blood CTC counts over
time and ameliorate cancer progression. In this study, we tested the efficacy of Filtor, a poly-
methylmethacrylate (PMMA) membrane, in removing circulating β2M and ameliorating
cancer progression by monitoring the CTC count.

2. Materials and Methods
2.1. Patient Cohort

In this clinical trial, patients with cancer or who were at risk of recurrence were
included. Patients with severe anemia, chronic renal insufficiency, cirrhosis, deep vein
thrombosis, heart failure, and moderate valvular disease, and those undergoing dialysis
were excluded from the study. The endpoint of the study was defined as the ability of the
patient to undergo apheresis above the circulating blood volume without their quality of
life being affected (Figure 1).
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2.2. Therapeutic Apheresis

We performed therapeutic apheresis, in which the circulating blood of a patient was
pumped using a dialysis machine (DCS-27 and NK-Y030PC; Nikkiso Co., Ltd., Tokyo, Japan)
fitted with the Filtor membrane (Toray Medical Co., Ltd., Tokyo, Japan) and returned to
the body. Apheresis was performed at a filtration flow rate of 100 ± 4 mL/min for 2 h.
Approximately one-thirteenth of the patient’s body weight was estimated to correspond
to circulating blood volume. Accordingly, we performed blood cleansing at 1.1- to 1.5-
times the calculated blood volume, depending on the physical condition of the patient.
We collected 10 mL blood from patients using the Blood Access UK Catheter (BA/UK
UB-1215-WH; Nipro Co., Osaka, Japan) inserted into the right femoral venipuncture before
and immediately after apheresis. Hemostasis was performed via manual compression
for 10 min, followed by 1 h of rest before sending the patient home; no rebleeding or
hematomas were observed in any of the patients. Blood samples were shipped on ice to
Medic Inc. (Shiga, Japan) and Nihon Gene Research Laboratories Inc. (Miyagi, Japan)
for the quantification of β2M and CTC, respectively. Nihon Gene Research Laboratories
Inc. labelled CTCs that were positive for vimentin and negative for cytokeratin (CK)
expression as “Type 1s” if they were single-celled or “Type 1c” if they were clustered,
whereas single-celled and clustered CTCs negative for vimentin and positive CK expression
were designated as “Type 2s” and “Type 2c,” respectively.

2.3. Statistical Analysis

All results are expressed as mean ± standard deviation. The differences between
CTC and β2M measurements before and after treatment were analyzed using the one-way
analysis of variance (ANOVA) followed by Bonferroni’s post hoc test. The add-in software
Statcel4 (v4.0; OMS Publishing, Inc., Tokorozawa, Japan) was used for all statistical analyses
and the significance level was set at p < 0.05.

3. Results
3.1. CTC Removal Using Therapeutic Apheresis with Filtor for Sinonasal Neuroendocrine
Arcinoma

The characteristics of the three patients included in this study are shown in Table 1.
Our first participant was a 58-year-old man (height: 165 cm, weight: 60 kg) who visited
Wakayama Rosai Hospital in 2012 complaining of discomfort in his left nostril and was
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diagnosed with a stage 2 (T2N0M0) poorly differentiated neuroendocrine carcinoma of the
nasal cavity and paranasal sinuses based on pathological diagnosis. Despite receiving sys-
temic anticancer drugs and radiation therapy for the nasal cavity carcinoma, the tumor state
worsened, and liver metastases were observed in 2020. In 2023, PET scans revealed liver,
intra-abdominal lymph node, and left supraclavicular lymph node metastases (Figure 2A).
To prevent further cancer metastasis, we performed therapeutic apheresis for β2M removal
at Rinku Medical Clinic. The circulating blood volume of the patient was calculated as
60/13 = 4.615 (4165 mL). Owing to extensive cancer metastasis, we performed therapeutic
apheresis at a volume of 6000 mL to ensure blood cleansing. We observed high counts of
high-grade Type 2 CTCs before apheresis, consistent with a history of a high incidence of
cancer metastasis (Figure 2B,C). Therapeutic apheresis remarkably reduced CTC counts
compared to pretreatment levels (Figure 2C). However, the CTC count increased 4 weeks
after treatment (Figure 2C).

Table 1. Clinical characteristics of the three patients included in this study.

Cancer Type Sinonasal Neuroendocrine
Carcinoma Colorectal Cancer Ductal Adenocarcinoma

Stage T2N0M0 T1N0M0 Postoperative follow-up
Age (years) 58 53 69

Sex Male Female Female
Weight (kg) 60 50 52.8

Circulating blood volume (mL) 6000 4500 4500
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Figure 2. (A) Positron emission tomography (PET) images taken before the patient with sinonasal
neuroendocrine carcinoma underwent apheresis (October 2023). The frontal image on the left
indicates sparsely glowing areas of metastasis. The upper right image indicates multiple hepatic
metastases (red). The upper right image of the liver and the lower right image of the left clavicle
indicate multiple metastases (red). (B) Fluorescence microscopy image of circulating tumor cells
(CTCs), where total DAPI indicates cell count, CD45 indicates leukocytes, and cytokeratin (CK) and
vimentin indicate Type 1 and 2 CTCs, respectively. (C) CTC count per milliliter blood, with “s”
indicating single cells and “c” indicating clusters.
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3.2. CTC Removal Using Therapeutic Apheresis with Filtor for Colorectal Cancer

Our second participant was a 53-year-old woman (weight: 50 kg) who underwent
laparoscopic surgery for stage 1 colorectal cancer at Rinku Medical Clinic in December
2022 and was followed up until October 2023 without any suspicion of metastasis. Based
on the wish of the patient, we performed therapeutic apheresis as a measure to prevent
cancer recurrence. Her circulating blood volume was 3846 mL; therefore, apheresis was
performed at a volume of 4500 mL (~20% more than the assumed circulating blood volume
to ensure complete blood cleansing). The CTC count was higher than that expected before
apheresis and predominated by high-grade Type 2 CTCs. Type 2 clusters were removed
after apheresis (Figure 3A,B), and the total CTC count decreased to undetectable levels
after 4 weeks (Figure 3B).
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3.3. CTC Removal Using Therapeutic Apheresis with Filtor for Pancreatic Ductal Adenocarcinoma

Our final participant was a 69-year-old woman (weight: 52.8 kg) who was diagnosed
with pancreatic cancer in July 2022 and underwent a major pancreatectomy followed by
systemic anticancer therapy. Although the PET scans did not indicate any affected areas,
lymph node sizes tended to increase, prompting the resumption of anticancer treatment in
August 2023. On 14 November 2023, the patient underwent apheresis with Filtor at the
Rinku Medical Clinic to prevent cancer metastasis. The patient’s circulating blood volume
was 4062 mL; accordingly, apheresis was performed at a volume of 4500 mL (~10% more
than the assumed circulating blood volume to ensure complete blood cleansing). Highly
malignant Type 2 CTCs were detected before apheresis, even though no metastasis was
observed (Figure 4A,B). Consistent with the observations of the second participant, we
observed a decrease in the CTC count after apheresis, which seemed to persist even after
4 weeks (Figure 4B).
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3.4. Serum β2M and CTC Counts

Therapeutic apheresis via Filtor significantly reduced the serum β2M levels imme-
diately after treatment compared to pretreatment levels, as per the original specifications
(Figure 5A). Although the β2M levels were somewhat restored after 4 weeks, the serum
levels remained significantly lower than those at pretreatment (Figure 5A). Similarly, the
CTC counts were significantly lower immediately after apheresis compared to those before
apheresis (Figure 5B). After 4 weeks, the CTC counts remained significantly lower than
those before apheresis, although they were higher than those immediately after apheresis.
These changes were similar to those in the serum β2M levels (Figure 5B).
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4. Discussion

Despite numerous advances in medical technology, the efficacy of cancer treatment
is poor. Metastasis to other organs often leads to complications that adversely affect the
prognoses and outcomes of the disease [14]. Effective management of metastasis and
recurrence, as well as the elucidation of mechanisms underlying cancer cell metastasis and
the development of effective inhibitory methods, are essential for improving treatment
outcomes. In this study, we demonstrated that therapeutic apheresis utilizing PMMA-based
β2M removal columns significantly eliminates not only β2M proteins but also CTCs for at
least 4 weeks (Figure 5).

We initially hypothesized that the removal of β2M would inhibit cancer cell EMT
and reduce CTC counts. We anticipated that the CTC count would remain unchanged
immediately after therapeutic apheresis and decrease only after 4 weeks; however, the
CTC counts were considerably low immediately after the intervention compared to those
after 4 weeks (Figure 5B). This result indicates that CTCs were directly trapped in the
PMMA-based column regardless of the removal of β2M. We hypothesized that this is due
to the adhesion of platelets, resulting in platelet–CTC aggregates adhering to the PMMA
membrane.

Accumulating evidence shows that hematogenous cancer cell metastasis promotes
CTC–platelet interactions and aggregation [15–17]. These aggregates protect cancer cells
from attack by immune cells in the blood while promoting metastatic nest formation by
clogging metastatic organs with microvessels. Podoplanin (PDPN) is an important platelet
aggregation-promoting factor expressed on the cell surface of highly metastatic cancer
cells [18,19]. PDPN expression is upregulated in squamous cell lung cancer, esophageal
cancer, bladder cancer, mesothelioma, glioblastoma, and osteosarcoma, and its expression
has been found to positively correlate with metastasis and poor prognosis [19]. The removal
of vimentin-positive cells via Filtor in this study may be related to the reported correla-
tion between PDPN and vimentin levels in various cancer types [20–23]. The negative
membrane charge of PMMA prevents cell adhesion, including platelets [24–26], whereas
platelets recognize it as a foreign object owing to denatured proteins being adsorbed onto
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its membrane surface [25]. We speculate that this causes platelet-bound CTCs to adhere to
the Filtor, resulting in their immediate removal following therapeutic intervention. One
concern was that platelets adhering to the PMMA membrane may clog the column via the
formation of platelet aggregates, thereby interfering with therapeutic apheresis. However,
we did not observe differences in blood flow velocity or a noticeable effect on patient health.
This observation may be attributed to Filtor being originally designed to minimize platelet
adhesion [26], resulting in significantly reduced CTC cluster levels observed in this study.
Collectively, these findings demonstrate that Filtor specifically targeted and captured cancer
platelet-bound clusters rather than normal platelets.

This is a pilot study conducted in a clinic involving only three patients. Therefore, the
findings need to be substantiated through further research involving a larger sample. Given
the limited number of participants at the clinic, we plan to collaborate with Keio University
Hospital to conduct a follow-up study with a large number of participants. Additionally,
we have planned to evaluate CTCs by cancer types (e.g., gastric, colorectal, and pancreatic)
to account for potential variations in CTC forms and their susceptibility to be captured
by Filtor.

5. Conclusions

In conclusion, the present study demonstrates that therapeutic apheresis with Filtor
effectively removes CTCs, even in patients with highly metastatic cell types. Nevertheless,
in addition to the large-scale follow-up investigations, future studies are essential to analyze
the morphology, and gene and protein expression of the trapped cells in the column to
elucidate the mechanism of CTC entrapment. Moreover, analysis of the CTC-derived
genes and proteins detected in Filtor could help undermine the development of novel
therapeutics to prevent cancer progression and metastasis. Determining the optimal timing
of treatment is also crucial and warrants further exploration, as CTC counts tend to increase
4 weeks after treatment.
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