SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensitive Data Hosting and Transfers
2.2. Software Development
2.3. Public Data Sources
3. Results
3.1. SwissGenVar Governance and Layers of Access
3.2. Standardized SwissGenVar Dataset Specifications
3.3. Data Management and Application Workflow
3.4. SwissGenVar Database Structure, Data Query, and Data Display
(A) | ||||
Information | Data Source | Obtained by | Full Name | Description |
Clinical indication | HPO [36] | Manual entry | Human Phenotype Ontology | Key phenotype, leading to genetic evaluation selected from standardized vocabulary of phenotypic abnormalities encountered in human disease |
ClinVar clinical significance | ClinVar [28] | Variant Effect Predictor (VEP) | ClinVar | Public archive of reports of the relationships among human variations and phenotypes, with supporting evidence |
Clinical significance | ACMG [37] | Manual entry | American College of Medical Genetics | ACMG five-tiered classification system for variants: pathogenic, likely pathogenic, uncertain significance, likely benign, benign |
Diagnosis | OMIM [38] | Manual entry | Online Mendelian Inheritance in Man | Monogenic etiologic diagnosis |
Ethnicity (self-reported) | gnomAD [39] categories | Manual entry | Genome Aggregation Database | gnomAD populations: African/African American, Amish, Latino/Admixed American, Ashkenazi Jewish, East Asian, Finnish, Non-Finnish European, Middle Eastern, South Asian, other |
Frequency | gnomAD | VEP | Genome Aggregation Database | gnomAD global minor allele frequency (MAF) |
Gene name | HGNC [40] | VEP | Human Genome Organisation Gene Nomenclature Committee | Unique gene name according to the HUGO gene nomenclature |
Inheritance of the disease | OMIM categories | Manual entry | Online Mendelian Inheritance in Man | OMIM categories: AD—autosomal dominant, AR—autosomal recessive, PD—pseudoautosomal dominant, PR—pseudoautosomal recessive, DD—digenic dominant, DR—digenic recessive, IC—isolated cases, ICB—inherited chromosomal imbalance, Mi—mitochondrial, Mu—multifactorial, SMo—somatic mosaicism, SMu—somatic mutation, XL—X-linked, XLD—X-linked dominant, XLR—X-linked recessive, YL—Y-linked |
Inheritance of the variant | Following DECIPHER [31] categories | Manual entry | Database of genomic variation and phenotype in humans using Ensembl Resources | Following DECIPHER categories: de novo constitutive; de novo mosaic; paternally inherited, constitutive in father; paternally inherited, mosaic in father; maternally inherited, constitutive in mother; maternally inherited, mosaic in mother; biparental; imbalance arising from a balanced parental rearrangement; inherited mosaic; unknown |
Phenotype | HPO | Manual entry | Human Phenotype Ontology | Detailed clinical features selected from standardized vocabulary of phenotypic abnormalities encountered in human disease |
Transcripts | RefSeq [41], Ensembl [42] | VEP | NCBI Reference Sequence Database; Ensembl | RefSeq: a comprehensive, integrated, non-redundant, well-annotated set of reference sequences, including genomic DNA, transcripts, and proteins; Ensembl: a genome browser for vertebrate genomes that supports research in comparative genomics, evolution, sequence variation, and transcriptional regulation |
Variant description | HGVS [27] | VEP | Human Genome Variation Society | This nomenclature is used for the description of sequence variants (namely HGVSg, HGVSc, and HGVSp) |
(B) | ||||
Information | Possible Values | Remark | ||
Age at onset | −1 (prenatal), 0, 0.1, 0.2, …, 100 | Range of numbers for the age of onset in years | ||
Aneuploidies | Yes; no | |||
Canton | List of Swiss cantons, plus “non-Swiss” | |||
Causality | Causative; likely causative; probably not causative; not causative; VUS; variant in a GUS | Causality following clinical judgement | ||
Chromosomal sex | XX; XY; other | |||
Clinical gender | Male, female, ambiguous, transgender | |||
Karyotypic sex | 45X, 46XX, 46XY, 47XXY, 47XYY, 47XXX (intended as expandable list) | Content is conditional on the value of “other” in “Chromosomal sex” | ||
Clinical status | Affected; partially affected; potentially affected; not affected | Defined fields/filters: “clinical status change to”; “clinical status at last clinical assessment” | ||
Co-occurrences | Yes; no | Co-occurrence of more than one causative variant | ||
Collection method | Case-control; clinical testing; reference population; research; other; unknown | |||
Cytogenetic location | The cytogenetic location of the variant displayed as CHROM_NUMBERq/pCYTOGENETIC_BAND | |||
Detection method | Sequencing; fragment analysis; Southern Blot; conventional cytogenetics; FISH (IFISH or MFISH); Array (Oligo or SNP); qRT-PCR; MLPA; NGS-based CNV detection (Panel/WES/WGS); other; not performed | |||
Gene locus type | Protein-coding gene; non-coding RNA gene; long non-coding RNA; microRNA; ribosomal RNA; transfer RNA; small nuclear RNA; small nucleolar RNA; other; locus subjected to imprinting | Partly coming from HUGO Gene Nomenclature Committee (HGNC) [40] | ||
Index patient | Yes; no | |||
Location | Genomic position | GRCh37 as genome reference build [43] | ||
Locus subjected to imprinting | Yes; no; unknown | |||
Patient identifier (ID) | The patient ID refers to an internal SwissGenVar specific unique identifier that is generated when the patient is created in the system | Patient/sample ID of the submitting institution is recorded as well | ||
Submitting institution | One acronym per partner institution | |||
Variant effect | Missense variant; nonsense variant; splice region variant; splice acceptor variant; splice donor variant; regulatory region variant; promoter region variant; inframe insertion; inframe deletion; intron variant; synonymous variant; stop lost variant; start lost variant; frameshift variant; upstream gene variant; downstream gene variant; intergenic variant; non-coding transcript exon variant; TF binding site variant; 5′ UTR variant; 3′ UTR variant; exon deletion; exon duplication; contiguous gene deletion; contiguous gene duplication | Adapted to Sequence Ontology (SO) [44] terms | ||
Variant location | Coding region; splicing region; 5′ UTR; 3′ UTR; upstream gene; downstream gene; promoter region; intronic region; regulatory region; intergenic region | |||
Variant type | CNV—amplification; CNV—deletion; CNV—insertion/duplication; complex rearrangement; conversion; deletion; deletion–insertion; duplication; insertion; methylation/epigenetic change; repeat variation; structural variant; substitution | |||
Variant zygosity | Heterozygous; homozygous; hemizygous; mitochondrial heteroplasmy; mitochondrial homoplasmy; unknown; mosaic; chimeric; ambiguous |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreu-Perez, J.; Poon, C.C.; Merrifield, R.D.; Wong, S.T.; Yang, G.Z. Big data for health. IEEE J. Biomed. Health Inform. 2015, 19, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Bíró, K.; Dombrádi, V.; Jani, A.; Boruzs, K.; Gray, M. Creating a common language: Defining individualized, personalized and precision prevention in public health. J. Public Health 2018, 40, e552–e559. [Google Scholar] [CrossRef] [PubMed]
- Hasanzad, M.; Sarhangi, N.; Naghavi, A.; Ghavimehr, E.; Khatami, F.; Ehsani Chimeh, S.; Larijani, B.; Aghaei Meybodi, H.R. Genomic medicine on the frontier of precision medicine. J. Diabetes Metab. Disord. 2022, 21, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Snyderman, R. Personalized health care: From theory to practice. Biotechnol. J. 2012, 7, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Hmeljak, J.; Hooper, K.M. Genetic variance in human disease-modelling the future of genomic medicine. Dis. Model Mech. 2022, 15, dmm049700. [Google Scholar] [CrossRef]
- Zuk, O.; Hechter, E.; Sunyaev, S.R.; Lander, E.S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 2012, 109, 1193–1198. [Google Scholar] [CrossRef]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef]
- Starita, L.M.; Ahituv, N.; Dunham, M.J.; Kitzman, J.O.; Roth, F.P.; Seelig, G.; Shendure, J.; Fowler, D.M. Variant Interpretation: Functional Assays to the Rescue. Am. J. Hum. Genet. 2017, 101, 315–325. [Google Scholar] [CrossRef]
- Hoskinson, D.C.; Dubuc, A.M.; Mason-Suares, H. The current state of clinical interpretation of sequence variants. Curr. Opin. Genet. Dev. 2017, 42, 33–39. [Google Scholar] [CrossRef]
- Thouvenot, P.; Ben Yamin, B.; Fourrière, L.; Lescure, A.; Boudier, T.; Del Nery, E.; Chauchereau, A.; Goldgar, D.E.; Houdayer, C.; Stoppa-Lyonnet, D.; et al. Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making. PLoS Genet. 2016, 12, e1006096. [Google Scholar] [CrossRef]
- Sohail, M.; Maier, R.M.; Ganna, A.; Bloemendal, A.; Martin, A.R.; Turchin, M.C.; Chiang, C.W.; Hirschhorn, J.; Daly, M.J.; Patterson, N.; et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. Elife 2019, 8, e39702. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Hou, Y.C.; Yu, H.C.; Sainger, R.; Caskey, C.T.; Venter, J.C.; Telenti, A. Identification of Misclassified ClinVar Variants via Disease Population Prevalence. Am. J. Hum. Genet. 2018, 102, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Lee, W.; Chun, S.; Min, W.K. The Frequency of Discordant Variant Classification in the Human Gene Mutation Database: A Comparison of the American College of Medical Genetics and Genomics Guidelines and ClinVar. Lab. Med. 2021, 52, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.J.; Biesecker, L.G. Databases of genomic variation and phenotypes: Existing resources and future needs. Hum. Mol. Genet. 2013, 22, R27–R31. [Google Scholar] [CrossRef] [PubMed]
- Brookes, A.J.; Robinson, P.N. Human genotype-phenotype databases: Aims, challenges and opportunities. Nat. Rev. Genet. 2015, 16, 702–715. [Google Scholar] [CrossRef]
- The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 2014, 46, 818–825. [Google Scholar] [CrossRef]
- Bauer, P.; Karges, E.; Oprea, G.; Rolfs, A. Unmet needs in human genomic variant interpretation. Genet. Med. 2018, 20, 376–377. [Google Scholar] [CrossRef]
- Thorogood, A.; Cook-Deegan, R.; Knoppers, B.M. Public variant databases: Liability? Genet. Med. 2017, 19, 838–841. [Google Scholar] [CrossRef]
- Swiss Personalized Health Network (SPHN). Available online: https://sphn.ch/ (accessed on 9 December 2022).
- SwissGenVar Project Page. Available online: https://sphn.ch/network/projects-old/infrastructure-development-projects/project-page-swissgenvar/ (accessed on 1 December 2022).
- SPHN BioMedIT. Available online: https://www.biomedit.ch/ (accessed on 9 December 2022).
- SPHN Information Security Policy. Available online: https://sphn.ch/document/information-security-policy/ (accessed on 9 December 2022).
- SPHN SETT. Available online: https://gitlab.com/biomedit/sett (accessed on 9 December 2022).
- Keycloak Server Administration. Available online: https://www.keycloak.org/docs/latest/server_admin/ (accessed on 6 December 2022).
- SWITCH eduID. Available online: https://www.switch.ch/edu-id/ (accessed on 6 December 2022).
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; McGowan-Jordan, J.; Roux, A.F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E.; et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Sherry, S.T.; Ward, M.; Sirotkin, K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999, 9, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD®): 2003 update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef]
- Fokkema, I.F.; Taschner, P.E.; Schaafsma, G.C.; Celli, J.; Laros, J.F.; den Dunnen, J.T. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 2011, 32, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, D.; Gobeill, J.; Mottaz, A.; Pasche, E.; Michel, P.A.; Mottin, L.; Stekhoven, D.J.; Barbié, V.; Ruch, P. Text-Mining Services of the Swiss Variant Interpretation Platform for Oncology. Stud. Health Technol. Inform. 2020, 270, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man, OMIM. Available online: https://omim.org/ (accessed on 5 December 2022).
- Genome Aggregation Database (gnomAD). Available online: https://gnomad.broadinstitute.org/ (accessed on 6 December 2022).
- Human Genome Organisation (HUGO) Gene Nomenclature Committee at the European Bioinformatics Institute. Available online: https://www.genenames.org/ (accessed on 5 December 2022).
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Church, D.M.; Schneider, V.A.; Graves, T.; Auger, K.; Cunningham, F.; Bouk, N.; Chen, H.C.; Agarwala, R.; McLaren, W.M.; Ritchie, G.R.; et al. Modernizing reference genome assemblies. PLoS Biol. 2011, 9, e1001091. [Google Scholar] [CrossRef]
- Eilbeck, K.; Lewis, S.E.; Mungall, C.J.; Yandell, M.; Stein, L.; Durbin, R.; Ashburner, M. The Sequence Ontology: A tool for the unification of genome annotations. Genome Biol. 2005, 6, R44. [Google Scholar] [CrossRef]
- Field, M.A. Bioinformatic Challenges Detecting Genetic Variation in Precision Medicine Programs. Front. Med. 2022, 9, 806696. [Google Scholar] [CrossRef]
- Maffucci, P.; Bigio, B.; Rapaport, F.; Cobat, A.; Borghesi, A.; Lopez, M.; Patin, E.; Bolze, A.; Shang, L.; Bendavid, M.; et al. Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis. Proc. Natl. Acad. Sci. USA 2019, 116, 950–959. [Google Scholar] [CrossRef] [PubMed]
- SPHN Data Coordination Center (DCC). Available online: https://sphn.ch/de/projects/data-coordination-center/ (accessed on 10 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraemer, D.; Terumalai, D.; Famiglietti, M.L.; Filges, I.; Joset, P.; Koller, S.; Maurer, F.; Meier, S.; Nouspikel, T.; Sanz, J.; et al. SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland. J. Pers. Med. 2024, 14, 648. https://doi.org/10.3390/jpm14060648
Kraemer D, Terumalai D, Famiglietti ML, Filges I, Joset P, Koller S, Maurer F, Meier S, Nouspikel T, Sanz J, et al. SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland. Journal of Personalized Medicine. 2024; 14(6):648. https://doi.org/10.3390/jpm14060648
Chicago/Turabian StyleKraemer, Dennis, Dillenn Terumalai, Maria Livia Famiglietti, Isabel Filges, Pascal Joset, Samuel Koller, Fabienne Maurer, Stéphanie Meier, Thierry Nouspikel, Javier Sanz, and et al. 2024. "SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland" Journal of Personalized Medicine 14, no. 6: 648. https://doi.org/10.3390/jpm14060648
APA StyleKraemer, D., Terumalai, D., Famiglietti, M. L., Filges, I., Joset, P., Koller, S., Maurer, F., Meier, S., Nouspikel, T., Sanz, J., Zweier, C., Abramowicz, M., Berger, W., Cichon, S., Schaller, A., Superti-Furga, A., Barbié, V., & Rauch, A. (2024). SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland. Journal of Personalized Medicine, 14(6), 648. https://doi.org/10.3390/jpm14060648