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Abstract: Cohort studies have identified several genetic determinants that could predict the clinical
response to allopurinol. However, they have not been commonly used for genome-wide investigations
to identify genetic determinants on allopurinol metabolism and concentrations. We conducted a
genome-wide association study of a prior cross-sectional investigation of patients from the Montreal
Heart Institute Biobank undergoing allopurinol therapy. Four endpoints were investigated, namely
plasma concentrations of oxypurinol, the active metabolite of allopurinol, allopurinol, and allopurinol-
riboside, as well as allopurinol daily dosing. A total of 439 participants (mean age 69.4 years;
86.4% male) taking allopurinol (mean daily dose 194.5 mg) and who had quantifiable oxypurinol
concentrations were included in the genome-wide analyses. Participants presented with multiple
comorbidities and received concomitant cardiovascular medications. No association achieved the
predefined genome-wide threshold values for any of the endpoints (all p > 5 × 10−8). Our results are
consistent with prior findings regarding the difficulty in identifying genetic determinants of drug
concentrations or pharmacokinetics of allopurinol and its metabolites, as well as allopurinol daily
dosing. Given the size of this genome-wide study, collaborative investigations involving larger and
diverse cohorts may be required to further identify pharmacogenomic determinants of allopurinol
and measure their clinical relevance to personalize allopurinol therapy.
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1. Introduction

Gout is characterized by inflammatory arthritis that arises from deposition of urate
crystals in joints following persistent hyperuricemia [1]. This causes recurrent painful
flares while increasing the risk of permanent joint damage and disability. Over a prolonged
timeframe, elevated serum uric acid (SUA) concentrations have been shown to be a sig-
nificant risk factor correlating with the development of numerous cardiovascular, renal,
and metabolic disorders [2–4]. To normalize SUA levels, guidelines from rheumatology
associations recommend allopurinol, a purine analog and xanthine oxidase (XO) inhibitor,
as first-line urate-lowering therapy for the management of chronic gout [5–7]. In the liver,
allopurinol is rapidly and extensively metabolized into the active metabolite oxypurinol,
while a minor fraction undergoes conjugation into allopurinol-riboside [8,9]. The greater
pharmacological potency and half-life of oxypurinol relative to allopurinol (~24 h vs. ~1.5 h)
are responsible for most of the urate-lowering effect by limiting uric acid synthesis through
the XO pathway [9,10]. Oxypurinol is almost exclusively excreted through the kidney in its
unchanged form [11,12], thus making renal function an important consideration prior to
administration [5].
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Despite the frequent use of allopurinol in the clinic, previous literature has acknowl-
edged the substantial variability in clinical response. General factors have been highlighted,
such as the poor treatment adherence that often prevents patients from reaching therapeutic
target SUA thresholds [13–15]. Recent efforts have also suggested the inclusion of clinical
parameters alongside renal function for optimizing current dosing algorithms and account-
ing for interindividual differences [16–19]. Genome-wide association studies (GWASs)
specific to allopurinol therapy have historically allowed the discovery of single-nucleotide
polymorphisms (SNPs) as risk factors for life-threatening cutaneous reactions [20,21], result-
ing in routine clinical testing being implemented [22,23]. They have also been successfully
applied to detect genetic risk factors associated with baseline SUA concentration levels
and assist in predicting clinical outcomes in gout [24–28]. More recently, novel pharma-
cogenomic (PGx) determinants have been associated to allopurinol clinical response across
different populations. Both candidate association studies and GWASs have repeatedly im-
plicated variants located within genes coding for common gut and renal transporters. One
example includes ABCG2 coding for the breast cancer resistance protein (BCRP) for which
urate, allopurinol, and oxypurinol are substrates [28–32]. Interestingly, GWA analyses
further revealed a novel SNP in GREM2 associated with responder rates but not baseline
SUA levels, implying that unsuspected genomic regions may harbor PGx elements strictly
affecting allopurinol pharmacodynamics instead of physiologic urate transport [33].

Past PGx investigations on drug concentrations have usually centered around known
biological targets. However, the capabilities of GWA methodologies have been demon-
strated in cohort studies to detect new PGx elements of drug concentrations with smaller
effect sizes beyond well-established transporter and enzymatic pathways [34,35]. To our
knowledge, this approach has not been performed to investigate variations in allopurinol
metabolism. With the resources that institutional biorepositories provide, we sought to
utilize similar methods and assess whether randomly collected biobank samples could be
leveraged to detect PGx determinants of plasma allopurinol and metabolite concentrations,
together with daily dosing.

2. Materials and Methods
2.1. Study Design and Participant Selection

Participants from the previous cross-sectional study were selected from the MHI
Biobank’s records. The methods of the MHI Biobank, including patient enrollment and
sample storage protocols, have been described in prior works [36,37]. Briefly, the biobank
consists of biological material and encoded data from patients of the MHI Hospital Co-
hort who have used the hospital center’s services and provided informed consent for
their participation. For this study, selected records and biological samples were retrieved
from patients who had enrolled in the MHI Biobank with baseline values taken between
22 May 2007 and 12 September 2018. Samples were acquired from patients randomly with
regards to allopurinol intake, concomitant medications, time of day, or food intake. Along
with biological sampling, questionnaires were administered to participants concerning
personal and family medical history, as well as individual pharmacological, dietary, and
psychosocial data, among others. Except for plasma concentrations of allopurinol and its
metabolites, all information was collected directly from participants, their medical records,
and MHI electronic databases. No prospective recruitment was performed as part of
this investigation.

As in our initial cross-sectional study, only self-reported “White” males and females
aged ≥ 18 years were included to minimize confounding risks and population stratifi-
cation [38]. Selected participants were treated with allopurinol and needed to have had
plasma samples available at the time of their enrolment. In the current study, for 24 patients,
plasma was collected during follow-up, at which time a full pharmacological and medical
history was again completed and used as part of these analyses. Considering the extended
half-life for oxypurinol, patients with non-quantifiable concentrations of the metabolite
were deemed non-adherent to treatment and excluded from all analyses. We also excluded
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participants with a history of heart, kidney, or liver transplant since the genotype from the
donor and the recipient could differ, thus removing recipient–donor interactions that could
mislead inferences on a patient’s metabolic capacity [39,40].

2.2. Study Endpoints

The endpoints investigated in the initial study were plasma oxypurinol, allopurinol,
and allopurinol-riboside concentrations, as well as patients’ daily allopurinol dosing [38].
One patient had missing allopurinol dose values and was removed from the final anal-
yses. All concentration levels were measured from blood samples obtained during each
participant’s baseline visit.

2.3. Quantification of Oxypurinol, Allopurinol, and Allopurinol-Riboside Plasma Concentrations

The quantification of oxypurinol, allopurinol, and allopurinol-riboside was performed
from plasma samples collected upon enrolment in the MHI Biobank. All analyses were
conducted at the bioanalytical laboratory of the Platform of Biopharmacy at the Université
de Montréal. Details of the full bioanalytical method have been described previously [38].
Briefly, oxypurinol, allopurinol, and allopurinol-riboside analyses were carried in a blinded
fashion using a high-pressure liquid chromatography system coupled with electrospray
ionization tandem mass spectrometry and based on selective multiple reaction monitoring.
Validated quantification ranges were 10–50,000 ng/mL for all analytes. Concentrations
below the lower limit of quantification (LLOQ < 10 ng/mL) were given a zero value as part
of the analyses.

2.4. Genotyping Quality Control and Imputation

The genotyping quality control and imputation methods, as detailed in previous
works [41], were employed in this study. Genome-wide genotyping was performed using
200 ng of genomic DNA at the Beaulieu-Saucier Pharmacogenomics Centre (Montreal,
QC, Canada). The Illumina Infinium Global Screening Array v3-MD (Illumina, CA, USA)
was utilized following the manufacturer’s instructions. BeadChips were subsequently
scanned using the Illumina iScan, with data analysis carried out using the data manifest
MHI_GSAMD-24v3-0-EA_20034606_C1.bpm. Plink files were generated with the iaap-cli
tool (version 1.1.0–80d7e5b). Intensities, B allele frequency, and log R ratio were extracted
using the gtc_convert tool (version 0.1.2). Quality control and genetic data cleanup proce-
dures were performed using PyGenClean (version 1.8.3) [42] and PLINK (versions 1.07 and
1.9; the latter for the data manipulation steps of the relatedness and ethnicity modules) [43].

The genotyping experiment involved 184 plates of DNA samples. One control was
added per hybridization run, which corresponded to two plates, and was chosen from
NA06994, NA12717, NA12878, NA18861, and NA19147 that were obtained from the Na-
tional Institute of General Medical Sciences Human Genetic Cell Repository at the Coriell
Institute for Medical Research. The completion rate threshold for genotypes and samples
was set to 99%. Cryptic relatedness among samples and sample outliers were identified
using the pairwise identity by state matrix and multidimensional scaling, respectively. The
first two multidimensional scaling components of each subject were plotted, including
the genotypes of HapMap CEU, JPT-CHB, and YRI reference samples. Outliers from the
CEU cluster were flagged and removed by k-nearest neighbor with a threshold of 1.9σ in
PyGenClean (version 1.8.3). Principal components were computed for the selected study
samples to account for population structure [44]. We excluded nine participants who were
not of European ancestry. Genome-wide imputation was carried out with the TOPMed
Imputation Server (version 1.5.7) [45] using Eagle (version 2.4) [46] for phasing and Mini-
mac4 (version 1.0.2) [45] for imputation. Gene information was retrieved with Annovar
(version 2020-06-07). The rsID numbers were retrieved with Ensembl REST API. Genetic
variants from pseudo-autosomal regions were analyzed as autosomal variants, with all
positions obtained from build 38. A total of 61,640,018 genetic variants with a quality value
(r2) ≥ 0.6 remained, of which 6,394,414 had a minor allele frequency of ≥5%.
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2.5. Statistical Analyses

Descriptive statistics were obtained on the cohort’s demographics, clinical characteris-
tics, and genotype information. For all parameters, means and standard deviations were
used for reporting continuous variables, whereas counts with percentages were used for
categorical variables. To satisfy normality assumptions, outcomes were log-transformed,
and the distributions of the residuals were used. Models with transformed outcomes all
resulted in more normally distributed measures relative to untransformed datasets.

The GWAS analyses were conducted using the Scalable and Accurate Implementation
of GEneralized mixed model (SAIGE) version 0.44.6.5 on R software (The R Foundation for
Statistical Computing) [47]. This package uses a linear mixed regression framework with
individual-level data to analyze large-scale datasets while simultaneously controlling for
sample relatedness and case–control imbalances. Sample relatedness was accounted for
with the use of a genetic relationship matrix for random effects. Phenotype and genotype
data were merged for all participants, and only those with European ancestry, related or not,
were included. Multivariable linear regression modeling was performed for every outcome
assessed, with covariable selection made to maximize convergence: plasma oxypurinol
concentrations were adjusted using age, sex, weight, daily allopurinol dosage, and ten
principal components (PC1-10); plasma allopurinol and allopurinol-ribose concentrations
were both adjusted using age, sex, daily allopurinol dosage, and PC1-5; allopurinol dosage
was adjusted using age, sex, and PC1-5. Then, as part of exploratory analyses, we used the
same regression models to investigate variants from multiple GWASs that were previously
associated with SUA concentrations and allopurinol response in large cohorts [25,26,33].
All genetic variants with significance threshold p < 10−4 were compiled into the final GWA
results. For every statistical test, the significance threshold was set at 5 × 10−8.

3. Results
3.1. Study Cohort

Overall, the final GWA analysis consisted of 439 participants with quantifiable plasma
oxypurinol concentrations, with baseline patient characteristics consistent relative to those
from the initial cohort treated with allopurinol (Table 1) [38]. Patients were prescribed
allopurinol daily doses averaging 194.5 mg ± 77.1 (range 42.9 (100 mg 3 times per week)
to 600 mg). As expected, patients presented with comorbidities and received various
concomitant cardiovascular drugs.

Table 1. Baseline cohort characteristics.

Characteristics n = 439 (100%) 1

Age (years) 69.4 (8.0)
Females, n (%) 64 (14.6)
Smoking status, n (%)

Never-smoker 117 (26.7)
Past-smoker 301 (68.6)
Current-smoker 21 (4.8)

Weight (kg) 90.1 (18.3)
BMI 31.4 (5.5)
Hypertension, n (%) 379 (86.3)
Diabetes mellitus, n (%)

Type 1 1 (0.2)
Type 2 182 (41.5)

Dyslipidemia, n (%) 383 (87.6)
Myocardial infarction, n (%) 173 (39.7)
Chronic heart failure, n (%) 113 (25.9)
Chronic renal failure, n (%) 115 (26.2)
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Table 1. Cont.

Characteristics n = 439 (100%) 1

Analyte concentrations
Mean daily allopurinol dose (mg) 194.5 (77.1)
Mean quantifiable oxypurinol plasma concentrations (ng/mL) 13,374.4 (8,656.6)
Mean allopurinol plasma concentrations (ng/mL) 277.6 (358.1)
Mean allopurinol-riboside plasma concentrations (ng/mL) 228.3 (206.3)

Concomitant medications, n (%)
Aspirin 307 (70.1)
Other antiplatelet agents 62 (14.2)
ACE inhibitors 159 (36.2)
Angiotensin II receptor blockers 172 (39.2)
Beta-blockers 315 (71.8)
Calcium channel blockers 149 (33.9)
Amiodarone 20 (4.6)
Warfarin 116 (26.4)
Novel oral anticoagulants 19 (4.3)
Digoxin 54 (12.3)
Diuretics 263 (59.9)
Statins 356 (81.1)
Fibrates 16 (3.6)
Other hypolipidemic agents 53 (12.1)
Oral hypoglycemic agents 159 (36.3)
Insulin 34 (7.7)

Serum creatinine (n = 391, 89.1%)
Concentrations (µmol/L) 118.7 (54.5)

Abbreviations: ACE, angiotensin-converting enzyme; BMI: body mass index. Values are presented as means
(standard deviation) unless otherwise stated. 1 Numbers are rounded to the first decimal.

3.2. Genome-Wide Association Analyses: Allopurinol Metabolism and Dosing

There were no variants that reached significance thresholds for either oxypurinol,
allopurinol, or allopurinol-ribose plasma concentrations (Figure 1a–c). After multivariable
regression modeling, variants that showed the strongest associations were located predom-
inantly in intergenic regions, followed by intronic portions of non-coding RNA (ncRNA)
(Supplementary Materials, Tables S1–S4). More precisely, plasma oxypurinol concentra-
tions had the highest association with the intergenic variant chr5:98238797:G:A closest
to LINC01846 (p = 2.9 × 10−5). Meanwhile, plasma allopurinol and allopurinol-riboside
concentrations showed the greatest significance with intergenic variants chr6:49561859:T:C
(p = 1.3 × 10−6) and chr7:8405423:G:A with nearest proximity to C6orf141 and NXPH1
(p = 6.5 × 10−7), respectively.

Regarding daily allopurinol dosing, the strongest associations were detected within
intronic ncRNA regions of the LINC02588 gene, although none reached the predefined
significance thresholds (all p > 2.9 × 10−7) (Figure 1d). Additional signals were found in
intronic regions of two more loci, namely HLA-DQB1 (chr6:32663671:A:G; p = 9.4 × 10−7)
and DNAJC25-GNG10 (rs1570303; p = 9.2 × 10−7).

Results for the lookups of previously identified genetic variants of allopurinol response
showed no variant reaching statistical significance thresholds from the previously reported
genome-wide analyses in our cohort (Supplementary Materials, Tables S5–S8). This could
further underscore the likely role of these SNPs in regulating either physiologic SUA
concentrations, gout risk, and allopurinol/oxypurinol pharmacological effect rather than
their pharmacokinetic profiles or drug concentrations.
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4. Discussion

Allopurinol is a mainstay of gout therapy due to its demonstrated urate-lowering
benefits, well-tolerated safety profile, and high affordability [2–4,48]. Studies using can-
didate gene and genome-wide approaches have revealed numerous SNPs of membrane
transporters that may predict clinical response to allopurinol. In this study, we conducted a
GWAS to identify PGx determinants on allopurinol concentrations and metabolism. We
found no association that reached statistical significance regarding variants that would
affect the concentration levels of allopurinol and its metabolites. The top SNP of our GWA
analyses of plasma oxypurinol concentrations was a variant located in an intergenic region
near the LINC01846 gene. A long intergenic ncRNA, there is little information available
regarding its biological function. Whether nearby genomic alterations or interactions can
impact its role in pharmacokinetics or drug concentrations more broadly, if any, has yet
to be elucidated. Allopurinol concentrations had a top SNP closest to the C6orf141 gene.
An open reading frame with higher relative expression in the duodenum and gallbladder,
the function of C6orf141 has not been extensively studied, although cohort data indicate
a tumor-suppressor effect in squamous cell oral cancer [49]. As for plasma allopurinol-
riboside concentrations, we also observed intergenic variants that showed near significance
close to NXPH1. Altogether, even if associations of varying significance have been made in
prior GWASs with a wide range of phenotypes for those genes [50], we failed to demon-
strate statistical significance. Their involvement in treatment response variability and
pharmacokinetics therefore requires more extensive evidence.

We found suggestive association signals in regions of the long ncRNA transcript
LINC01588 with daily allopurinol dosing. Similar to genetic elements associated to drug
concentrations, functional data on this gene are scarce, thus making any plausible biological
or pharmacological implication uncertain. However, it is worth noting that additional
significant genomic associations were also seen with the well-characterized HLA-DQB1
gene. Different from the variant we detected, GWAS results from cross-ancestral meta-
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analyses identified SNPs nearby HLA-DQB1 associated to SUA concentrations [51,52].
Though unclear, those impacts from genetic variations could signify that the HLA region
may regulate the renal transport of uric acid or other urate-dependent inflammatory
mechanisms, therefore impacting gout susceptibility and staying in line with its roles
in immunity and inflammation [51,53,54]. Again, further investigations are required to
support these findings.

Studies evaluating allopurinol and oxypurinol pharmacokinetics have been unable to
consistently identify PGx determinants [31,55]. Even recently, a cohort of 300 gout patients
was used to predict the impacts of genetic variability from multiple gut and renal urate
transporters on oxypurinol metabolism through population pharmacokinetic modeling [56].
After assessing several known variants, no signal was detected for any of the membrane
transporter genotypes when accounting for common clinical variables. As previously
emphasized, increasing evidence suggests that allopurinol metabolism is influenced by
a combination of factors including oligogenic predictors, clinical and anthropometric
variables, SUA regulation, and endogenous markers [28,29,57,58]. Thus, varied interactions
between these parameters could define allopurinol and metabolite pharmacokinetics, as
well as its response, with the involvement of pathways that extend beyond those impacting
drug concentration levels [26,33]. This is illustrated by the recent discovery of unknown
mechanisms of action of oxypurinol in gout. GWA analyses followed by joint functional
assays were able to validate the uricosuric properties of oxypurinol through direct inhibition
of GLUT9-mediated urate reabsorption [26,33]. Still, one could assert that the pleiotropic
effects of BCRP in gout, and potentially other membrane transporters, would rather arise
from a modulation of allopurinol pharmacodynamics and urate reuptake than changes in
the drug’s pharmacokinetics, thus justifying the lack of significant metabolic variability
across investigations.

Study Limitations

Our study does contain some limitations, the size of our study population being
an important one. Previous observational cohorts with subsequent meta-analyses have
been performed for replication of previous observations with ABCG2 and GREM2 [29,33].
In the future, this could imply that multiple observational cohorts are needed through
collaborative efforts in assessing genetic predictors of allopurinol metabolism and concen-
trations on a genome-wide scale. To this end, our GWAS results have been made publicly
available via the PheWeb portal (https://pheweb.statgen.org/allo-mhi/), which could
enable meta-analyses to be carried out, therefore overcoming the limitations of small-scale
studies. The composition of our cohort may also limit the interpretation of this study. For
example, >26% of participants presented with chronic heart failure, a factor known for
influencing the clinical pharmacokinetics and metabolism of drugs [59]. Although this
does not invalidate our results, it is possible that allopurinol and metabolite concentra-
tions could have been affected by unaccounted-for disease-induced physiological changes.
Furthermore, we limited our investigation to participants of European ancestry. As was
recently demonstrated, multi-ethnic cohorts have allowed the identification and validation
of PGx signals impacting both plasma drug concentrations and metabolic ratios while
displaying consistent effect sizes across ancestries [60]. Therefore, limiting the study to a
single ancestry may have hindered the detection of PGx variants impacting allopurinol
and metabolite concentrations. Finally, since participants from the MHI Biobank had blood
sampling performed without consideration to timing post-dose, adequate quantification
of drugs with significantly shorter half-lives may prove to be challenging using a random
sampling approach. In our case, in which oxypurinol had a longer half-life and was the
primary analyte of interest, such limitation did not affect our main objective but could
prevent allopurinol from being reliably quantified across cohorts taking the drug.

https://pheweb.statgen.org/allo-mhi/
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5. Conclusions

In conclusion, the current GWAS did not identify PGx determinants associated to
plasma concentration levels of oxypurinol, allopurinol, and allopurinol-riboside, as well as
daily allopurinol dosing. These results support the notion that complex gene interactions,
non-genomic markers, or multiple PGx elements with modest effect sizes may be identified
as collaborative investigations expand to include larger patient cohorts. Ultimately, more
definitive PGx signals regarding allopurinol pharmacokinetics and clinical response might
be ascertained in future works to predict clinical outcomes in gout patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm14060649/s1, Table S1: GWAS results for oxypurinol con-
centrations (log) in the ALLO-MHI Biobank participants; Table S2: GWAS results for allopurinol
concentrations (log) in the ALLO-MHI Biobank participants; Table S3: GWAS results for allopurinol-
riboside concentrations (log) in the ALLO-MHI Biobank participants; Table S4: GWAS results for
daily allopurinol dose (log) in the ALLO-MHI Biobank participants; Table S5: AS results of genetic
lookups for oxypurinol concentrations (log) using a linear regression with ALLO-MHI Biobank
participants; Table S6: GWAS results of genetic lookups for allopurinol concentrations (log) using a
linear regression with ALLO-MHI Biobank participants; Table S7: GWAS results of genetic lookups
for allopurinol-riboside concentrations (log) using a linear regression with ALLO-MHI Biobank
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