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Abstract: The gut microbiome is of paramount importance in preserving internal balance in the gastroin-
testinal tract; therefore, disruptions in its regulation have been linked to the development of inflammatory
bowel disease (IBD). This article explores the intricate details of the gastrointestinal microbiome as it
pertains to inflammatory bowel disease (IBD), with an emphasis on the Middle East. The study reviews
the typical gut microbiome, modifications in inflammatory bowel disease (IBD), determinants impacting
the gut microbiome of the Middle East, and prospective therapeutic interventions.
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1. Introduction
1.1. Background

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two leading forms of inflam-
matory bowel disease (IBD), a condition that is affected by both genetic and environmental
factors [1]. Although it is widespread globally, its prevalence is highest in western nations;
however, there are also indications of an upward trend in the Arab world [2]. IBD cases
are projected to have increased substantially by 2035 [3], necessitating an associated rise
in resources.

Understanding the interplay between disease susceptibility and the dynamics of the
human microbiome is important and may potentially allow us to develop personalised
therapies in future [4]. The microbiome is composed of an incredible array of bacteria with
a wide variety of functions, from Firmicutes and the conversion of fibre into short chain fatty
acids, vital for multiple important functions [5] to Bacteroidetes and their role in signalling
colonic immune cells [6].

Patients with IBD have been noted to have differences in their microbiome composition
compared to the general population, such as an increase in Protobacteria and E. Coli and
a decrease in Firmicutes and Eubacterium [7]. Indeed, further analysis has shown that a
reduction in F. prausnitzii is often found in patients with Crohn’s disease and seems to be
predictive of more severe disease [8].

Despite this, changes are not uniform. As the Middle East has industrialised, its diet
has changed, along with an increased incidence of IBD [2]. Moreover, genetic markers,
which seem to be prevalent indicators in Caucasian populations, have been found to not
necessarily correlate with Middle Eastern populations [9].
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As our understanding evolves further, probiotics, targeted dietary changes, and even
faecal transplants may all provide options for precise, personalised microbiome modulation
as a therapeutic option in future.

1.2. Objectives

The article aims to highlight the bacteria that make up the normal microbiome, as well
as their normal functions and factors that affect them, both globally and within the Middle
East. There is also a focus on outlining the role of the microbiome in IBD, regional variations,
and how this knowledge may be used to develop more personalised interventions in future.

1.3. Methods

We conducted a comprehensive literature review utilising PubMed, MEDLINE, Em-
base, and Google Scholar to identify relevant journal articles. The following keywords were
used (Table 1). Studies on both adults and children were included where appropriate.

Table 1. Keywords used in literature search of databases.

‘Inflammatory bowel disease’, ‘IBD’, ‘Ulcerative Colitis’, ‘UC’, ‘Crohn’s Disease’, ‘CD’,
‘Microbiome’, ‘Firmucutes’, ‘Bacteroidetes’, ‘Dysbiosis’, ‘Middle East’, ‘Arab’, ‘Diet’, ‘NOD’,
‘Probiotics’, ‘Prebiotics’, ‘Faecal Microbiota Transplantation’,

2. Normal Gut Microbiome
2.1. Composition

The bacteria involved in our microbiota differ between areas and are thought to be im-
portant for our health [4,10]. They perform several tasks, including vitamin synthesis, food
fermentation, pathogen defence, and immune stimulation. Six phyla predominantly make
up the gut microbiota: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria,
and Verrucomicrobia [11], with Firmicutes and Bacteroidetes being predominant [5].

Firmicutes help to break down many substrates, generating metabolites [5]. The
genera within, such as Lactobacillus, Clostridium, and Bacillus, have distinct roles in the
gastrointestinal tract. Overall, they help convert dietary fibre into butyrate, a chemical
created during microbial fermentation, required for colonic epithelial maintenance, histone
deacetylation, and gene expression, and which has been demonstrated to lower the risk of
IBD and colorectal cancer [12,13].

Firmicutes also ferment complex carbohydrates and dietary fibres to produce short-
chain fatty acids (SCFAs), including butyrate, propionate, and acetate [14]. SCFAs have
anti-inflammatory properties, provide colonic epithelial cells with energy, and support the
integrity of the intestinal barrier [14]. Additionally, several Firmicutes species have been
linked to the synthesis of antimicrobial peptides, which support a healthy gut microbial
ecosystem and help defend against pathogens [15].

The Bacteroidetes species, including Prevotella and Bacteroides, is known for its capacity
to break down polysaccharides and alter immunological reactions [16]. Bacteroides’ capac-
ity to use polysaccharides as a source of nutrients may also help support the symbiotic
interaction between gut bacteria and others. The Bacteroides species possess polysaccharide
utilisation loci, gene clusters that encode systems for breaking down polysaccharides [17],
which are subsequently fermented by gut bacteria into SCFAs, hydrogen, carbon dioxide,
and other metabolites that are directly linked to the health of the host [18].

Colonic regulatory T cells (Tregs) identify colonic contents, and Bacteroides fragilis can
signal Tregs to reduce pro-inflammatory T-helper 17 (Th17) responses [6]. The microbiota
also play a crucial role in the activity of intestinal CD8+ T cells, influencing peripheral
immune cells such as natural killer cells, plasmacytoid DCs, and marginal zone B cells. Dis-
ruptions in the gut microbiota may therefore result in a more pro-inflammatory state [19].

By stimulating the development of Tregs and preserving a careful balance between pro-
and anti-inflammatory signals, bacteria play a critical role in developing immunological
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tolerance. Bacteroidetes inhibit aberrant immune activation and the emergence of inflam-
matory illnesses like IBD and allergies by interacting with the host immune system [6].
Firmicutes and Bacteroidetes are therefore essential for reducing inflammation [6,15].

The microbiome also appears to change with age [20] (Figure 1). Microbial colonisa-
tion in the early stages of life is controlled by environmental exposures, feeding habits,
and delivery mode [21]. Infants’ microbiota are predominantly made up of Lactobacilli
and Bifidobacteria, which are important for immunological development and nutrition
metabolism [22]. Microbial diversity rises as children grow and then levels off by early
adulthood [23], though it declines again with further age [24]. Metabolic activity, and
vulnerability to disease, have been linked to these changes [24].
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Environmental factors also have an impact, with diets high in fruits, vegetables, and
whole grains supporting microbial diversity and linked to a lower incidence of metabolic
disease, while diets heavy in fat and sugar can cause inflammation, dysbiosis, and metabolic
disorders [25–27] (Figure 1). Exercise has been linked to changes in the microbial makeup
by encouraging the growth of advantageous bacteria and lowering systemic inflamma-
tion [28]. Additionally, pharmaceutical use, especially antibiotics, can have significant
consequences on the microbiome by altering it and raising vulnerability to infections and
chronic diseases [29].

Furthermore, loss of microbial diversity and possible health consequences have re-
sulted from the homogenisation of microbial communities across geographic regions,
brought about by urbanisation and globalisation [23].

2.2. Functions

Fermentation, which releases energy from food, is facilitated by the microbiome.
Bacteria, fungi, and other microorganisms collaborate in the stomach to break down fibres,
complex carbohydrates, and other indigestible substances [30,31] (Table 2).

Table 2. Functions of the Microbiome.

Phylum Role in Gut Microbiome Genera

Firmicutes

Fermentation: Degradation of dietary fibres into short-chain
fatty acids (SCFAs) such as butyrate, an energy source for
colonocytes.
Gut Barrier: Supports the integrity of the intestinal barrier.
Immune Regulation: Mediates inflammatory reactions and
the immune response, such as colonic Treg cells.

Lactobacillus
Clostridium
Enterococcus

Bacteroidetes

Carbohydrate Digestion: Produces SCFAs such as acetate
and propionate by breaking down complex carbohydrates.
Metabolic Regulation: Expresses bile salt hydrolases,
important in bile acid metabolism.
Immune Regulation: Mediates inflammatory reactions and
the immune response, such as promotion of CD4+ T cell
differentiation.

Bacteroides
Prevotella
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Table 2. Cont.

Phylum Role in Gut Microbiome Genera

Actinobacteria

Metabolic Regulation: Produces acetate, a co-substrate for butyrate,
an energy source for colonocytes.
Immune Regulation: Maintains gut barrier homeostasis and
induces colonic Treg cells.

Bifidobacterium
Corynebacterium

Proteobacteria

Pathogenicity: When overgrown, associated with dysbiosis and
intestinal inflammation, increasing risk of metabolic syndrome and
IBD.
Metabolism: Fixation of nitrogen.

Escherichia
Salmonella
Helicobacter

Verrucomicrobia
Mucin Degradation: Helps to break down mucin, producing
metabolites such as SCFAs.
Immune Regulation: Produces antimicrobial peptides.

Akkermansia

Fusobacteria

Amino Acid Metabolism: Contributes to the metabolism of
peptides and amino acids.
Pathogenicity: Associated with dysbiosis and inflammation in the
gastrointestinal tract, as well as colorectal cancer.

Fusobacterium

These food substrates are metabolised during fermentation to produce a variety
of by-products, most notably SCFAs like butyrate, propionate, and acetate, which are
subsequently used as energy sources [31].

The microbiome is essential for regulating the bioavailability of micronutrients through
many processes, such as influencing absorption rates and enzymatic activity [32]. Phytases
are enzymes that help release inorganic minerals in bioavailable forms from food, and
SCFAs improve mineral solubilisation and transepithelial transport [31]. There is also a
relationship between the percentage of the gut microbiome that produces SCFA and the
rate of calcium absorption, indicating a correlation between microbial metabolism and
mineral status [33].

However, the food consumed and the makeup and variety of the microbiota can
affect how efficiently energy is extracted. Alterations in fermentation patterns and energy
metabolism can result from dysbiosis, or an imbalance in the composition of the gut micro-
biota, potentially contributing to metabolic illnesses including obesity and diabetes [34].

Bifidobacterium, Bacteroides, and Enterococcus are known to, partly through dietary
precursor conversion, synthesize B and K vitamins, which are useful for various processes,
including the clotting cascade [35,36]. However, while this production ability is important,
their optimal use depends on production location. Although the colon synthesizes vitamin
B12, the ileum is the only place where it is absorbed, restricting the impact of colonic
microbes on vitamin B12’s bioavailability [37,38].

Through modification of transporter expression, gut bacteria may also control the
kinetics of vitamin C absorption [39], while supplementation of vitamin C has demonstrated
increased microbial diversity, encouraging growth of beneficial bacteria and improving
synthesis of SCFA [40].

Training the immune system—through interactions with gut-associated lymphoid
tissues (GALTs) found on the mucosal lining, which act as a physical–chemical barrier, as
well as epithelial cells [41,42]—is also an important role.

The epithelial cells lining the gastrointestinal tract are conduits between bacteria
and the immune system. Due to pattern recognition receptors (PRRs), such as Toll-like
receptors (TLRs) and nucleotide-binding oligomerisation domain (NOD)-like receptors,
they can recognise pathogens and elicit immune responses. When substances generated
from gut bacteria activate epithelial cells, they create a variety of cytokines, chemokines,
and antimicrobial peptides, influencing the local immune response and aiding in the
preservation of immunological homeostasis [41].

GALTs are essential components of mucosal lymphoid tissues, which are continually
in contact with the external environment and may serve as the main entrance point for
pathogens [41]. GALTs contain many myeloid and lymphoid cells, which shield the host
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from potentially harmful microorganisms and tolerate commensal microbiota and food-
derived antigens [41,43].

3. Alterations in the Gut Microbiome in IBD
3.1. Dysbiosis

Dysbiosis associated with IBD has been consistently shown to produce fundamental
changes to the composition and diversity of the gut microbiota, with a clear reduction in
the diversity of commensal bacteria. Other key composition shifts include an increase in
Proteobacteria and Enterobacteriaceae bacterial species. Alongside a decrease in the commensal
Firmicutes, there is a significant decrease in other favourable bacterial genera, including
Lactobacillus, and Eubacterium [7] (Figure 2).
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Other studies further elucidate gut microbial changes in IBD, identifying a reduc-
tion of Christensenellaceae, Coriobacteriaceae, and Clostridium leptum in patients with CD,
whilst Actinomyces, Veillonella, and Escherichia coli species are in greater abundance [44].
Further studies report increased quantities of pro-inflammatory Ruminococcus gnavus in
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an IBD patient’s microbiome, yet reductions in Bifidobacterium adolescentis, Dialister invisus,
Faecalibacterium prausnitzii, and Clostridium cluster XIVa [45].

Attempts to identify a preclinical gut microbiome signature that increases the risk of
developing CD have found that an increase of the genus Faecalibacterium was inversely
associated with the risk of developing CD [46]. A reduction in F. prausnitzii has been found
in many patients with CD [8] and seems to be predictive of more severe disease, reflected
by the Crohn’s Disease Activity Index, C-reactive protein levels, erythrocyte sedimentation
rate, and serum albumin levels [47]. Other studies have shown that loss of species diversity
is also correlated with the disease activity index of CD patients.

F prausnitzii and its protective role in CD has been linked to its anti-inflammatory ef-
fects, with the supernatant of cultures of F. prausnitzii found to be rich with anti-inflammatory
factors. This includes a 15 kDa protein found in animal models to prevent the inflammatory
signalling pathway NF-κB in intestinal epithelial cells, thereby preventing gut inflamma-
tion [48].

3.2. Functional Changes

Our gut microbiota may be the nexus between health and disease; dysbiosis leads
to perturbations in gut metabolites and micro flora-associated functions. Every bacterial
species has a unique mechanism by which it contributes to gut inflammation, including
interference with immune-mediated pathways, notably Th17/Treg cells, and the disequilib-
rium of fermentation products, including SCFAs, carbohydrates, and vitamins [49].

The depletion of Faecalibacterium prausnitzii, Roseburia intestinalis, Eubacterium hallii,
Gemmiger formicilis, Eubacterium rectale, and Ruminococcus bromii in patients with IBD leads to
a reduction in butyrate. In addition, SCFAs display immune-modulatory activity, including
Treg cell development, cytokine production, and anti-inflammatory effects [50].

Intestinal mineral metabolism is disturbed through a decrease in Collinsella aerofa-
ciens, Ruminococcus torque, and Bifidobacterium longum. These bacteria play a role in iron
metabolism, bile acid metabolism, and urea cycle metabolism, respectively. Ning et al. also
found an enrichment of organic acids related to the tricarboxylic acid cycle in IBD patients,
reflecting the aberrant energy metabolism of intestinal microbiota [49].

Conversely, isolate strains of Ruminococcus gnavus have robust pro-inflammatory
activity through the production of polysaccharides and mucin-degrading trans-sialidase
that promote inflammation by compromising the intestinal mucosal barrier [51]. Several
studies have shown that Candida albicans is abundant in patients with IBD; certain high-
damage strains exacerbate intestinal inflammation by inducing a Th17 cell inflammatory
response [52].

3.3. Microbial Interactions

Studies have linked IBD with biofilm formation and postulate its pro-inflammatory
role. Biofilms are complex ecosystems of microorganisms embedded in self-produced
matrices of extracellular polymeric substances (EPSs) that adhere to biological surfaces [53].

Biofilms perpetuate immune-mediated inflammation in CD by direct stimulation of
epithelial and immune cells; they penetrate the gut epithelium’s mucus layer and adhere
to the epithelial interface [54]. Colonic epithelium in CD has been shown to harbour
biofilms dominated by Bacteriodes fragilis, Enterobacteriaceae, Helicobacter pylori, Pseudomonas
aeruginosa, and E. coli [55].

The pathobiont adherent-invasive E. coli (AIEC) strain LF82 forms intracellular bac-
terial communities with biofilm-like traits [56]. The biofilms produced by AEIC express
components often present within Enterobacteriaceae biofilms; these include curli, cellulose,
type 1 pili, flagellin, and extracellular DNA. These components have been shown to impact
colitis activity by upregulating mucosal immune responses and modulating epithelial
barrier function via TLRs, NOD-like receptors, and carcinoembryonic antigen-related cell
adhesion molecules [57].
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Bacteria use quorum sensing to interact and communicate with each other. Quorum-
sensing molecules, notably n-acyl homoserine lactones (AHL), are secreted by bacteria, and
these affect gene expression and drive biofilm formation and the expression of virulence
factors. Interestingly, AHL levels may correlate to the intestinal inflammatory state and
therefore may provide a useful marker of disease activity in CD [58].

4. Factors Affecting the Middle Eastern Microbiome
4.1. Diet and Nutrition

The Middle Eastern diet has undergone drastic change, from traditional to indus-
trial [59]. Previously replete with fibre-rich foods such as legumes and fermented foods
like yogurt and cheese, it has transitioned to a more western-style diet, with high levels of
fat, sugar, and sodium [60].

Fibres come in two types: soluble and insoluble. They affect the microbiome differently,
with fruit- and vegetable-derived fibres increasing numbers of gram-positive bacteria such
Clostridia, while fibres from legumes increase the number of Bifidobacteria [61].

Fermented foods also affect microbiome composition [62], with the consumption
of fermented plant-based foods linked to bacteria associated with fermented foods, like
Lactobacillus [63].

Diet, environment, genetic factors, and microbiome all play a role in the development
of IBD [64]. The incidence and prevalence of IBD is rising in the Middle East and has been
partly attributed to the adoption of more western diets [1,65]. Although the prevalence of
IBD in the Middle East is relatively low, there is an increasing trend [2], with increases in
Kuwait [66], Saudi Arabia [67], Bahrain [68], Oman [69], and Lebanon [70].

4.2. Genetics

With genome-wide association studies, various disease susceptibility loci markers
for IBD—mostly high-frequency allelic variants—have been identified [71]. These include
missense variants found within coding regions of genes, such as Nucleotide-binding
Oligomerisation Domain-containing 2 (NOD2), Autophagy-related 16-like 1 (ATG16L1),
and Interleukin 23 Receptor (IL23R) [72]. Three single nucleotide polymorphisms (SNPs)
have been identified as having individual associations with CD in particular: rs2066844,
rs2066845, and an insertion mutation known as 3020insC [73].

Most IBD genome-wide association studies (GWAS) have been conducted in Caucasian
or Asian populations, leaving a gap in understanding population-specific variations in
the Middle East [74]. When NOD2 (P268S and R702W) and IL23R (G149R and R381Q)
variations, identified from GWAS in Caucasian populations, were assessed as potential
genetic indicators for IBD in Saudi patients [9], it was found that of the four SNPs, IL23
[rs76418789, rs11209026] and NOD2 [rs2066842, rs2066844], three [rs2066844, rs76418789,
rs11209026] were uncommon among IBD patients and controls in the Arabian population.
The rs2066842 variation minor allele frequency (MAF) was higher in the Saudi population
than globally, but there was no significant difference in MAF between those with and
without IBD. There seemed to be no significant association between the genetic risk markers
NOD2 and IL23R in Saudi IBD patients.

In a Kuwaiti study assessing the NOD2 gene variants P268S, IVS8 + 158, G908R,
L1007fs, and R702W, however [74], polymorphisms in NOD2/CARD15 were found to be
significantly linked to a higher risk of developing CD, as well as more severe forms.

4.3. Environmental Factors

Animal studies have shown that exposure to environmental heat stress leads to re-
duced diversity and lower levels of beneficial bacteria like Lactobacillus and Bifidobacterium
in chickens [75]. Humidity mixed with high temperatures has also been shown to cause
microbiota dysbiosis, with increased numbers of Firmicutes, Candidatus Saccharimonas and
Lachnoclostridium [76].
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Urbanisation has been implicated as one of the environmental factors leading to an
increase in the prevalence of IBD [77]. This, alongside westernisation of the diet, pollution,
use of antibiotics, and changes in hygiene practices, affects gut bacteria and the potential
development of IBD [77]. The improvement of hygiene practices has potentially led to an
increase in the incidence of IBD, partly due to improved freshwater availability, hot water
sources, and smaller families, leading to reduced crowding and uncontaminated food [78].
The increasing use of antibiotics also alters the microbiome, creating an imbalance that can
increase the risk of IBD [79].

Research focused specifically on the Middle East is insufficient, however, and more is
required to better understand the effects of environmental factors on the prevalence of IBD
in the region.

5. Therapeutic Interventions

In the Middle East, with IBD prevalence increasing [2], dietary interventions, such as
pro- and prebiotics, nutritional modifications, and faecal microbiota transplantation (FMT),
offer potential management strategies [80,81].

5.1. Probiotics and Prebiotics

Probiotics are microorganisms that can confer a health benefit and are used as ad-
junctive therapy for IBD [82,83]. The strongest evidence is in pouchitis [84]. RCTs testing
the probiotic cocktail VSL3# found a reduction in pouchitis incidence in the 12 months
following surgery, as well as reduced rates of refractory pouchitis [85,86]. Probiotics have
also shown a trend towards clinical benefit in inducing and maintaining remission in mild–
moderate UC, though the results were more mixed than in the studies on pouchitis [87] in
both adult [88] and paediatric [89] populations.

The evidence for probiotic use in CD is, however, more limited, with no benefit in
patients with active CD, and no prevention of relapse or postoperative disease [90–92].

Prebiotics are non-digestible fibres that selectively stimulate the growth and activity of
beneficial endogenous colonic bacteria [93]. When administered with probiotics, they are
known as synbiotics. Most prebiotics are carbohydrates that are fermented by beneficial
colonic bacteria and aid in their metabolism [93]. Prebiotics can have beneficial effects
through modulation of the gut microbiome, increasing the number of beneficial bacteria
and enhancing their anti-inflammatory effects, such as decreasing the production of pro-
inflammatory cytokines or providing nutrition for colonocytes, hence enhancing the repair
of injured gut epithelium [93,94]. However, evidence for these beneficial effects is derived
largely from animal studies and focused more on irritable bowel syndrome (IBS) than
IBD [95].

5.2. Diet Modification

A shift from a traditional diet to a westernised one in the Middle East, with increased
ultra-processed foods with high contents of fat, sugars, and salt [60], can lead to increased
pro-inflammatory cytokine production, altered intestinal permeability, and disruption of
the microbiota, fostering a low-level chronic intestinal inflammation, which increases the
risk of developing IBD [96,97]. Dietary modifications could therefore play a therapeutic
role in IBD.

One example is omega-3 fatty acids, found in fish oils, which decrease the production
of inflammatory eicosanoids, cytokines, and reactive oxygen species [98]. Fish consumption
has been shown to have an inverse relationship with the development of CD, while in-
creased omega-3 fatty acids intake reduces the risk of the development of UC [99]. Bluefish,
a rich source of these fatty acids, has been recommended for IBD patients [96]. However,
there is not enough evidence to provide recommendations on the effects of omega-3 fatty
acids in active IBD [100].

Antioxidant supplementation for IBD may also be beneficial via its relieving effects
on the oxidative/nitrosative stress that plays a key pathophysiological role in IBD [100],
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including the antioxidant curcumin, which led to significant improvements in clinical and
endoscopic parameters, with minimal side-effects [101,102]. Micronutrients with strong
antioxidant properties, such as vitamins C and E, have also demonstrated theoretical ben-
efits for IBD, both in animal studies showing reduced inflammation in UC with ascorbic
acid [103] and for patients with mild–moderate UC, with a supplement containing antioxi-
dants such as vitamin C, vitamin E, and selenium resulting in a decreased requirement for
corticosteroids [104].

However, IBD is a heterogenous condition. As such, any dietary advice should
ideally be personalised [105], particularly when considering the microbiome’s response,
which varies between individuals [106]. This is true in IBS, where the baseline micro-
biome composition can predict treatment success [107]. Given that dietary treatments alter
the microbiome in CD [108,109], patients’ microbiome compositions could play a role in
approaches to personalised dietary recommendations in future [110].

5.3. Faecal Microbiota Transplantation (FMT)

FMT involves faecal bacteria from a healthy donor being transplanted into a patient’s
GI tract [111]. It is established as a treatment for recurrent Clostridium difficile infection
(CDI) [112,113] and is gaining interest for IBD [111].

FMT as a treatment for IBD was first documented in 1989, with an FMT enema leading
to a patient becoming asymptomatic after six months [114] and remaining in endoscopic
and histological remission 20 years later. Since then, several studies conducted have shown
potential benefit in both adult [111,115] and paediatric [116] populations.

Despite widespread evidence indicating FMT’s safety, however [117,118], concerns
have been raised about adverse effects, with 2.9% of patients with IBD flares who were
treated with FMT for CDI subsequently hospitalised with IBD flares [119].

Implementing FMT in the Middle East also comes with challenges. There is a paucity
of FMT research in Middle Eastern countries, with none of the 384 studies on FMT between
2010 and 2019 involving Middle Eastern countries [120]. This may feed into a lack of
awareness around FMT there, with Iranian [121] and Qatari [122] healthcare professionals
(HCP) being unfamiliar with FMT and the role of gut microbes in patient health.

There are cultural and religious barriers, as well, with 30% of Jordanian HCPs express-
ing a need to consider religious points of view regarding FMT’s permissibility [123] and the
consideration of dietary restrictions regarding alcohol or non-halal foods, which may cause
consent issues. Additional screening of donors’ dietary habits may be needed to alleviate
this [123].

6. Future Directions
6.1. Precision Medicine

IBD is influenced by many factors, contributing to variability in disease presentation
and progression. Precision medicine holds promise in IBD management, integrating factors
including genetics, epigenetics, gene expression, and metabolites. Precision medicine
is an evolving field that has the potential to advance early detection, optimise resource
allocation, and improve outcomes [124]. Our understanding of the underlying processes of
IBD, which arises from multiple mutations [125], is advancing, with a focus on the roles of
the genome, exposome, microbiome, and immunome, allowing us to potentially practice
precision medicine within a multiomics approach [126].

The effectiveness of certain treatments, including FMT, probiotics, and prebiotics, is
influenced by a patient’s microbiota [127], with an optimal approach, therefore, considering
specific microbiome profiles before starting or changing therapy. Indeed, a randomised
controlled trial is currently investigating the effects of personalised microbiota-based
therapy, involving antibiotics and prebiotics in pouchitis (NCT04082559).
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6.2. Microbiome Modulation

Bacteriophages are small viruses known for their ability to infect and replicate within
bacteria. They employ various methods to penetrate the bacterial cell wall, subsequently
releasing genetic material, allowing the generation of new phage particles, which can
go on to infect neighbouring bacterial cells [128]. This has shown promise in providing
protection against intestinal injury and infections, potentially allowing bacteriophages to
target specific bacteria without harming beneficial resident bacteria [129].

With developments in genetic modifications (GM), GM bacterial or probiotic strains
have been created that serve as “intestinal biosensors”, detecting inflammatory markers, or
as “resident cell factories”, producing therapeutic molecules that enhance drug delivery
at the mucosal surface [124,130]. The primary focus has been on introducing plasmids
encoding immunoregulatory cytokines, reporter substrates, or anti-inflammatory mediators
into bacterial cells. Plasmids are small circular DNA molecules that exist independently of
chromosomal DNA and can replicate autonomously. Their ease of transfection into bacterial
cells has made them a prominent vector for introducing recombinant DNA expression into
specific probiotic strains. A typical plasmid comprises essential DNA sequences, including
a DNA replication origin—an antibiotic resistance gene, used to select transfected bacteria
from non-transfected ones—and the “Multiple Cloning Site”, where exogenous DNA
fragments are inserted using restriction enzymes. Through recombinant DNA techniques,
desired genes can be inserted into a plasmid, which may also include promoter regions to
control plasmid expression chemically [130].

E. coli strains, especially E. coli Nissile 1917 (EcN), are used widely for genetic bioengi-
neering. The popularity of EcN can be attributed to the stability and non-transferability of
its two small cryptic plasmids, pMUT1 and pMUT2 [130]. Additionally, the chromosome
of EcN exhibits high genetic stability, with an absence of sequence changes after 100 con-
secutive passages in vitro and the intestinal tract [131]. Furthermore, incorporating EcN
into bioengineering strategies can combine its immunomodulatory effects on the mucosal
immune system with its capacity to produce and release anti-inflammatory molecules [124].
Animal studies showed that EcN bacteria, genetically modified to produce the immunoreg-
ulatory protein Sj16 from the helminth Schistosoma japonicum, improved colitis in mice by
influencing the microbiota composition [132]. The bacterial Sj16 peptide demonstrated
protective effects against colitis by targeting peroxisome proliferator-activated receptor
alpha (PPAR-α) receptors and restoring the population of the Ruminococcaceae family, in-
creasing butyrate levels in the intestine [132]. Modifying the metabolic pathway of EcN to
enable direct production of (R)-3-hydroxybutyrate (3HB) may also help, as 3HB modulates
macrophages to reduce the production of interleukins and restores the balance between
Treg and Th17 [133]. Additionally, the in situ release of anti-inflammatory interleukins in a
mouse model of colitis, via E. coli engineered to produce IL-35, successfully reduced the
inflammatory response by downregulating Th17 cells [134].

Phage therapy has the potential to complement antibiotics, though its appeal for
investment is limited by difficulties in patenting the technology [134], as well as consent
issues due to uncertainty surrounding risks. Phages also target specific bacteria, unlike
antibiotics, making treatment failure potentially more likely if the diagnosis or mechanism
of delivery is wrong [135].

6.3. Population Studies

Collaborative efforts among Middle Eastern countries to conduct large-scale micro-
biome studies is needed for developing customised interventions and guiding public health
policy. By combining resources and expertise, researchers can gather comprehensive data
on microbiome profiles, allowing the identification of patterns, unique variations, and
potential associations between microbiota composition and health conditions in the Middle
East, potentially facilitating the development of region-specific probiotics or microbiome-
based therapies.
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7. Conclusions

IBD is a complex condition, with many underlying factors contributing to its devel-
opment and severity, including genetics and microbiome composition. While we know
increasing amounts about the bacteria that make up the microbiome, as well as the roles
they play, such as Firmicutes and the conversion of fibre into butyrate or Bacteroidetes and
their role in vitamin synthesis, more needs to be discovered regarding how they influence
the risk of developing certain conditions.

In the IBD context, there does seem to be a link between risk of development of Crohn’s
disease and certain bacterium such as Faecalibacterium or F. prausnitzii. Biofilm formation
may also play a role in the pro-inflammatory states found in IBD.

Changes in the traditional Middle Eastern diet, along with subsequent effects on
the microbiome, have also seemingly contributed to increased rates of IBD in the region.
Meanwhile, though genetic analyses have identified multiple susceptibility loci markers
in mostly Caucasian populations, the few studies on these in the Middle East populations
have indicated that this may not apply there.

As we hone this information further, personalised therapies, with probiotics, dietary
modification, FMT, or even genetically modified phage therapy, become more of a possibility.

Across the Middle East, going forwards, consistency in study design, sampling pro-
tocols, and sequencing techniques is essential to ensure reliability of results, allowing
the comparison of microbiome profiles and identifying true differences and associations
across populations.
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