Clinical Characteristics and Prognosis of Older Patients with Coronavirus Disease 2019 Requiring Mechanical Ventilation
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Statistical Analyses
3. Results
3.1. The Characteristics of the Study Patients
3.2. Treatment Options and Clinical Outcomes
3.3. Factors Associated with ICU and In-Hospital Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sprung, C.L.; Joynt, G.M.; Christian, M.D.; Truog, R.D.; Rello, J.; Nates, J.L. Adult ICU Triage During the Coronavirus Disease 2019 Pandemic: Who Will Live and Who Will Die? Recommendations to Improve Survival. Crit. Care Med. 2020, 48, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Neumann-Podczaska, A.; Al-Saad, S.R.; Karbowski, L.M.; Chojnicki, M.; Tobis, S.; Wieczorowska-Tobis, K. COVID 19—Clinical Picture in the Elderly Population: A Qualitative Systematic Review. Aging Dis. 2020, 11, 988–1008. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, F.; Corbi, G.; Mazzeo, G.; Boccia, M.; Aronne, L.; D’Agnano, V.; Komici, K.; Mazzarella, G.; Parrella, R.; Bianco, A. COVID-19 and the elderly: Insights into pathogenesis and clinical decision-making. Aging Clin. Exp. Res. 2020, 32, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Javanmardi, F.; Keshavarzi, A.; Akbari, A.; Emami, A.; Pirbonyeh, N. Prevalence of underlying diseases in died cases of COVID-19: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0241265. [Google Scholar] [CrossRef] [PubMed]
- Gilis, M.; Chagrot, N.; Koeberle, S.; Tannou, T.; Brunel, A.S.; Chirouze, C.; Bouiller, K. Older adults with SARS-CoV-2 infection: Utility of the clinical frailty scale to predict mortality. J. Med. Virol. 2021, 93, 2453–2460. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Q.; Huang, F.; Xiong, S.; Sun, Y. The prognostic value of the SOFA score in patients with COVID-19: A retrospective, observational study. Medicine 2021, 100, e26900. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, S.; Wang, Y.; Phillips-Howard, P.A.; Ju, S.; Yang, Y.; Wang, D. Age differences in clinical features and outcomes in patients with COVID-19, Jiangsu, China: A retrospective, multicentre cohort study. BMJ Open 2020, 10, e039887. [Google Scholar] [CrossRef] [PubMed]
- Casas-Deza, D.; Bernal-Monterde, V.; Aranda-Alonso, A.N.; Montil-Miguel, E.; Julián-Gomara, A.B.; Letona-Giménez, L.; Arbones-Mainar, J.M. Age-related mortality in 61,993 confirmed COVID-19 cases over three epidemic waves in Aragon, Spain. Implications for vaccination programmes. PLoS ONE 2021, 16, e0261061. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Shen, Q.; Guo, W.; He, W.; Li, J.; Zhang, Y.; Wang, Y.; Zhou, Z.; Deng, D.; Ouyang, X.; et al. Clinical Characteristics of Elderly Patients with COVID-19 in Hunan Province, China: A Multicenter, Retrospective Study. Gerontology 2020, 66, 467–475. [Google Scholar] [CrossRef]
- Ryan, D.J.; O’Regan, N.A.; Caoimh, R.; Clare, J.; O’Connor, M.; Leonard, M.; McFarland, J.; Tighe, S.; O’Sullivan, K.; Trzepacz, P.T.; et al. Delirium in an adult acute hospital population: Predictors, prevalence and detection. BMJ Open 2013, 3, e001772. [Google Scholar] [CrossRef]
- Niu, S.; Tian, S.; Lou, J.; Kang, X.; Zhang, L.; Lian, H.; Zhang, J. Clinical characteristics of older patients infected with COVID-19: A descriptive study. Arch. Gerontol. Geriatr. 2020, 89, 104058. [Google Scholar] [CrossRef]
- Jung, C.; Flaatten, H.; Fjølner, J.; Bruno, R.R.; Wernly, B.; Artigas, A.; Bollen Pinto, B.; Schefold, J.C.; Wolff, G.; Kelm, M.; et al. The impact of frailty on survival in elderly intensive care patients with COVID-19: The COVIP study. Crit. Care 2021, 25, 149. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, J.; Ma, F.Z.; Li, J.; Xue, S.; Xu, Z.G. The common risk factors for progression and mortality in COVID-19 patients: A meta-analysis. Arch. Virol. 2021, 166, 2071–2087. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Kumar, P.; Singh, S.; Saha, S.; Dey, A.B. Clinical features and outcomes of COVID-19 in older adults: A systematic review and meta-analysis. BMC Geriatr. 2021, 21, 321. [Google Scholar] [CrossRef]
- Liu, X.; Lv, J.; Gan, L.; Zhang, Y.; Sun, F.; Meng, B.; Jheon, A.; Yan, F.; Li, B.; Xuan, Z.; et al. Comparative analysis of clinical characteristics, imaging and laboratory findings of different age groups with COVID-19. Indian J. Med. Microbiol. 2020, 38, 87–93. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, S.; Xu, J.; Zhou, M.; Huang, Q.; Duan, L.; Lv, Z.; Xia, H.; Xiao, W.; Yin, Z.; et al. Comparison of clinical characteristics among younger and elderly deceased patients with COVID-19: A retrospective study. Aging 2020, 13, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Frush, B.W.; Turnbull, J.M. COVID-19 and Unilateral Withdrawal of Life-Sustaining Treatments: Tragedy in Crisis, and Lessons for Everyday Medicine. Chest 2021, 159, 2161–2162. [Google Scholar] [CrossRef]
- Giabicani, M.; Le Terrier, C.; Poncet, A.; Guidet, B.; Rigaud, J.P.; Quenot, J.P.; Mamzer, M.F.; Pugin, J.; Weiss, E.; Bourcier, S. Limitation of life-sustaining therapies in critically ill patients with COVID-19: A descriptive epidemiological investigation from the COVID-ICU study. Crit. Care 2023, 27, 103. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, B.; Seon, J.Y.; Oh, I.H. A National Study of Life-Sustaining Treatments in South Korea: What Factors Affect Decision-Making? Cancer Res. Treat. 2021, 53, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Mousai, O.; Tafoureau, L.; Yovell, T.; Flaatten, H.; Guidet, B.; Beil, M.; de Lange, D.; Leaver, S.; Szczeklik, W.; Fjolner, J.; et al. The role of clinical phenotypes in decisions to limit life-sustaining treatment for very old patients in the ICU. Ann. Intensive Care 2023, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Romero Starke, K.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef] [PubMed]
- CDC COVID-19 Response Team. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Melero, R.; Mijaylova, A.; Rodríguez-Benítez, P.; García-Prieto, A.; Cedeño, J.; Goicoechea, M. Mortality and renal long-term outcome of critically ill COVID-19 patients with acute kidney failure, continuous renal replacement therapy and invasive mechanical ventilation. Med. Clin. 2022, 159, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, J.; Ge, S.; Guo, S.; Xing, X.; Wang, Y.; Cheng, A.; Liu, Q.; Li, J.; Ning, Y.; et al. Association between Prolonged Intermittent Renal Replacement Therapy and All-Cause Mortality in COVID-19 Patients Undergoing Invasive Mechanical Ventilation: A Retrospective Cohort Study. Blood Purif. 2021, 50, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tian, S.; Guo, H. Acute kidney injury and renal replacement therapy in COVID-19 patients: A systematic review and meta-analysis. Int. Immunopharmacol. 2021, 90, 107159. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zuo, Z.; Kang, S.; Jiang, L.; Luo, X.; Xia, Z.; Liu, J.; Xiao, X.; Ye, M.; Deng, M. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging Dis. 2020, 11, 874–894. [Google Scholar] [CrossRef] [PubMed]
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Newall, A.T.; Leong, R.N.F.; Nazareno, A.; Muscatello, D.J.; Wood, J.G.; Kim, W.J. Delay-adjusted age- and sex-specific case fatality rates for COVID-19 in South Korea: Evolution in the estimated risk of mortality throughout the epidemic. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 101, 306–311. [Google Scholar] [CrossRef]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020, 180, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wernly, B.; Flaatten, H.; Fjølner, J.; Artigas, A.; Bollen Pinto, B.; Schefold, J.C.; Binnebössel, S.; Baldia, P.H.; Kelm, M.; et al. Lactate is associated with mortality in very old intensive care patients suffering from COVID-19: Results from an international observational study of 2860 patients. Ann. Intensive Care 2021, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Jiang, F.; Jin, W.; Shi, Y.; Yang, L.; Xia, Y.; Jia, L.; Wang, B.; Lin, H.; Cai, Y.; et al. Risk factors influencing the prognosis of elderly patients infected with COVID-19: A clinical retrospective study in Wuhan, China. Aging 2020, 12, 12504–12516. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Patients (n = 434) | Elderly (n = 294) | Geriatric (n = 140) | p-Value |
---|---|---|---|---|
Age | 76.0 ± 7.2 | 71.9 ± 4.3 | 84.5 ± 3.9 | <0.001 |
Male (%) | 249 (57.4) | 179 (60.9) | 70 (50.0) | 0.032 |
Body mass index | 24.3 ± 3.9 | 24.7 ± 3.8 | 23.5 ± 4.0 | 0.002 |
Clinical frailty scale | 3.5 ± 1.7 | 3.0 ± 1.4 | 4.4 ± 1.8 | <0.001 |
SOFA score | 7.8 ± 3.3 | 7.5 ± 3.2 | 8.3 ± 3.4 | 0.019 |
Vaccination history | 19 (4.4) | 16 (5.4) | 3 (2.1) | 0.116 |
Comorbidity (%) | ||||
Hypertension | 289 (66.6) | 195 (66.3) | 94 (67.1) | 0.866 |
Diabetes | 171 (39.4) | 113 (38.4) | 58 (41.4) | 0.551 |
Cardiovascular disease | 65 (15.0) | 34 (11.6) | 31 (22.1) | 0.004 |
Chronic lung disease | 46 (10.6) | 27 (9.2) | 19 (13.6) | 0.165 |
Chronic neurological disease | 72 (16.6) | 36 (12.2) | 36 (25.7) | <0.001 |
Chronic kidney disease | 40 (9.2) | 24 (8.2) | 16 (11.4) | 0.272 |
Chronic liver disease | 9 (2.1) | 5 (1.7) | 4 (2.9) | 0.429 |
Hematologic malignancy | 6 (1.4) | 5 (1.7) | 1 (0.7) | 0.411 |
Solid organ tumor | 32 (7.4) | 23 (7.8) | 9 (6.4) | 0.603 |
Variables | Total Patients (n = 434) | Elderly (n = 294) | Geriatric (n = 140) | p-Value |
---|---|---|---|---|
Treatment (%) | ||||
Remdesivir | 291 (67.1) | 203 (69.0) | 88 (62.9) | 0.200 |
Steroid | 417 (96.1) | 283 (96.3) | 134 (95.7) | 0.785 |
Tocilizumab | 27 (6.2) | 23 (7.8) | 4 (2.9) | 0.045 |
Convalescent plasma | 19 (4.4) | 12 (4.1) | 7 (5.0) | 0.662 |
Intervention in the ICU | ||||
CRRT | 93 (21.4) | 56 (19.0) | 37 (26.4) | 0.080 |
Prone positioning | 134 (30.9) | 98 (33.3) | 36 (25.7) | 0.108 |
ECMO | 59 (13.6) | 51 (17.3) | 8 (5.7) | 0.001 |
Tracheostomy | 152 (35.0) | 103 (35.0) | 49 (35.0) | 0.994 |
Outcomes | ||||
Duration of mechanical ventilation | 14.0 (8.0–33.5) | 15.0 (8.0–33.0) | 14.0 (7.0–36.0) | 0.533 |
ICU mortality | 185 (42.6) | 112 (38.1) | 73 (52.1) | 0.006 |
ICU LOS | 23.0 (14.0–42.0) | 25.0 (15.0–42.3) | 20.0 (11.0–40.0) | 0.920 |
In-hospital mortality | 200 (46.1) | 120 (40.8) | 80 (57.1) | 0.001 |
Hospital LOS | 31.0 (19.5–57.0) | 33.0 (21.0–56.3) | 26.0 (16.0–59.0) | 0.640 |
Cause of death | ||||
Respiratory failure | 119 (27.4) | 75 (25.5) | 44 (31.4) | 0.196 |
Septic shock c MOF | 61 (14.1) | 36 (12.2) | 25 (17.9) | 0.116 |
Cardiac death | 6 (1.4) | 2 (0.7) | 4 (2.9) | 0.069 |
Neurologic death | 1 (0.2) | 1 (0.3) | 0 (0) | 0.490 |
Others † | 13 (3.0) | 6 (2.0) | 7 (5.0) | 0.091 |
Post-discharge clinical frailty scale (n = 234) | 5.1 ± 1.9 | 4.8 ± 1.8 | 6.0 ± 1.9 | <0.001 |
Issue of life-sustaining treatment | 148 (34.1) | 88 (29.9) | 60 (42.9) | 0.008 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.029 | 1.009–1.048 | 0.004 | 1.009 | 0.986–1.032 | 0.462 |
Male | 1.091 | 0.811–1.467 | 0.565 | |||
Body mass index | 1.040 | 1.003–1.079 | 0.034 | 1.016 | 0.971–1.064 | 0.485 |
Clinical frailty scale | 1.030 | 0.943–1.124 | 0.516 | |||
SOFA score | 1.041 | 0.996–1.088 | 0.073 | 0.994 | 0.940–1.050 | 0.817 |
Comorbidity | ||||||
Cardiovascular disease | 1.027 | 0.682–1.546 | 0.899 | |||
Chronic neurological disease | 1.021 | 0.703–1.484 | 0.912 | |||
Hematologic malignancy | 0.680 | 0.217–2.134 | 0.509 | |||
Solid organ tumor | 1.258 | 0.753–2.104 | 0.381 | |||
Initial vital sign | ||||||
Diastolic BP, mmHg | 0.993 | 0.983–1.003 | 0.164 | |||
GCS | 1.006 | 0.967–1.046 | 0.783 | |||
Laboratory findings | ||||||
White blood cell, 103/µL | 1.001 | 0.989–1.014 | 0.839 | |||
Albumin, g/dL | 0.917 | 0.693–1.213 | 0.545 | |||
Creatinine, mg/dL | 1.172 | 1.071–1.282 | 0.001 | 1.162 | 1.017–1.327 | 0.027 |
C-reactive protein, mg/dL | 1.000 | 0.999–1.002 | 0.407 | |||
P/F ratio, mmHg | 0.999 | 0.998–1.001 | 0.328 | |||
Lactate, mmol/L | 1.072 | 1.035–1.111 | <0.001 | 1.045 | 1.006–1.086 | 0.025 |
Treatment | ||||||
Tocilizumab | 1.631 | 0.961–2.769 | 0.070 | 1.029 | 0.367–2.890 | 0.956 |
CRRT | 2.174 | 1.617–2.922 | <0.001 | 1.516 | 1.037–2.218 | 0.032 |
Prone positioning | 0.801 | 0.586–1.093 | 0.162 | |||
Issue of life-sustaining treatment | 3.924 | 2.882–5.342 | <0.001 | 3.580 | 2.482–5.164 | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age | 1.039 | 1.020–1.058 | <0.001 | 1.016 | 0.995–1.038 | 0.140 |
Male | 1.054 | 0.794–1.400 | 0.716 | |||
Body mass index | 1.039 | 1.004–1.075 | 0.030 | 1.024 | 0.981–1.069 | 0.281 |
Clinical frailty scale | 1.019 | 0.937–1.109 | 0.656 | |||
SOFA score | 1.045 | 1.001–1.091 | 0.045 | 1.004 | 0.952–1.059 | 0.871 |
Comorbidity | ||||||
Cardiovascular disease | 0.949 | 0.646–1.393 | 0.789 | |||
Chronic neurological disease | 1.102 | 0.773–1.570 | 0.592 | |||
Hematologic malignancy | 0.689 | 0.220–2.160 | 0.523 | |||
Solid organ tumor | 1.320 | 0.830–2.100 | 0.240 | |||
Initial vital sign | ||||||
Diastolic BP, mmHg | 0.995 | 0.985–1.004 | 0.286 | |||
GCS | 1.005 | 0.967–1.045 | 0.801 | |||
Laboratory findings | ||||||
White blood cell, 103/µL | 1.005 | 0.993–1.016 | 0.443 | |||
Albumin, g/dL | 0.883 | 0.682–1.144 | 0.346 | |||
Creatinine, mg/dL | 1.172 | 1.079–1.273 | <0.001 | 1.120 | 0.997–1.257 | 0.056 |
C-reactive protein, mg/dL | 1.001 | 0.999–1.002 | 0.294 | |||
P/F ratio, mmHg | 0.999 | 0.998–1.001 | 0.445 | |||
Lactate, mmol/L | 1.034 | 1.003–1.066 | 0.034 | 0.998 | 0.963–1.033 | 0.902 |
Treatment | ||||||
Tocilizumab | 1.471 | 0.869–2.491 | 0.151 | |||
CRRT | 2.461 | 1.845–3.282 | <0.001 | 1.825 | 1.266–2.630 | 0.001 |
Prone positioning | 0.7586 | 0.559–1.021 | 0.068 | 0.592 | 0.418–0.840 | 0.003 |
Issue of life sustaining treatment | 5.394 | 3.989–7.295 | <0.001 | 5.565 | 3.890–7.961 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.; Kang, D.H.; Park, S.; Lee, S.H.; Park, O.; Kim, T.; Yeo, H.J.; Jang, J.H.; Cho, W.H.; Lee, S.I., on behalf of the Korean Intensive Care Study Group. Clinical Characteristics and Prognosis of Older Patients with Coronavirus Disease 2019 Requiring Mechanical Ventilation. J. Pers. Med. 2024, 14, 657. https://doi.org/10.3390/jpm14060657
Hong G, Kang DH, Park S, Lee SH, Park O, Kim T, Yeo HJ, Jang JH, Cho WH, Lee SI on behalf of the Korean Intensive Care Study Group. Clinical Characteristics and Prognosis of Older Patients with Coronavirus Disease 2019 Requiring Mechanical Ventilation. Journal of Personalized Medicine. 2024; 14(6):657. https://doi.org/10.3390/jpm14060657
Chicago/Turabian StyleHong, Green, Da Hyun Kang, Sunghoon Park, Su Hwan Lee, Onyu Park, Taehwa Kim, Hye Ju Yeo, Jin Ho Jang, Woo Hyun Cho, and Song I Lee on behalf of the Korean Intensive Care Study Group. 2024. "Clinical Characteristics and Prognosis of Older Patients with Coronavirus Disease 2019 Requiring Mechanical Ventilation" Journal of Personalized Medicine 14, no. 6: 657. https://doi.org/10.3390/jpm14060657
APA StyleHong, G., Kang, D. H., Park, S., Lee, S. H., Park, O., Kim, T., Yeo, H. J., Jang, J. H., Cho, W. H., & Lee, S. I., on behalf of the Korean Intensive Care Study Group. (2024). Clinical Characteristics and Prognosis of Older Patients with Coronavirus Disease 2019 Requiring Mechanical Ventilation. Journal of Personalized Medicine, 14(6), 657. https://doi.org/10.3390/jpm14060657