Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy
Abstract
:1. Introduction
2. Role of the Cerebellum in Pain Processing
3. Novel Biomarkers for Electrical Cerebellar Activity in Humans
4. Non-Invasive Brain Stimulation Techniques Used to Modulate Cerebellar Activity in Humans
4.1. Transcranial Magnetic Stimulation
4.1.1. Repetitive TMS (rTMS)
4.1.2. Theta Burst Stimulation (TBS)
4.1.3. Paired Associative Stimulation (PAS)
4.2. Transcranial Electrical Stimulation (tES)
4.2.1. Transcranial Direct Current Stimulation (tDCS)
4.2.2. Transcranial Alternating Current Stimulation (tACS)
4.2.3. Transcranial Random Noise Stimulation (tRNS)
5. Cerebellar Neurostimulation Studies Addressing Pain Perception in Humans
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Knotkova, H.; Hamani, C.; Sivanesan, E.; Le Beuffe, M.F.E.; Moon, J.Y.; Cohen, S.P.; Huntoon, M.A. Neuromodulation for chronic pain. Lancet 2021, 397, 2111–2124. [Google Scholar] [CrossRef]
- Lefaucheur, J.P. Cortical neurostimulation for neuropathic pain: State of the art and perspectives. Pain 2016, 157 (Suppl. S1), S81–S89. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.L.; Bikson, M.; Badran, B.W.; George, M.S. A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimul. 2022, 15, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Stilling, J.M.; Monchi, O.; Amoozegar, F.; Debert, C.T. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache 2019, 59, 339–357. [Google Scholar] [CrossRef]
- Cruccu, G.; Garcia-Larrea, L.; Hansson, P.; Keindl, M.; Lefaucheur, J.P.; Paulus, W.; Taylor, R.; Tronnier, V.; Truini, A.; Attal, N. EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur. J. Neurol. 2016, 23, 1489–1499. [Google Scholar] [CrossRef]
- Moulton, E.A.; Schmahmann, J.D.; Becerra, L.; Borsook, D. The cerebellum and pain: Passive integrator or active participator? Brain Res. Rev. 2010, 65, 14–27. [Google Scholar] [CrossRef]
- Bocci, T.; Santarcangelo, E.; Vannini, B.; Torzini, A.; Carli, G.; Ferrucci, R.; Priori, A.; Valeriani, M.; Sartucci, F. Cerebellar direct current stimulation modulates pain perception in humans. Restor. Neurol. Neurosci. 2015, 33, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Rafiq, B.; Chowdhury, E.; Babayev, J.; Boo, H.; Metwaly, R.; Sandilya, P.; Chusid, E.; Battaglia, F. Anodal cerebellar tDCS modulates lower extremity pain perception. NeuroRehabilitation 2017, 40, 195–200. [Google Scholar] [CrossRef]
- Tremblay, S.; Austin, D.; Hannah, R.; Rothwell, J.C. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum Ataxias 2016, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pavon, J.C.; Veniero, D.; Bergmann, T.O.; Belardinelli, P.; Bortoletto, M.; Casarotto, S.; Casula, E.P.; Farzan, F.; Fecchio, M.; Julkunen, P.; et al. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul. 2023, 16, 567–593. [Google Scholar] [CrossRef] [PubMed]
- Baumann, O.; Borra, R.J.; Bower, J.M.; Cullen, K.E.; Habas, C.; Ivry, R.B.; Leggio, M.; Mattingley, J.B.; Molinari, M.; Moulton, E.A.; et al. Consensus paper: The role of the cerebellum in perceptual processes. Cerebellum 2015, 14, 197–220. [Google Scholar] [CrossRef]
- Brodal, P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 1978, 101, 251–283. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M.; May, J.G., 3rd; Mercier, B.E. Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 1985, 235, 343–359. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Pandya, D.N. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 1989, 289, 53–73. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Rosene, D.L.; Pandya, D.N. Motor projections to the basis pontis in rhesus monkey. J. Comp. Neurol. 2004, 478, 248–268. [Google Scholar] [CrossRef]
- Brodal, P. The pontocerebellar projection in the rhesus monkey: An experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 1979, 4, 193–208. [Google Scholar] [CrossRef]
- Schmahmann, J.D. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Taskiran-Sag, A.; Uzuncakmak Uyanik, H.; Uyanik, S.A.; Oztekin, N. Prospective investigation of cerebellar cognitive affective syndrome in a previously non-demented population of acute cerebellar stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104923. [Google Scholar] [CrossRef]
- Habas, C.; Kamdar, N.; Nguyen, D.; Prater, K.; Beckmann, C.F.; Menon, V.; Greicius, M.D. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 2009, 29, 8586–8594. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, A.; Ploner, M. Neurophysiology and functional neuroanatomy of pain perception. J. Clin. Neurophysiol. 2000, 17, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Willis, W.D.; Westlund, K.N. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 1997, 14, 2–31. [Google Scholar] [CrossRef]
- Benarroch, E.E. Parabrachial nuclear complex: Multiple functions and potential clinical implications. Neurology 2016, 86, 676–683. [Google Scholar] [CrossRef]
- Terrier, L.M.; Hadjikhani, N.; Destrieux, C. The trigeminal pathways. J. Neurol. 2022, 269, 3443–3460. [Google Scholar] [CrossRef]
- Truini, A. A Review of Neuropathic Pain: From Diagnostic Tests to Mechanisms. Pain. Ther. 2017, 6, 5–9. [Google Scholar] [CrossRef]
- Coombes, S.A.; Misra, G. Pain and motor processing in the human cerebellum. Pain 2016, 157, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Saab, C.Y.; Willis, W.D. The cerebellum: Organization, functions and its role in nociception. Brain Res. Brain Res. Rev. 2003, 42, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ekerot, C.F.; Garwicz, M.; Schouenborg, J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J. Physiol. 1991, 441, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Jie, W.; Pei-Xi, C. Discharge response of cerebellar Purkinje cells to stimulation of C-fiber in cat saphenous nerve. Brain Res. 1992, 581, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Huma, Z.; Ireland, K.; Maxwell, D.J. The spino-bulbar-cerebellar pathway: Activation of neurons projecting to the lateral reticular nucleus in the rat in response to noxious mechanical stimuli. Neurosci. Lett. 2015, 591, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Salberg, S.; Li, C.N.; Beveridge, J.K.; Noel, M.; Yamakawa, G.R.; Mychasiuk, R. Gene expression changes in the cerebellum are associated with persistent post-injury pain in adolescent rats exposed to early life stress. Neurobiol. Pain. 2023, 14, 100145. [Google Scholar] [CrossRef] [PubMed]
- Helmchen, C.; Mohr, C.; Erdmann, C.; Binkofski, F. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: A parametric fMRI study. Neurosci. Lett. 2004, 361, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Coghill, R.C.; Sang, C.N.; Maisog, J.M.; Iadarola, M.J. Pain intensity processing within the human brain: A bilateral, distributed mechanism. J. Neurophysiol. 1999, 82, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Ruscheweyh, R.; Kühnel, M.; Filippopulos, F.; Blum, B.; Eggert, T.; Straube, A. Altered experimental pain perception after cerebellar infarction. Pain 2014, 155, 1303–1312. [Google Scholar] [CrossRef]
- Gerloff, C.; Altenmuller, E.; Dichgans, J. Disintegration and reorganization of cortical motor processing in two patients with cerebellar stroke. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 59–68. [Google Scholar] [CrossRef]
- Dalal, S.S.; Osipova, D.; Bertrand, O.; Jerbi, K. Oscillatory activity of the human cerebellum: The intracranial electrocerebellogram revisited. Neurosci. Biobehav. Rev. 2013, 37, 585–593. [Google Scholar] [CrossRef]
- de Solages, C.; Szapiro, G.; Brunel, N.; Hakim, V.; Isope, P.; Buisseret, P.; Rousseau, C.; Barbour, B.; Léna, C. High-frequency organization and synchrony of activity in the purkinje cell layer of the cerebellum. Neuron 2008, 58, 775–788. [Google Scholar] [CrossRef]
- De Zeeuw, C.I.; Hoebeek, F.E.; Bosman, L.W.; Schonewille, M.; Witter, L.; Koekkoek, S.K. Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 2011, 12, 327–344. [Google Scholar] [CrossRef]
- Monaco, J.; Rocchi, L.; Ginatempo, F.; D’Angelo, E.; Rothwell, J.C. Cerebellar Theta-Burst Stimulation Impairs Memory Consolidation in Eyeblink Classical Conditioning. Neural Plast. 2018, 2018, 6856475. [Google Scholar] [CrossRef]
- Antelmi, E.; Di Stasio, F.; Rocchi, L.; Erro, R.; Liguori, R.; Ganos, C.; Brugger, F.; Teo, J.; Berardelli, A.; Rothwell, J.; et al. Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor. Park. Relat. Disord. 2016, 31, 23–27. [Google Scholar] [CrossRef]
- Antelmi, E.; Rocchi, L.; Cocco, A.; Erro, R.; Latorre, A.; Liguori, R.; Plazzi, G.; Berardelli, A.; Rothwell, J.; Bhatia, K.P. Cerebellar and brainstem functional abnormalities in patients with primary orthostatic tremor. Mov. Disord. 2018, 33, 1024–1025. [Google Scholar] [CrossRef]
- Sadnicka, A.; Rocchi, L.; Latorre, A.; Antelmi, E.; Teo, J.; Pareés, I.; Hoffland, B.S.; Brock, K.; Kornysheva, K.; Edwards, M.J.; et al. A Critical Investigation of Cerebellar Associative Learning in Isolated Dystonia. Mov. Disord. 2022, 37, 1187–1192. [Google Scholar] [CrossRef]
- Fong, P.Y.; Spampinato, D.; Rocchi, L.; Hannah, R.; Teng, Y.; Di Santo, A.; Shoura, M.; Bhatia, K.; Rothwell, J.C. Two forms of short-interval intracortical inhibition in human motor cortex. Brain Stimul. 2021, 14, 1340–1352. [Google Scholar] [CrossRef]
- Rocchi, L.; Latorre, A.; Ibanez Pereda, J.; Spampinato, D.; Brown, K.E.; Rothwell, J.; Bhatia, K. A case of congenital hypoplasia of the left cerebellar hemisphere and ipsilateral cortical myoclonus. Mov. Disord. 2019, 34, 1745–1747. [Google Scholar] [CrossRef]
- Spampinato, D.; Avci, E.; Rothwell, J.; Rocchi, L. Frequency-dependent modulation of cerebellar excitability during the application of non-invasive alternating current stimulation. Brain Stimul. 2021, 14, 277–283. [Google Scholar] [CrossRef]
- Fong, P.Y.; Spampinato, D.; Michell, K.; Mancuso, M.; Brown, K.; Ibáñez, J.; Di Santo, A.; Latorre, A.; Bhatia, K.; Rothwell, J.C.; et al. Reply to: “Reflecting the causes of variability of EEG responses elicited by cerebellar TMS”. Neuroimage 2023, 281, 120392. [Google Scholar] [CrossRef]
- Fong, P.Y.; Spampinato, D.; Michell, K.; Mancuso, M.; Brown, K.; Ibáñez, J.; Santo, A.D.; Latorre, A.; Bhatia, K.; Rothwell, J.C.; et al. EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. Neuroimage 2023, 275, 120188. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Colebatch, J.G. The human electrocerebellogram (ECeG) recorded non-invasively using scalp electrodes. Neurosci. Lett. 2018, 682, 124–131. [Google Scholar] [CrossRef]
- Waespe, W.; Henn, V. Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp. Brain Res. 1981, 43, 349–360. [Google Scholar] [CrossRef]
- Todd, N.P.; Govender, S.; Colebatch, J.G. Modulation of the human electro-cerebellogram (ECeG) during vestibular and optokinetic stimulation. Neurosci. Lett. 2019, 712, 134497. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Colebatch, J.G. Vestibular cerebellar evoked potentials in humans and their modulation during optokinetic stimulation. J. Neurophysiol. 2018, 120, 3099–3109. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Colebatch, J.G. Non-invasive recording from the human cerebellum during a classical conditioning paradigm using the otolith-evoked blink reflex. Neurosci. Lett. 2021, 765, 136270. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Keller, P.E.; Colebatch, J.G. Electrophysiological activity from over the cerebellum and cerebrum during eye blink conditioning in human subjects. Physiol. Rep. 2023, 11, e15642. [Google Scholar] [CrossRef]
- Govender, S.; Todd, N.P.M.; Colebatch, J.G. Effects of posture on cerebellar evoked potentials (CEPs) following brief impulsive stimuli at the mastoid and trunk. Exp. Brain Res. 2022, 240, 1371–1385. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Lemieux, L.; Colebatch, J.G. Source analyses of axial and vestibular evoked potentials associated with brainstem-spinal reflexes show cerebellar and cortical contributions. Neurosci. Lett. 2021, 757, 135960. [Google Scholar] [CrossRef]
- Bosch, T.J.; Kammermeier, S.; Groth, C.; Leedom, M.; Hanson, E.K.; Berg-Poppe, P.; Singh, A. Cortical and Cerebellar Oscillatory Responses to Postural Instability in Parkinson’s Disease. Front. Neurol. 2021, 12, 752271. [Google Scholar] [CrossRef]
- Bosch, T.J.; Espinoza, A.I.; Singh, A. Cerebellar oscillatory dysfunction during lower-limb movement in Parkinson’s disease with freezing of gait. Brain Res. 2023, 1808, 148334. [Google Scholar] [CrossRef]
- Todd, N.P.M.; Govender, S.; Hochstrasser, D.; Keller, P.E.; Colebatch, J.G. Extended source analysis of movement related potentials (MRPs) for self-paced hand and foot movements demonstrates opposing cerebral and cerebellar laterality: A preliminary study. Neurosci. Lett. 2023, 815, 137476. [Google Scholar] [CrossRef]
- Pan, M.K.; Li, Y.S.; Wong, S.B.; Ni, C.L.; Wang, Y.M.; Liu, W.C.; Lu, L.Y.; Lee, J.C.; Cortes, E.P.; Vonsattel, J.G.; et al. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci. Transl. Med. 2020, 12, eaay1769. [Google Scholar] [CrossRef]
- Wong, S.B.; Wang, Y.M.; Lin, C.C.; Geng, S.K.; Vanegas-Arroyave, N.; Pullman, S.L.; Kuo, S.H.; Pan, M.K. Cerebellar Oscillations in Familial and Sporadic Essential Tremor. Cerebellum 2022, 21, 425–431. [Google Scholar] [CrossRef]
- Mattioli, F.; Maglianella, V.; D’Antonio, S.; Trimarco, E.; Caligiore, D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J. Neurol. Sci. 2024, 456, 122825. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Boehringer, A.; Celnik, P.; Edwards, M.J.; Ferrucci, R.; Galea, J.M.; Groiss, S.J.; Hiraoka, K.; Kassavetis, P.; et al. Non-invasive cerebellar stimulation--a consensus paper. Cerebellum 2014, 13, 121–138. [Google Scholar] [CrossRef]
- Latorre, A.; Rocchi, L.; Berardelli, A.; Bhatia, K.P.; Rothwell, J.C. The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Mov. Disord. 2019, 34, 769–782. [Google Scholar] [CrossRef]
- van Dun, K.; Bodranghien, F.; Manto, M.; Mariën, P. Targeting the Cerebellum by Noninvasive Neurostimulation: A Review. Cerebellum 2017, 16, 695–741. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Siebner, H.R.; Funke, K.; Aberra, A.S.; Antal, A.; Bestmann, S.; Chen, R.; Classen, J.; Davare, M.; Di Lazzaro, V.; Fox, P.T.; et al. Transcranial magnetic stimulation of the brain: What is stimulated?—A consensus and critical position paper. Clin. Neurophysiol. 2022, 140, 59–97. [Google Scholar] [CrossRef]
- Cruciani, A.; Mancuso, M.; Sveva, V.; Maccarrone, D.; Todisco, A.; Motolese, F.; Santoro, F.; Pilato, F.; Spampinato, D.A.; Rocchi, L.; et al. Using TMS-EEG to assess the effects of neuromodulation techniques: A narrative review. Front. Hum. Neurosci. 2023, 17, 1247104. [Google Scholar] [CrossRef]
- Spampinato, D.A.; Ibanez, J.; Rocchi, L.; Rothwell, J. Motor potentials evoked by transcranial magnetic stimulation: Interpreting a simple measure of a complex system. J. Physiol. 2023, 601, 2827–2851. [Google Scholar] [CrossRef]
- Lien, Y.R.; Lin, Y.C.; Lin, S.N.; Lin, C.P.; Chang, L.H. Frequency-Dependent Effects of Cerebellar Repetitive Transcranial Magnetic Stimulation on Visuomotor Accuracy. Front. Neurosci. 2022, 16, 804027. [Google Scholar] [CrossRef]
- Matsugi, A.; Mori, N.; Hosomi, K.; Saitoh, Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci. Lett. 2022, 788, 136859. [Google Scholar] [CrossRef]
- Yao, J.; Song, B.; Shi, J.; Yin, K.; Du, W. Effects of Repetitive Transcranial Magnetic Stimulation at the Cerebellum on Working Memory. Brain Sci. 2023, 13, 1158. [Google Scholar] [CrossRef]
- Oliveri, M.; Koch, G.; Torriero, S.; Caltagirone, C. Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci. Lett. 2005, 376, 188–193. [Google Scholar] [CrossRef]
- Fierro, B.; Giglia, G.; Palermo, A.; Pecoraro, C.; Scalia, S.; Brighina, F. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability. Exp. Brain Res. 2007, 176, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.G.; Steinmeier, A.; Bolte, C.; Hamami, F.; Tzvi, E.; Münchau, A.; Bäumer, T.; Weissbach, A. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci. Rep. 2021, 11, 3070. [Google Scholar] [CrossRef]
- Torriero, S.; Oliveri, M.; Koch, G.; Caltagirone, C.; Petrosini, L. Interference of left and right cerebellar rTMS with procedural learning. J. Cogn. Neurosci. 2004, 16, 1605–1611. [Google Scholar] [CrossRef]
- Georgiev, D.; Rocchi, L.; Tocco, P.; Speekenbrink, M.; Rothwell, J.C.; Jahanshahi, M. Continuous Theta Burst Stimulation over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively during Perceptual Decision-Making. Brain Stimul. 2016, 9, 601–608. [Google Scholar] [CrossRef]
- Méndez, J.C.; Rocchi, L.; Jahanshahi, M.; Rothwell, J.; Merchant, H. Probing the timing network: A continuous theta burst stimulation study of temporal categorization. Neuroscience 2017, 356, 167–175. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Nardella, A.; Rocchi, L.; Conte, A.; Bologna, M.; Suppa, A.; Berardelli, A. Inferior parietal lobule encodes visual temporal resolution processes contributing to the critical flicker frequency threshold in humans. PLoS ONE 2014, 9, e98948. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Mori, F.; Marconi, B.; Codecà, C.; Pecchioli, C.; Salerno, S.; Torriero, S.; Lo Gerfo, E.; Mir, P.; Oliveri, M.; et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin. Neurophysiol. 2008, 119, 2559–2569. [Google Scholar] [CrossRef]
- Rocchi, L.; Spampinato, D.A.; Pezzopane, V.; Orth, M.; Bisiacchi, P.S.; Rothwell, J.C.; Casula, E.P. Cerebellar noninvasive neuromodulation influences the reactivity of the contralateral primary motor cortex and surrounding areas: A TMS-EMG-EEG study. Cerebellum 2023, 22, 319–331. [Google Scholar] [CrossRef]
- Popa, T.; Russo, M.; Meunier, S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010, 3, 161–169. [Google Scholar] [CrossRef]
- Halko, M.A.; Farzan, F.; Eldaief, M.C.; Schmahmann, J.D.; Pascual-Leone, A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J. Neurosci. 2014, 34, 12049–12056. [Google Scholar] [CrossRef]
- Farzan, F.; Pascual-Leone, A.; Schmahmann, J.D.; Halko, M. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation. Sci. Rep. 2016, 6, 23599. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Cohen, L.G.; Benecke, R.; Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000, 123 Pt 3, 572–584. [Google Scholar] [CrossRef]
- Conte, A.; Li Voti, P.; Pontecorvo, S.; Quartuccio, M.E.; Baione, V.; Rocchi, L.; Cortese, A.; Bologna, M.; Francia, A.; Berardelli, A. Attention-related changes in short-term cortical plasticity help to explain fatigue in multiple sclerosis. Mult. Scler. 2016, 22, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Gövert, F.; Becktepe, J.; Balint, B.; Rocchi, L.; Brugger, F.; Garrido, A.; Walter, T.; Hannah, R.; Rothwell, J.; Elble, R.; et al. Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor. Mov. Disord. 2020, 35, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Casula, E.P.; Pellicciari, M.C.; Picazio, S.; Caltagirone, C.; Koch, G. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. Neuroimage 2016, 143, 204–213. [Google Scholar] [CrossRef]
- Lu, M.K.; Tsai, C.H.; Ziemann, U. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex. Front. Hum. Neurosci. 2012, 6, 260. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Li Voti, P.; Rocchi, L.; Papazachariadis, O.; Berardelli, A. Early visuomotor integration processes induce LTP/LTD-like plasticity in the human motor cortex. Cereb. Cortex 2015, 25, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Suppa, A.; Rocchi, L.; Li Voti, P.; Papazachariadis, O.; Casciato, S.; Di Bonaventura, C.; Giallonardo, A.T.; Berardelli, A. The Photoparoxysmal Response Reflects Abnormal Early Visuomotor Integration in the Human Motor Cortex. Brain Stimul. 2015, 8, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Voroslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef] [PubMed]
- Reed, T.; Cohen Kadosh, R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. 2018, 41, 1123–1130. [Google Scholar] [CrossRef]
- Klaus, J.; Schutter, D. Electrode montage-dependent intracranial variability in electric fields induced by cerebellar transcranial direct current stimulation. Sci. Rep. 2021, 11, 22183. [Google Scholar] [CrossRef]
- Thair, H.; Holloway, A.L.; Newport, R.; Smith, A.D. Transcranial Direct Current Stimulation (tDCS): A Beginner’s Guide for Design and Implementation. Front. Neurosci. 2017, 11, 641. [Google Scholar] [CrossRef]
- Grimaldi, G.; Argyropoulos, G.P.; Bastian, A.; Cortes, M.; Davis, N.J.; Edwards, D.J.; Ferrucci, R.; Fregni, F.; Galea, J.M.; Hamada, M.; et al. Cerebellar Transcranial Direct Current Stimulation (ctDCS): A Novel Approach to Understanding Cerebellar Function in Health and Disease. Neuroscientist 2016, 22, 83–97. [Google Scholar] [CrossRef]
- Latorre, A.; Rocchi, L.; Paparella, G.; Manzo, N.; Bhatia, K.P.; Rothwell, J.C. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024, 147, 1412–1422. [Google Scholar] [CrossRef]
- Zhang, X.; Hancock, R.; Santaniello, S. Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses. PLoS Comput. Biol. 2021, 17, e1009609. [Google Scholar] [CrossRef]
- Sánchez-León, C.A.; Sánchez-Garrido Campos, G.; Fernández, M.; Sánchez-López, A.; Medina, J.F.; Márquez-Ruiz, J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. bioRxiv 2023. [Google Scholar] [CrossRef]
- Jalali, R.; Chowdhury, A.; Wilson, M.; Miall, R.C.; Galea, J.M. Neural changes associated with cerebellar tDCS studied using MR spectroscopy. Exp. Brain Res. 2018, 236, 997–1006. [Google Scholar] [CrossRef]
- Katagiri, N.; Kawakami, S.; Okuyama, S.; Koseki, T.; Kudo, D.; Namba, S.; Tanabe, S.; Yamaguchi, T. Single-Session Cerebellar Transcranial Direct Current Stimulation Affects Postural Control Learning and Cerebellar Brain Inhibition in Healthy Individuals. Cerebellum 2021, 20, 203–211. [Google Scholar] [CrossRef]
- Takano, K.; Katagiri, N.; Sato, T.; Jin, M.; Koseki, T.; Kudo, D.; Yoshida, K.; Tanabe, S.; Tsujikawa, M.; Kondo, K.; et al. Changes in Corticospinal Excitability and Motor Control During Cerebellar Transcranial Direct Current Stimulation in Healthy Individuals. Cerebellum 2023, 22, 905–914. [Google Scholar] [CrossRef]
- Foerster, Á.; Melo, L.; Mello, M.; Castro, R.; Shirahige, L.; Rocha, S.; Monte-Silva, K. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Impairs Balance Control in Healthy Individuals. Cerebellum 2017, 16, 872–875. [Google Scholar] [CrossRef]
- Oldrati, V.; Schutter, D. Targeting the Human Cerebellum with Transcranial Direct Current Stimulation to Modulate Behavior: A Meta-Analysis. Cerebellum 2018, 17, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Inukai, Y.; Ikarashi, H.; Watanabe, H.; Miyaguchi, S.; Otsuru, N.; Onishi, H. Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J. Clin. Neurosci. 2022, 100, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, J.; Zicher, B.; Brown, K.E.; Rocchi, L.; Casolo, A.; Del Vecchio, A.; Spampinato, D.; Vollette, C.A.; Rothwell, J.C.; Baker, S.N.; et al. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons. J. Physiol. 2023, 601, 3187–3199. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Strüber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.L.; Alagapan, S.; Lugo, C.E.; Mellin, J.M.; Lustenberger, C.; Rubinow, D.R.; Fröhlich, F. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 2019, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, A.; Guerra, A.; Giangrosso, M.; Manzo, N.; Leodori, G.; Pasqualetti, P.; Conte, A.; Di Lazzaro, V.; Berardelli, A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022, 254, 119119. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Wen, W.; Viswanathan, V.; Gill, C.T.; Reinhart, R.M.G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 2022, 25, 1237–1246. [Google Scholar] [CrossRef]
- Miyaguchi, S.; Inukai, Y.; Matsumoto, Y.; Miyashita, M.; Takahashi, R.; Otsuru, N.; Onishi, H. Effects on motor learning of transcranial alternating current stimulation applied over the primary motor cortex and cerebellar hemisphere. J. Clin. Neurosci. 2020, 78, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.A.; Grefkes, C.; Ameli, M.; Fink, G.R. Interhemispheric competition after stroke: Brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair. 2009, 23, 641–656. [Google Scholar] [CrossRef]
- Pahor, A.; Jaušovec, N. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology. Front. Hum. Neurosci. 2017, 11, 651. [Google Scholar] [CrossRef]
- Pozdniakov, I.; Vorobiova, A.N.; Galli, G.; Rossi, S.; Feurra, M. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci. Rep. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Maiella, M.; Casula, E.P.; Borghi, I.; Assogna, M.; D’Acunto, A.; Pezzopane, V.; Mencarelli, L.; Rocchi, L.; Pellicciari, M.C.; Koch, G. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci. Rep. 2022, 12, 19391. [Google Scholar] [CrossRef]
- Asan, A.S.; Lang, E.J.; Sahin, M. Entrainment of cerebellar purkinje cells with directional AC electric fields in anesthetized rats. Brain Stimul. 2020, 13, 1548–1558. [Google Scholar] [CrossRef]
- Cheron, G.; Márquez-Ruiz, J.; Dan, B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. Cerebellum 2016, 15, 122–138. [Google Scholar] [CrossRef]
- De Zeeuw, C.I.; Hoebeek, F.E.; Schonewille, M. Causes and consequences of oscillations in the cerebellar cortex. Neuron 2008, 58, 655–658. [Google Scholar] [CrossRef]
- Giustiniani, A.; Tarantino, V.; Bracco, M.; Bonaventura, R.E.; Oliveri, M. Functional Role of Cerebellar Gamma Frequency in Motor Sequences Learning: A tACS Study. Cerebellum 2021, 20, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Koganemaru, S.; Mikami, Y.; Matsuhashi, M.; Truong, D.Q.; Bikson, M.; Kansaku, K.; Mima, T. Cerebellar transcranial alternating current stimulation modulates human gait rhythm. Neurosci. Res. 2020, 156, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.; Argyropoulos, G.P.D.; Bocci, T.; Celnik, P.A.; Corben, L.A.; Guidetti, M.; Koch, G.; Priori, A.; Rothwell, J.C.; Sadnicka, A.; et al. Consensus Paper: Novel Directions and Next Steps of Non-invasive Brain Stimulation of the Cerebellum in Health and Disease. Cerebellum 2022, 21, 1092–1122. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Paparella, G.; Passaretti, M.; Costa, D.; Birreci, D.; De Biase, A.; Colella, D.; Angelini, L.; Cannavacciuolo, A.; Berardelli, A.; et al. Theta-tACS modulates cerebellar-related motor functions and cerebellar-cortical connectivity. Clin. Neurophysiol. 2024, 158, 159–169. [Google Scholar] [CrossRef]
- Naro, A.; Leo, A.; Russo, M.; Cannavò, A.; Milardi, D.; Bramanti, P.; Calabrò, R.S. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach. Brain Stimul. 2016, 9, 388–395. [Google Scholar] [CrossRef]
- Battaglini, L.; Casco, C.; Fertonani, A.; Miniussi, C.; Di Ponzio, M.; Vicovaro, M. Noise in the brain: Transcranial random noise stimulation and perceptual noise act on a stochastic resonance-like mechanism. Eur. J. Neurosci. 2023, 57, 2097–2111. [Google Scholar] [CrossRef]
- Moret, B.; Donato, R.; Nucci, M.; Cona, G.; Campana, G. Transcranial random noise stimulation (tRNS): A wide range of frequencies is needed for increasing cortical excitability. Sci. Rep. 2019, 9, 15150. [Google Scholar] [CrossRef]
- Chaieb, L.; Antal, A.; Paulus, W. Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front. Neurosci. 2015, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Zunhammer, M.; Busch, V.; Griesbach, F.; Landgrebe, M.; Hajak, G.; Langguth, B. rTMS over the cerebellum modulates temperature detection and pain thresholds through peripheral mechanisms. Brain Stimul. 2011, 4, 210–217.e211. [Google Scholar] [CrossRef] [PubMed]
- Bocci, T.; De Carolis, G.; Ferrucci, R.; Paroli, M.; Mansani, F.; Priori, A.; Valeriani, M.; Sartucci, F. Cerebellar Transcranial Direct Current Stimulation (ctDCS) Ameliorates Phantom Limb Pain and Non-painful Phantom Limb Sensations. Cerebellum 2019, 18, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Stacheneder, R.; Alt, L.; Straube, A.; Ruscheweyh, R. Effects of Transcranial Direct Current Stimulation (t-DCS) of the Cerebellum on Pain Perception and Endogenous Pain Modulation: A Randomized, Monocentric, Double-Blind, Sham-Controlled Crossover Study. Cerebellum 2023, 22, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, S.M.; Janssen, A.M.; Lucka, F.; Aydin, Ü.; Lanfer, B.; Lew, S.; Wolters, C.H.; Stegeman, D.F.; Oostendorp, T.F. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Hull, C.A.; Chu, Y.; Thanawala, M.; Regehr, W.G. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells. J. Neurosci. 2013, 33, 5895–5902. [Google Scholar] [CrossRef]
- Hamada, M.; Strigaro, G.; Murase, N.; Sadnicka, A.; Galea, J.M.; Edwards, M.J.; Rothwell, J.C. Cerebellar modulation of human associative plasticity. J. Physiol. 2012, 590, 2365–2374. [Google Scholar] [CrossRef]
- Popa, T.; Velayudhan, B.; Hubsch, C.; Pradeep, S.; Roze, E.; Vidailhet, M.; Meunier, S.; Kishore, A. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb. Cortex 2013, 23, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, F.; Palomar, F.J.; Conde, V.; Diaz-Corrales, F.J.; Porcacchia, P.; Fernandez-Del-Olmo, M.; Koch, G.; Mir, P. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimul. 2013, 6, 582–589. [Google Scholar] [CrossRef] [PubMed]
- García-Larrea, L.; Lukaszewicz, A.C.; Mauguière, F. Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology 1995, 32, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, L.; Casula, E.; Tocco, P.; Berardelli, A.; Rothwell, J. Somatosensory Temporal Discrimination Threshold Involves Inhibitory Mechanisms in the Primary Somatosensory Area. J. Neurosci. 2016, 36, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Kessler, S.K.; Turkeltaub, P.E.; Benson, J.G.; Hamilton, R.H. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012, 5, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, R.; Buhôt, L.; Möller, L.; Learmonth, G. The time course of ineffective sham-blinding during low-intensity (1 mA) transcranial direct current stimulation. Eur. J. Neurosci. 2019, 50, 3380–3388. [Google Scholar] [CrossRef] [PubMed]
- Boucher, P.O.; Ozdemir, R.A.; Momi, D.; Burke, M.J.; Jannati, A.; Fried, P.J.; Pascual-Leone, A.; Shafi, M.M.; Santarnecchi, E. Sham-derived effects and the minimal reliability of theta burst stimulation. Sci. Rep. 2021, 11, 21170. [Google Scholar] [CrossRef]
- Colloca, L. The Placebo Effect in Pain Therapies. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 191–211. [Google Scholar] [CrossRef]
Authors | Sample | NIBS Technique and Outcome Measures | Stimulation Areas, Electrode Montage, or Direction of the Stimulation Coil | Behavioural and/or Neurophysiological Outcomes |
---|---|---|---|---|
Zunhammer et al. (2011) [133] | 10 CP patients | 1 and 10 Hz rTMS at 120% RMT and 1000 stimuli compared to sham or neck magnetic stimulation | Medial→Lobule VII of the cerebellar vermis; lateral→Crus II of the right lateral cerebellar hemisphere Coil handle pointing upwards | 1 Hz rTMS over lateral cerebellum and neck significantly increased HPT and decreased CT |
Bocci et al. (2015) [12] | 15 CP patients | 20 min of anodal, cathodal, or sham cerebellar tDCS at 2 mA; 10 LEPs at 3 timepoints (before, immediately after and 60 min after stimulation) and changes of RMT using TMS (before, after stim and after 60 min) | Bilateral cerebellar hemispheres ctDCS→cathode 2 cm below inion, anode on ipsilateral shoulder atDCS→anode 2 cm below inion, cathode on ipsilateral shoulder | ctDCS increased pain perception, as well as the amplitude of N1 and N2/P2 LEPs, and decreases the latencies of the latter, while atDCS induced opposite effects |
Bocci et al. (2019) [134] | 14 unilateral UL amputees | 20 min and 5-day sessions of sham and anodal cerebellar tDCS at 2 mA; LEPs at at 3 timepoints (before, immediately, and 2 weeks and 4 weeks after stimulation) | Bilateral cerebellar hemispheres; ctDCS→cathode 2 cm below inion; anode on ipsilateral shoulder atDCS→cathode 2 cm below inion; anode on ipsilateral shoulder | Cerebellar atDCS improved paroxysmal pain and non-painful phantom limb sensation; it reduced N1 and N2/P2 amplitudes |
Pereira et al. (2017) [13] | 14 CP patients | 5 min anodal, cathodal, or sham cerebellar tDCS at 2 mA | atDCS→anode 2 cm below inion; cathode on ipsilateral buccinator muscle ctDCS→cathode, 2 cm below inion; anode on ipsilateral buccinator muscle | atDCS increased low-extremity pain threshold compared to sham and cathodal stimulation |
Stacheneder et al. (2023) [135] | 21 CP patients | 20 min anodal, cathodal, or sham cerebellar tDCS at 2 mA, RIII reflex, offset analgesia, CPM effect and SEPs recorded 0, 30, and 60 min after stimulation | ctDCS→cathode 2 cm below inion; anode over the shoulder atDCS→anode 2 cm below inion; cathode over the shoulder | ctDCS reduced pain thresholds, increased N120 amplitude, and increased RIII reflex area, while atDCS increased OA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sveva, V.; Cruciani, A.; Mancuso, M.; Santoro, F.; Latorre, A.; Monticone, M.; Rocchi, L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J. Pers. Med. 2024, 14, 675. https://doi.org/10.3390/jpm14070675
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. Journal of Personalized Medicine. 2024; 14(7):675. https://doi.org/10.3390/jpm14070675
Chicago/Turabian StyleSveva, Valerio, Alessandro Cruciani, Marco Mancuso, Francesca Santoro, Anna Latorre, Marco Monticone, and Lorenzo Rocchi. 2024. "Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy" Journal of Personalized Medicine 14, no. 7: 675. https://doi.org/10.3390/jpm14070675
APA StyleSveva, V., Cruciani, A., Mancuso, M., Santoro, F., Latorre, A., Monticone, M., & Rocchi, L. (2024). Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. Journal of Personalized Medicine, 14(7), 675. https://doi.org/10.3390/jpm14070675