Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision
Abstract
:1. Introduction
2. Methods
2.1. Cohorts Used
2.2. Development and Evaluation of a Conditional Generative Adversarial Network
2.3. Implementation and Adaptation of StyleGAN for Tissue Image Analysis
2.4. StyleGAN
2.5. Quantification Model
2.6. Statistical Calculations
2.7. Data Sharing
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclosure of Patent Information
References
- Ali, H.; Muzammil, M.A.; Dahiya, D.S.; Ali, F.; Yasin, S.; Hanif, W.; Gangwani, M.K.; Aziz, M.; Khalaf, M.; Basuli, D.; et al. Artificial intelligence in gastrointestinal endoscopy: A comprehensive review. Ann. Gastroenterol. 2024, 37, 133–141. [Google Scholar] [CrossRef]
- Caloro, E.; Gnocchi, G.; Quarrella, C.; Ce, M.; Carrafiello, G.; Cellina, M. Artificial Intelligence in Bone Metastasis Imaging: Recent Progresses from Diagnosis to Treatment—A Narrative Review. Crit. Rev. Oncog. 2024, 29, 77–90. [Google Scholar] [CrossRef]
- Fabijan, A.; Zawadzka-Fabijan, A.; Fabijan, R.; Zakrzewski, K.; Nowoslawska, E.; Polis, B. Artificial Intelligence in Medical Imaging: Analyzing the Performance of ChatGPT and Microsoft Bing in Scoliosis Detection and Cobb Angle Assessment. Diagnostics 2024, 14, 773. [Google Scholar] [CrossRef]
- Li, Q.; Tan, J.; Xie, H.; Zhang, X.; Dai, Q.; Li, Z.; Yan, L.L.; Chen, W. Evaluating the accuracy of the Ophthalmologist Robot for multiple blindness-causing eye diseases: A multicentre, prospective study protocol. BMJ Open 2024, 14, e077859. [Google Scholar] [CrossRef] [PubMed]
- Vitt, J.R.; Mainali, S. Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients. Semin. Neurol. 2024, 44, 342–356. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, C.; Huang, Y.; Chen, X.; Pan, Z.; Wang, L.; Dong, D.; Li, S.; Qi, X. Artificial intelligence in liver imaging: Methods and applications. Hepatol. Int. 2024, 18, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef]
- Prassas, I.; Clarke, B.; Youssef, T.; Phlamon, J.; Dimitrakopoulos, L.; Rofaeil, A.; Yousef, G.M. Computational pathology: An evolving concept. Clin. Chem. Lab. Med. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Soliman, A.; Li, Z.; Parwani, A.V. Artificial intelligence’s impact on breast cancer pathology: A literature review. Diagn. Pathol. 2024, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Gao, S.; Xiao, Q.; Li, C.; Grzegorzek, M.; Zhang, Y.Y.; Li, X.H.; Kang, Y.; Liu, F.H.; Huang, D.H.; et al. Role of artificial intelligence in digital pathology for gynecological cancers. Comput. Struct. Biotechnol. J. 2024, 24, 205–212. [Google Scholar] [CrossRef]
- Yilmaz, F.; Brickman, A.; Najdawi, F.; Yakirevich, E.; Egger, R.; Resnick, M.B. Advancing Artificial Intelligence Integration Into the Pathology Workflow: Exploring Opportunities in Gastrointestinal Tract Biopsies. Lab. Investig. 2024, 104, 102043. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Foo, V.H.; Yang, L.W.Y.; Sia, J.T.; Ang, M.; Lin, H.; Chodosh, J.; Mehta, J.S.; Ting, D.S.W. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. Br. J. Ophthalmol. 2021, 105, 158–168. [Google Scholar] [CrossRef]
- Ting, D.S.W.; Peng, L.; Varadarajan, A.V.; Keane, P.A.; Burlina, P.M.; Chiang, M.F.; Schmetterer, L.; Pasquale, L.R.; Bressler, N.M.; Webster, D.R.; et al. Deep learning in ophthalmology: The technical and clinical considerations. Prog. Retin. Eye Res. 2019, 72, 100759. [Google Scholar] [CrossRef]
- Dey, D.; Slomka, P.J.; Leeson, P.; Comaniciu, D.; Shrestha, S.; Sengupta, P.P.; Marwick, T.H. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1317–1335. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024, 151, 102861. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Guo, J.; Chen, W.H.; Lin, H.Y.; Tang, H.; Wang, F.; Xu, H.; Bian, J. A scoping review of fair machine learning techniques when using real-world data. J. Biomed. Inform. 2024, 151, 104622. [Google Scholar] [CrossRef]
- Cao, P.; Derhaag, J.; Coonen, E.; Brunner, H.; Acharya, G.; Salumets, A.; Zamani Esteki, M. Generative artificial intelligence to produce high-fidelity blastocyst-stage embryo images. Hum. Reprod. 2024, 39, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Ivanenko, M.; Wanta, D.; Smolik, W.T.; Wroblewski, P.; Midura, M. Generative-Adversarial-Network-Based Image Reconstruction for the Capacitively Coupled Electrical Impedance Tomography of Stroke. Life 2024, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement. Sci. 2024, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Wang, Y.; Fu, X.; Yang, H. Recurrence Network Analysis of Histopathological Images for the Detection of Invasive Ductal Carcinoma in Breast Cancer. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3234–3244. [Google Scholar] [CrossRef]
- Chen, C.B.; Yang, H.; Kumara, S. Recurrence network modeling and analysis of spatial data. Chaos 2018, 28, 085714. [Google Scholar] [CrossRef]
- Yang, H.; Chen, C.B.; Kumara, S. Heterogeneous recurrence analysis of spatial data. Chaos 2020, 30, 013119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Z.; Zhang, Y.; Zhang, S.; Xie, D.; Pu, S.; Mao, H. Effcient Shift Network in Denoising-Friendly Space for Real Noise Removal. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan, 18–22 July 2022. [Google Scholar]
- Raja, L.; Merline, A.; Ganesan, R. Indexing of the discrete globalgrid using linear quadtree. Int. J. Adv. Inf. Technol. 2013, 2. [Google Scholar]
- Kumar, K.; Naga Sai Ram, K.N.; Kiranmai, K.S.S.; Harsha, S. Denoising of Iris Image Using Stationary Wavelet Transform. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1232–1237. [Google Scholar]
- Wang, Y.; Chen, C.-B. Recurrence Quantification Analysis for Spatial Data. In Proceedings of the IIE Annual Conference, Seattle, WA, USA, 21–24 May 2022; pp. 1–6. [Google Scholar]
- Shukla, P.; Verma, A.; Abhishek; Verma, S.; Kumar, M. Interpreting SVM for medical images using Quadtree. Multimed. Tools Appl. 2020, 79, 29353–29373. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhao, X.; Chen, J. Indexing of the discrete global grid using linear quadtree. In Proceedings of the ISPRS Workshop on Service and Application of Spatial Data Infrastructure, XXXVI(4/W6), Hangzhou, China, 14–16 October 2005. [Google Scholar]
- Li, X.; Wang, C.; Sheng, Y.; Zhang, J.; Wang, W.; Yin, F.F.; Wu, Q.; Wu, Q.J.; Ge, Y. An artificial intelligence-driven agent for real-time head-and-neck IMRT plan generation using conditional generative adversarial network (cGAN). Med. Phys. 2021, 48, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Qiao, K.; Qin, R.; Xie, P.; Shi, S.; Liang, N.; Wang, L.; Chen, J.; Hu, G.; Yan, B. ShapeEditor: A StyleGAN Encoder for Stable and High Fidelity Face Swapping. Front. Neurorobotics 2021, 15, 785808. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, J.; Jun, J.J.; Xie, X.Q. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors. Mol. Pharm. 2019, 16, 4451–4460. [Google Scholar] [CrossRef]
- Maguluri, G.; Grimble, J.; Caron, A.; Zhu, G.; Krishnamurthy, S.; McWatters, A.; Beamer, G.; Lee, S.Y.; Iftimia, N. Core Needle Biopsy Guidance Based on Tissue Morphology Assessment with AI-OCT Imaging. Diagnostics 2023, 13, 2276. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T.; Tibshirani, R. Sparse Principal Component Analysis. J. Comput. Graph. Stat. 2006, 15, 265–286. [Google Scholar] [CrossRef]
- Song, F.; Guo, Z.; Mei, D. Feature Selection Using Principal Component Analysis. In Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 12–14 November 2010. [Google Scholar]
- Lin, W.; Pixu, S.; Rui, F.; Hongzhe, L. Variable selection in regression with compositional covariates. Biometrika 2014, 101, 785–797. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Matsui, H.; Konishi, S. Variable selection for functional regression models via the L1 regularization. Comput. Stat. Data Anal. 2011, 55, 3304–3310. [Google Scholar] [CrossRef]
- Wolfe, P.J.; Godsill, S.J.; Ng, W.-J. Bayesian Variable Selection and Regularization for Time–Frequency Surface Estimation. J. R. Stat. Soc. Ser. B Stat. Methodol. 2004, 66, 575–589. [Google Scholar] [CrossRef]
- Al Sudani, Z.A.; Salem, G.S.A. Evaporation Rate Prediction Using Advanced Machine Learning Models: A Comparative Study. Adv. Meteorol. 2022, 2022, 1433835. [Google Scholar] [CrossRef]
Image Quality Assessment By Pathologist | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | I10 | I11 | I12 | I13 | I14 | I15 | I16 | I17 | I18 | I19 | I20 | |
BLADDAR | P | P | F | P | P | P | P | P | F | P | P | P | P | P | P | P | F | P | P | P |
CERVIX | P | P | F | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
KIDNEY | F | P | P | P | F | P | P | P | P | F | F | F | P | F | P | P | P | P | P | P |
OVARY | P | F | F | P | P | F | P | F | P | P | F | F | F | P | P | P | F | F | F | F |
PROSTATE | P | P | P | P | P | P | P | P | F | P | P | F | P | P | P | P | P | P | F | P |
TESTIS | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
UTERUS | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
VAGINA | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Booven, D.J.; Chen, C.-B.; Malpani, S.; Mirzabeigi, Y.; Mohammadi, M.; Wang, Y.; Kryvenko, O.N.; Punnen, S.; Arora, H. Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision. J. Pers. Med. 2024, 14, 703. https://doi.org/10.3390/jpm14070703
Van Booven DJ, Chen C-B, Malpani S, Mirzabeigi Y, Mohammadi M, Wang Y, Kryvenko ON, Punnen S, Arora H. Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision. Journal of Personalized Medicine. 2024; 14(7):703. https://doi.org/10.3390/jpm14070703
Chicago/Turabian StyleVan Booven, Derek J., Cheng-Bang Chen, Sheetal Malpani, Yasamin Mirzabeigi, Maral Mohammadi, Yujie Wang, Oleksander N. Kryvenko, Sanoj Punnen, and Himanshu Arora. 2024. "Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision" Journal of Personalized Medicine 14, no. 7: 703. https://doi.org/10.3390/jpm14070703
APA StyleVan Booven, D. J., Chen, C. -B., Malpani, S., Mirzabeigi, Y., Mohammadi, M., Wang, Y., Kryvenko, O. N., Punnen, S., & Arora, H. (2024). Synthetic Genitourinary Image Synthesis via Generative Adversarial Networks: Enhancing Artificial Intelligence Diagnostic Precision. Journal of Personalized Medicine, 14(7), 703. https://doi.org/10.3390/jpm14070703