High-Dose versus Low-Dose Oxytocin for Labor Augmentation: A Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Data Extraction and Risk of Bias Assessment
2.5. Endpoints and Definitions
2.6. Statistical Analysis
3. Results
3.1. Study Selection and Baseline Characteristics
3.2. Cesarean
3.3. Hemorrhage
3.4. Neonatal Death
3.5. NICU
3.6. Instrumental Vaginal Delivery
3.7. Uterine Tachysystole
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pospiech, K.; Czajkowski, K. Amniotic fluid lactate level as a diagnostic tool for prolonged labour. J. Mother Child 2020, 24, 3–7. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matta, P.; Turner, J.; Flatley, C.; Kumar, S. Prolonged second stage of labour increases maternal morbidity but not neonatal morbidity. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Miseljic, N.; Ibrahimovic, S. Health Implications of Increased Cesarean Section Rates. Mater. Sociomed. 2020, 32, 123–126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Upawi, S.N.; Ahmad, M.F.; Abu, M.A.; Ahmad, S. Amniotomy and early oxytocin infusion vs amniotomy and delayed oxytocin infusion for labour augmentation amongst nulliparous women at term: A randomised controlled trial. Midwifery 2022, 105, 103238. [Google Scholar] [CrossRef] [PubMed]
- Iovino, M.; Messana, T.; Tortora, A.; Giusti, C.; Lisco, G.; Giagulli, V.A.; Guastamacchia, E.; De Pergola, G.; Triggiani, V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 91–110. [Google Scholar] [CrossRef]
- Hermesch, A.C.; Kernberg, A.S.; Layoun, V.R.; Caughey, A.B. Oxytocin: Physiology, Pharmacology, and Clinical Application for Labor Management. Am. J. Obstet. Gynecol. 2023, 230, S729–S739. [Google Scholar] [CrossRef]
- Ferraz Barbosa, B.; de Moraes, F.C.A.; Araujo Alves da Silva, B.; Bordignon Barbosa, C.; Pereira da Silva, I.; da Silva, E.R.; Barros, J.C.M.; Rebouças, L.W.C.; Dos Santos, N.P.C.; Fernandes, M.R. The Use of Honey for Cicatrization and Pain Control of Obstetric Wounds: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2024, 16, 185. [Google Scholar] [CrossRef]
- Carlson, N.; Ellis, J.; Page, K.; Dunn Amore, A.; Phillippi, J. Review of Evidence-Based Methods for Successful Labor Induction. J. Midwifery Womens Health 2021, 66, 459–469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burguet, A.; Rousseau, A. Oxytocin Administration during Spontaneous Labor: Guidelines for Clinical Practice. Chapter 6: Fetal, Neonatal and Pediatric Risks and Adverse Effects of Using Oxytocin Augmentation during Spontaneous Labor. J. Gynecol. Obstet. Hum. Reprod. 2017, 46, 523–530. [Google Scholar] [CrossRef]
- Hinshaw, K.; Simpson, S.; Cummings, S.; Hildreth, A.; Thornton, J. A Randomised Controlled Trial of Early versus Delayed Oxytocin Augmentation to Treat Primary Dysfunctional Labour in Nulliparous Women. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 1289–1295; discussion 1295–1296. [Google Scholar] [CrossRef]
- Bernitz, S.; Betran, A.P.; Gunnes, N.; Zhang, J.; Blix, E.; Øian, P.; Eggebøs, T.M.; Dalbye, R. Association of oxytocin augmentation and duration of labour with postpartum haemorrhage: A cohort study of nulliparous women. Midwifery 2023, 123, 103705. [Google Scholar] [CrossRef] [PubMed]
- Mori, R.; Tokumasu, H.; Pledge, D.; Kenyon, S. High Dose versus Low Dose Oxytocin for Augmentation of Delayed Labour. Cochrane Database Syst. Rev. 2011, CD007201. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Bidgood, K.A.; Steer, P.J. A Randomized Control Study of Oxytocin Augmentation of Labour. 1. Obstetric Outcome. Br. J. Obstet. Gynaecol. 1987, 94, 512–517. [Google Scholar] [CrossRef]
- Frigoletto, F.D.; Lieberman, E.; Lang, J.M.; Cohen, A.; Barss, V.; Ringer, S.; Datta, S. A Clinical Trial of Active Management of Labor. N. Engl. J. Med. 1995, 333, 745–750. [Google Scholar] [CrossRef]
- Hourvitz, A.; Alcalay, M.; Korach, J.; Lusky, A.; Barkai, G.; Seidman, D.S. A Prospective Study of High- versus Low-Dose Oxytocin for Induction of Labor. Acta Obstet. Gynecol. Scand. 1996, 75, 636–641. [Google Scholar] [CrossRef]
- Jamal, A.; Kalantari, R. High and Low Dose Oxytocin in Augmentation of Labor. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2004, 87, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, S.; Armstrong, N.; Johnston, T.; Walkinshaw, S.; Petrou, S.; Howman, A.; Cheed, V.; Markham, C.; McNicol, S.; Willars, J.; et al. Standard- or High-Dose Oxytocin for Nulliparous Women with Confirmed Delay in Labour: Quantitative and Qualitative Results from a Pilot Randomised Controlled Trial. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 1403–1412. [Google Scholar] [CrossRef]
- Liu, J.; Yi, Y.; Weiwei, X. Effects of Increased Frequency, High Dose, and Pulsatile Oxytocin Regimens on Abnormal Labor Delivery. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 2063–2071. [Google Scholar] [CrossRef]
- Majoko, F. Effectiveness and Safety of High Dose Oxytocin for Augmentation of Labour in Nulliparous Women. Cent. Afr. J. Med. 2001, 47, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Manjula, B.G.; Bagga, R.; Kalra, J.; Dutta, S. Labour Induction with an Intermediate-Dose Oxytocin Regimen Has Advantages over a High-Dose Regimen. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2015, 35, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Merrill, D.C.; Zlatnik, F.J. Randomized, Double-Masked Comparison of Oxytocin Dosage in Induction and Augmentation of Labor. Obstet. Gynecol. 1999, 94, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.R.; Stubbs, T.M.; Laurent, S.L. A Prospective Randomized Clinical Trial Comparing Two Oxytocin Induction Protocols. Am. J. Obstet. Gynecol. 1992, 167, 373–380; discussion 380–381. [Google Scholar] [CrossRef] [PubMed]
- Northwestern University. Comparison of Low-Dose and High-Dose Oxytocin Regimens for Labor Augmentation (No. NCT02487797). 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT02487797 (accessed on 16 March 2024).
- Neerukonda, M.N.; More, S.; Himabindu, N. High Dose Oxytocin Versus Low Dose Oxytocin for Augmentation of Labor: A Prospective, Comparative, Randomized Study. Int. J. Med. Res. Health Sci. 2018, 7, 6–10. [Google Scholar]
- Padmaja, J. The Comparative Study Between High Dose Versus Low Dose Oxytocin for Augmentation of Labour Concerning Maternal and Fetal Outcome. Available online: https://ejmcm.com/issue-content/the-comparative-study-between-high-dose-versus-low-dose-oxytocin-for-augmentation-of-labour-concerning-maternal-and-fetal-outcome-5543 (accessed on 16 March 2024).
- Prichard, N.; Lindquist, A.; Hiscock, R.; Ruff, S.; Tong, S.; Brownfoot, F.C. High-dose compared with low-dose oxytocin for induction of labour of nulliparous women at term. J. Matern. Fetal Neonatal Med. 2019, 32, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Selin, L.; Wennerholm, U.-B.; Jonsson, M.; Dencker, A.; Wallin, G.; Wiberg-Itzel, E.; Almström, E.; Petzold, M.; Berg, M. High-Dose versus Low-Dose of Oxytocin for Labour Augmentation: A Randomised Controlled Trial. Women Birth J. Aust. Coll. Midwives 2019, 32, 356–363. [Google Scholar] [CrossRef]
- Satin, A.J.; Leveno, K.J.; Sherman, M.L.; Brewster, D.S.; Cunningham, F.G. High- versus Low-Dose Oxytocin for Labor Stimulation. Obstet. Gynecol. 1992, 80, 111–116. [Google Scholar]
- Son, M.; Roy, A.; Stetson, B.T.; Grady, N.T.; Vanecko, M.C.; Bond, N.; Swanson, K.; Grobman, W.A.; Miller, E.S.; Peaceman, A.M. High-Dose Compared with Standard-Dose Oxytocin Regimens to Augment Labor in Nulliparous Women: A Randomized Controlled Trial. Obstet. Gynecol. 2021, 137, 991–998. [Google Scholar] [CrossRef]
- Tesemma, M.G.; Sori, D.A.; Gemeda, D.H. High Dose and Low Dose Oxytocin Regimens as Determinants of Successful Labor Induction: A Multicenter Comparative Study. BMC Pregnancy Childbirth 2020, 20, 232. [Google Scholar] [CrossRef]
- Toaff, M.E.; Hezroni, J.; Toaff, R. Induction of Labour by Pharmacological and Physiological Doses of Intravenous Oxytocin. Br. J. Obstet. Gynaecol. 1978, 85, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.M.; Bounthavong, M.; Hill, M.G. High- vs Low-Dose Oxytocin in Lean and Obese Women: A Double-Blinded Randomized Controlled Trial. Am. J. Obstet. Gynecol. MFM 2022, 4, 100627. [Google Scholar] [CrossRef] [PubMed]
- Xenakis, E.M.; Langer, O.; Piper, J.M.; Conway, D.; Berkus, M.D. Low-Dose versus High-Dose Oxytocin Augmentation of Labor--a Randomized Trial. Am. J. Obstet. Gynecol. 1995, 173, 1874–1878. [Google Scholar] [CrossRef]
- Boie, S.; Glavind, J.; Uldbjerg, N.; Steer, P.J.; Bor, P. CONDISOX trial group Continued versus Discontinued Oxytocin Stimulation in the Active Phase of Labour (CONDISOX): Double Blind Randomised Controlled Trial. BMJ 2021, 373, n716. [Google Scholar] [CrossRef]
- Aboshama, R.A.; Abdelhakim, A.M.; Shareef, M.A.; AlAmodi, A.A.; Sunoqrot, M.; Alborno, N.M.; Gadelkarim, M.; Abbas, A.M.; Bakry, M.S. High dose vs. low dose oxytocin for labor augmentation: A systematic review and meta-analysis of randomized controlled trials. J. Perinat. Med. 2020, 49, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Leathersich, S.J.; Vogel, J.P.; Tran, T.S.; Hofmeyr, G.J. Acute tocolysis for uterine tachysystole or suspected fetal distress. Cochrane Database Syst. Rev. 2018, 7, CD009770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hofer, S.; Blaha, J.; Collins, P.W.; Ducloy-Bouthors, A.S.; Guasch, E.; Labate, F.; Lança, F.; Nyfløt, L.T.; Steiner, K.; Van de Velde, M. Haemostatic support in postpartum haemorrhage: A review of the literature and expert opinion. Eur. J. Anaesthesiol. 2023, 40, 29–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chavez, M.P.; Pasqualotto, E.; Ferreira, R.O.M.; Hohl, A.; de Moraes, F.C.A.; Schmidt, P.H.S.; Rodrigues, A.L.S.d.O.; de Sa, J.R. Fezolinetant for the Treatment of Vasomotor Symptoms Associated with Menopause: A Meta-Analysis. Climacteric 2024, 27, 245–254. [Google Scholar] [CrossRef]
Study, Year | Design | Intervention | Control | Gestational Age | Age (Mean) | Nullipara | Cervical Dilatation |
---|---|---|---|---|---|---|---|
Bidgood, 1987 [15] | RCT | high dose (19) | low dose (21) | >34 weeks | NI | NI | <0.5 cm/h |
Frigoletto, 1995 [16] | RCT | high dose (678) | low dose (585) | ≥36 weeks | NI | I: 678 (100%) C:585 (100%) | I: 3.3 ± 2.0 C: 3.6 ± 2.1 |
Hourvitz, 1996 [17] | RCT | high dose (83) | low dose (65) | I: 41.0 ± 51.5 C: 40.7 ± 1.5 | I: 28.4 ± 5.0 C: 28.7 ± 5.4 | I: 47 (56.1%) C:34 (51.9%) | I: 1.8 ± 0.9 C: 1.7 ± 0.9 |
Jamal, 2004 [18] | RCT | high dose (100) | low dose (100) | I: 39.1 ± 1.3 C: 38.0 ± 1.3 | I: 25.4 ± 4.9 C: 26.3 ± 5.1 | I: 50 (50%) C:41 (41%) | I: 3.5 ± 0.7 C: 3.7 ± 0.7 |
Kenyon, 2013 [19] | RCT | high dose (47) | low dose (47) | ≥37 weeks | NI | I: 47 (100%) C:47 (100%) | >4 cm |
Liu, 2018 [20] | RCT | high dose (324) | low dose (162) | I: 278 ± 4 days C: 281 ± 5 days | I: 25.53 ± 2.46 C: 25.46 ± 1.95 | I: 138 (85%) C:142 (88%) | >28 mm |
Majoko, 2001 [21] | RCT | high dose (125) | low dose (133) | I: 39.2 ± 2.1 C: 39.7 ± 2.1 | I: 20.2 ± 3.3 C: 20.4 ± 3.5 | I: 125 (100%) C:133 (100%) | I: 6.0 ± 1.6 C: 6.3 ± 1.7 |
Manjula, 2015 [22] | RCT | high dose (100) | low dose (100) | I: 38.2 ± 1.07 C: 38.0 ± 1.11 | I: 26.0 ± 3.4 C: 26.2 ± 3.7 | I: 65 (65%) C:63 (63%) | ≥3 cm |
Merril, 1999 [23] | double-blind RCT | high dose (249) | low dose (242) | I: 39.1 ± 0.1 C: 38.9 ± 0.1 | I: 25.4 ± 0.4 C: 25.4 ± 0.4 | I: 135 (54.2%) C:115 (47.5%) | I: 4.7 ± 0.1 C: 5.0 ± 0.1 |
Muller, 1992 [24] | RCT | high dose (70) | low dose (68) | I: 40.5 ± 1.6 C: 40.6 ± 1.5 | I: 22.7 ± 5.7 C: 22.3 ± 5.3 | I: 46 (65.7%) C:45 (66.2%) | I: 1.7 ± 1.1 C:1.8 ± 1.1 |
NCT, 2022 [25] | RCT | high dose (10) | low dose (10) | 38.7 ± 1.85 | 26.2 ± 5.26 | NI | NI |
Neerukonda, 2018 [26] | RCT | high dose (200) | low dose (200) | I: 38.9 ± 0.88 C: 39.0 ± 0.86 | I: 24.1 ± 3.5 C: 24.4 ± 3.2 | I: 98 (49%) C:98 (49%) | NI |
Padmaja, 2022 [27] | RCT | high dose (90) | low dose (90) | I: 38.6 ± 2.5 C: 38.1 ± 1.2 | I: 25.0 ± 4.0 C: 24.7 ± 4.1 | I: 90 (100%) C:90 (100%) | ≥3 cm |
Prichard, 2019 [28] | retrospective | high dose (2674) | low dose (2211) | I: 39.9 ± 1.30 C: 39.7 ± 1.30 | I: 30.3 ± 4.7 C: 30.7 ± 4.6 | I: 2674 (100%) C:2211 (100%) | I: 645 (29.2%) C: 1016 (38%) |
Selin, 2019 [29] | RCT | high dose (647) | low dose (648) | I: 29.9 ± 4.8 C: 29.9 ± 4.6 | I: 29.0 ± 4.8 C: 29.0 ± 4.6 | I: 647 (100%) C:648 (100%) | I: 3.47 ± 1.55 C: 3.50 ± 1.60 |
Satin, 1992 [30] | RCT | high dose (1537) | low dose (1252) | I: 39.0 0 ± 0.1 C: 39.0 0 ± 0.1 | I: 22.7 0 ± 0.2 C: 22.9 ± 0.2 | I: 938 (61%) C:751 (60%) | ≥3 cm I: 48% C:47% |
Son, 2020 [31] | double-blind RCT | high dose (502) | standard dose (501) | I: 39.1 ± 0.8 C: 39.1 ± 0.7 | I: 31.5 ± 4.4 C: 31.7 ± 4.3 | I: 502 (100%) C:501 (100%) | ≥3 cm |
Tesemma, 2020 [32] | cross-sectional | high dose (108) | low dose (108) | 39.4 weeks | 26 years | I: 56 (51.9%) C:32 (29.6%) | ≥4 cm |
Toaff, 1978 [33] | prospective | pharmacological dose (134) | physiological dose (144) | I: 39.51 ± 0.95 C: 43.62 ± 4.27 | I: 24- 1 ± 2.5 C: 23.2 ± 2.3 | I: 64 (47.74%) C:62 (43.06%) | NI |
Wei, 2022 [34] | double-blind RCT | high dose (70) | low dose (70) | ≥37 weeks | I: 27.67 ± 4.86 C: 29.73 ± 5.54 | I: 21 (30%) C:22 (31.43%) | NI |
Xenakis, 1995 [35] | RCT | high dose (154) | low dose (156) | I: 40.2 ± 1.6 C: 39.9 ± 2.0 | I: 24.4 ± 5.9 C: 24.2 ± 6.9 | I: 72 (46.75%) C:94 (60.26%) | I: 5.4 cm C: 6.2 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, F.C.A.d.; Kelly, F.A.; Leite, M.G.H.S.J.; Dal Moro, L.; Morbach, V.; Burbano, R.M.R. High-Dose versus Low-Dose Oxytocin for Labor Augmentation: A Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2024, 14, 724. https://doi.org/10.3390/jpm14070724
Moraes FCAd, Kelly FA, Leite MGHSJ, Dal Moro L, Morbach V, Burbano RMR. High-Dose versus Low-Dose Oxytocin for Labor Augmentation: A Meta-Analysis of Randomized Controlled Trials. Journal of Personalized Medicine. 2024; 14(7):724. https://doi.org/10.3390/jpm14070724
Chicago/Turabian StyleMoraes, Francisco Cezar Aquino de, Francinny Alves Kelly, Marianna Gerardo Hidalgo Santos Jorge Leite, Lucca Dal Moro, Victória Morbach, and Rommel Mario Rodríguez Burbano. 2024. "High-Dose versus Low-Dose Oxytocin for Labor Augmentation: A Meta-Analysis of Randomized Controlled Trials" Journal of Personalized Medicine 14, no. 7: 724. https://doi.org/10.3390/jpm14070724
APA StyleMoraes, F. C. A. d., Kelly, F. A., Leite, M. G. H. S. J., Dal Moro, L., Morbach, V., & Burbano, R. M. R. (2024). High-Dose versus Low-Dose Oxytocin for Labor Augmentation: A Meta-Analysis of Randomized Controlled Trials. Journal of Personalized Medicine, 14(7), 724. https://doi.org/10.3390/jpm14070724