Bone Tissue Changes in Individuals Living with HIV/AIDS: The Importance of a Hierarchical Approach in Investigating Bone Fragility
Abstract
:1. Introduction
2. Literature Search Strategy
3. Osteodensitometry Findings in PLWHIV
4. Antiretroviral Therapy Effects on Osteodensitometry Findings in PLWHIV
5. The Importance of Multi-Scale Bone Assessment in PLWHIV
Study (Reference) | Study Design | Number of Patients with HIV | Imaging Method | Assessed Skeletal Site | Main Results on Bone Micro-Architecture |
---|---|---|---|---|---|
Serrano S. et al. [58] | Case–control study | n = 22 male, n = 13 female, n = 9 | Optic microscopy | Iliac bone | No significant difference in BVTV, Tb.Th, or Tb.N; significantly reduced osteoid volume and mildly altered osteoblast activity in PLWHIV. |
Yin M. et al. [59] | Case–control study | n = 46 female, n = 46 on ART, n = 37 | HRpQCT | DR, DT | No significant difference in trabecular or cortical micro-architecture in DR; reduced tibial Ct.Th was noted in postmenopausal WLWHIV; cART did not display a significant effect on bone micro-architecture. |
Calmy A. et al. [60] | Case–control study | n = 22 female, n = 22 on ART, n = 22 | HRpQCT | DR, DT | No significant difference in radial micro-architecture; low tibial Tb.N and high tibial Tb.Sp were noted in premenopausal WLWHIV; cART did not display a significant effect on bone micro-architecture. |
Biver E. et al. [61] | Case–control study | n = 28 male, n = 28 on ART, n = 28 | HRpQCT | DR, DT | Significantly low radial Tb.N and Ct.Th, coupled with high radial Tb.Sp, were noted in PLWHIV; reduced tibial Tb.Th was noted in men older than 60 years with long-term HIV infection. |
Lo Re V. et al. [62] | Case–control study | n = 100 female, n = 100 HCV/HIV, n = 50 | HRpQCT | DT | Low tibial Ct.Th was noted in WLWHIV, while tibial trabecular density and Ct.Th were lower in individuals with HCV/HIV confection. |
Sellier P et al. [63] | Case–control study | n = 100 male, n = 53 on TDF, n = 53 | HRpQCT | DR, DT | Trabecular micro-architecture deteriorated, while no significant changes were noted in the cortical compartment of PLWHIV treated with TDF. |
Tan D. et al. [55] | Case–control study | n = 46 male, n = 36 with fracture, n = 23 | HRpQCT | DR, DT | PLWHIV with prior bone fracture had a lower tibial trabecular bone mass and Ct.Th, coupled with a mild trend toward higher radial cortical porosity. |
Kazakia G. et al. [64] | Case–control study | n = 8 male, n = 8 on ART, n = 8 | MRI HRpQCT | PF, DR, DT | Lower Tb.Th and Tb.N of the femoral head, coupled with lower tibial Tb.N and higher tibial Tb.Sp in PLWHIV, compared to uninfected controls. |
Foreman S. et al. [65] | Cross-sectional study | n = 43 male, n = 37 on ART, n = 43 | HRpQCT | UDR, UDT | Malnutrition, physical activity, longer duration of HIV infection, and use of the TDF/PI combination were associated with an altered bone micro-architecture in PLWHIV. |
MacDonald H. et al. [66] | Case–control study | n = 50 female, n = 50 on ART, n = 50 | HRpQCT | DR, DT | Lower radial Tb.N and Tb.Th, coupled with lower tibial Tb.Th, were noted in WLWHIV. Tenofovir treatment may contribute to these bone deficits. |
Shiau S. et al. [69] | Case–control study | n = 172 boys, n = 86 on ART, n = 172 | pQCT | DR, DT | Reduced trabecular area, Ct.Th, and periosteal cortical circumference were noted in children living with HIV compared to uninfected controls. |
6. The Molecular Mechanisms Involved in Etiopathogenesis of Skeletal Alterations in PLWHIV
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGee, D.M.; Cotter, A.G. HIV and Fracture: Risk, Assessment and Intervention. HIV Med. 2024, 25, 511–528. [Google Scholar] [CrossRef]
- Pramukti, I.; Lindayani, L.; Chen, Y.C.; Yeh, C.Y.; Tai, T.W.; Fetzer, S.; Ko, N.Y. Bone Fracture among People Living with HIV: A Systematic Review and Meta-Regression of Prevalence, Incidence, and Risk Factors. PLoS ONE 2020, 15, e0233501. [Google Scholar] [CrossRef]
- Ilha, T.A.S.H.; Comim, F.V.; Copes, R.M.; Compston, J.E.; Premaor, M.O. HIV and Vertebral Fractures: A Systematic Review and Metanalysis. Sci. Rep. 2018, 8, 7838. [Google Scholar] [CrossRef]
- Chang, C.J.; Chan, Y.L.; Pramukti, I.; Ko, N.Y.; Tai, T.W. People with HIV Infection Had Lower Bone Mineral Density and Increased Fracture Risk: A Meta-Analysis. Arch. Osteoporos. 2021, 16, 47. [Google Scholar] [CrossRef]
- Young, B.; Dao, C.N.; Buchacz, K.; Baker, R.; Brooks, J.T. Increased Rates of Bone Fracture among HIV-Infected Persons in the HIV Outpatient Study (HOPS) Compared with the US General Population, 2000-2006. Clin. Infect. Dis. 2011, 52, 1061–1068. [Google Scholar] [CrossRef]
- Battalora, L.; Young, B.; Overton, E. Bones, Fractures, Antiretroviral Therapy and HIV Linda. Curr. Infect. Dis. Rep. 2014, 16, 393. [Google Scholar] [CrossRef]
- Caixas, U.; Tariq, S.; Morello, J.; Dragovic, G.; Lourida, G.; Hachfeld, A.; Nwokolo, N. Comorbidities and Menopause Assessment in Women Living with HIV: A Survey of Healthcare Providers across the WHO European Region. AIDS Care—Psychol. Socio-Med. Asp. AIDS/HIV 2024, 36, 107–114. [Google Scholar] [CrossRef]
- Cortes, Y.; Yin, M.T.; Reame, N.K. Bone Density and Fractures in HIV-Infected Postmenopausal Women: A Systematic Review. J. Assoc. Nurces AIDS Care 2015, 26, 387–398. [Google Scholar] [CrossRef]
- Costagliola, D.; Potard, V.; Lang, S.; Abgrall, S.; Duvivier, C.; Fischer, H.; Joly, V.; Lacombe, J.M.; Valantin, M.A.; Mary-Krause, M.; et al. Impact of Antiretroviral Drugs on Fracture Risk in HIV-Infected Individuals: A Case-Control Study Nested within the French Hospital Database on HIV (FHDH-ANRS CO4). J. Acquir. Immune Defic. Syndr. 2019, 80, 214–223. [Google Scholar] [CrossRef]
- Lima, A.L.L.M.; de Oliveira, P.R.; Plapler, P.G.; Marcolino, F.M.; Sugawara, A.; Gobbi, R.G.; dos Santos, A.L.G.; Camanho, G.L. Osteopenia and Osteoporosis in People Living with HIV: Multiprofessional Approach. HIV/AIDS—Res. Palliat. Care 2011, 1, 117–124. [Google Scholar] [CrossRef]
- Womack, J.A.; Murphy, T.E.; Leo-Summers, L.; Bates, J.; Jarad, S.; Gill, T.M.; Hsieh, E.; Rodriguez-Barradas, M.C.; Tien, P.C.; Yin, M.T.; et al. Assessing the Contributions of Modifiable Risk Factors to Serious Falls and Fragility Fractures among Older Persons Living with HIV. J. Am. Geriatr. Soc. 2023, 71, 1891–1901. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Delmas, P.D. Considerations for Development of Surrogate Endpoints for Antifracture Efficacy of New Treatments in Osteoporosis: A Perspective. J. Bone Miner. Res. 2008, 23, 1155–1167. [Google Scholar] [CrossRef]
- Venhoff, N.; Walker, U.A. Pathogenesis of Bone Disorders in HIV Infection. Int. J. Clin. Rheumtol. 2009, 4, 147–159. [Google Scholar] [CrossRef]
- Bloch, M.; Guaraldi, G. Bone Biomarkers in HIV. In Biomarkers in Bone Disease; Springer: Dordrecht, The Netherland, 2016; Volume 2016, pp. 1–27. [Google Scholar] [CrossRef]
- Cazanave, C.; Dupon, M.; Lavignolle-Aurillac, V.; Barthe, N.; Lawson-Ayayi, S.; Mehsen, N.; Mercie, P.; Morlat, P.; Thiebaut, R.; Dabis, F. Reduced Bone Mineral Density among HIV-Infected Patients in Taiwan: Prevalence and Associated Factors. AIDS 2008, 22, 395–402. [Google Scholar] [CrossRef]
- Bruera, D.; Luna, N.; David, D.O.; Bergoglio, L.M.; Zamudio, J. Decreased Bone Mineral Density in HIV-Infected Patients Is Independent of Antiretroviral Therapy. Aids 2003, 17, 1917–1923. [Google Scholar] [CrossRef]
- Mondy, K.; Yarasheski, K.; Powderly, W.G.; Whyte, M.; Claxton, S.; DeMarco, D.; Hoffmann, M.; Tebas, P. Longitudinal Evolution of Bone Mineral Density and Bone Markers in Human Immunodeficiency Virus-Infected Individuals. Clin. Infect. Dis. 2003, 36, 482–490. [Google Scholar] [CrossRef]
- Hileman, C.O.; Eckard, A.R.; McComsey, G.A. Bone Loss in HIV—A Contemporary Review. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 446–451. [Google Scholar] [CrossRef]
- Ahmed, M.; Mital, D.; Abubaker, N.E.; Panourgia, M.; Owles, H.; Papadaki, I.; Ahmed, M.H. Bone Health in People Living with HIV/AIDS: An Update of Where We Are and Potential Future Strategies. Microorganisms 2023, 11, 789. [Google Scholar] [CrossRef]
- Goh, S.S.L.; Lai, P.S.M.; Tan, A.T.B.; Ponnampalavanar, S. Reduced Bone Mineral Density in Human Immunodeficiency Virus-Infected Individuals: A Meta-Analysis of Its Prevalence and Risk Factors. Osteoporos. Int. 2018, 29, 595–613. [Google Scholar] [CrossRef]
- Starup-linde, J.; Rosendahl, B.; Storgaard, M. Management of Osteoporosis in Patients Living With HIV—A Systematic Review and Meta-Analysis. JAIDS J. Acquir. Immune Defic. Syndr. 2020, 83, 1–8. [Google Scholar] [CrossRef]
- Llop, M.; Sifuentes, W.A.; Bañón, S.; Macia-Villa, C.; Perez-Elías, M.J.; Rosillo, M.; Moreno, S.; Vázquez, M.; Casado, J.L. Increased Prevalence of Asymptomatic Vertebral Fractures in HIV-Infected Patients over 50 Years of Age. Arch. Osteoporos. 2018, 13, 56. [Google Scholar] [CrossRef]
- Brown, T.T.; Qaqish, R.B. Antiretroviral Therapy and the Prevalence of Osteopenia and Osteoporosis: A Meta-Analytic Review. Aids 2006, 20, 2165–2174. [Google Scholar] [CrossRef]
- Schinas, G.; Schinas, I.; Ntampanlis, G.; Polyzou, E.; Gogos, C.; Akinosoglou, K. Bone Disease in HIV: Need for Early Diagnosis and Prevention. Life 2024, 14, 522. [Google Scholar] [CrossRef]
- Moore, A.L.; Vashisht, A.; Sabin, C.A.; Mocroft, A.; Madge, S.; Phillips, A.N.; Studd, J.W.W.; Johnson, M.A. Reduced Bone Mineral Density in HIV-Positive Individuals. Aids 2001, 15, 1731–1733. [Google Scholar] [CrossRef]
- Carr, A.; Miller, J.; Eisman, J.A.; Cooper, D.A. Osteopenia in HIV-Infected Men: Association with Asymptomatic Lactic Acidemia and Lower Weight Pre-Antiretroviral Therapy. Aids 2001, 15, 703–709. [Google Scholar] [CrossRef]
- Knobel, H.; Guelar, A.; Vallecillo, G.; Nogués, X.; Díez, A. Osteopenia in HIV-Infected Patients: Is It the Disease or Is It the Treatment? Aids 2001, 15, 807–808. [Google Scholar] [CrossRef]
- Fernández-Rivera, J.; García, R.; Lozano, F.; Macías, J.; García-García, J.A.; Mira, J.A.; Corzo, J.E.; Gómez-Mateos, J.; Rueda, A.; Sánchez-Burson, J.; et al. Relationship between Low Bone Mineral Density and Highly Active Antiretroviral Therapy Including Protease Inhibitors in HIV-Infected Patients. HIV Clin. Trials 2003, 4, 337–346. [Google Scholar] [CrossRef]
- Amiel, C.; Ostertag, A.; Slama, L.; Baudoin, C.; N’Guyen, T.; Lajeunie, E.; Neit-Ngeilh, L.; Rozenbaum, W.; De Vernejoul, M.C. BMD Is Reduced in HIV-Infected Men Irrespective of Treatment. J. Bone Miner. Res. 2004, 19, 402–409. [Google Scholar] [CrossRef]
- García Aparicio, A.M.; Muñoz Fernández, S.; González, J.; Arribas, J.R.; Peña, J.M.; Vázquez, J.J.; Martínez, M.E.; Coya, J.; Martín Mola, E. Abnormalities in the Bone Mineral Metabolism in HIV-Infected Patients. Clin. Rheumatol. 2006, 25, 537–539. [Google Scholar] [CrossRef]
- Arnsten, J.; Freeman, R.; Howard, A.; Floris-Moore, M.; Lo, Y.; Klein, R. Decreased Bone Mineral Density and Increased Fracture Risk in Aging Men with or at Risk for HIV Infection. AIDS 2007, 21, 617–623. [Google Scholar] [CrossRef]
- Madeddu, G.; Spanu, A.; Solinas, P.; Babudieri, S.; Calia, G.M.; Lovigu, C.; Mannazzu, M.; Nuvoli, S.; Piras, B.; Bagella, P.; et al. Different Impact of NNRTI and PI-Including HAART on Bone Mineral Density Loss in HIV-Infected Patients. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4576–4589. [Google Scholar]
- Stellbrink, H.J.; Orkin, C.; Arribas, J.R.; Compston, J.; Gerstoft, J.; Van Wijngaerden, E.; Lazzarin, A.; Rizzardini, G.; Sprenger, H.G.; Lambert, J.; et al. Comparison of Changes in Bone Density and Turnover with Abacavir-Lamivudine versus Tenofovir-Emtricitabine in HIV-Infected Adults: 48-Week Results from the ASSERT Study. Clin. Infect. Dis. 2010, 51, 963–972. [Google Scholar] [CrossRef]
- McComsey, G.A.; Kitch, D.; Daar, E.S.; Tierney, C.; Jahed, N.C.; Tebas, P.; Myers, L.; Melbourne, K.; Ha, B.; Sax, P.E. Bone Mineral Density and Fractures in Antiretroviral-Naive Persons Randomized to Receive Abacavir-Lamivudine or Tenofovir Disoproxil Fumarate-Emtricitabine along with Efavirenz or Atazanavir-Ritonavir: AIDS Clinical Trials Group A5224s, a Substudy of ACTG. J. Infect. Dis. 2011, 203, 1791–1801. [Google Scholar] [CrossRef]
- Baranek, B.; Wang, S.; Cheung, A.M.; Mishra, S.; Tan, D.H.S. The Effect of Tenofovir Disoproxil Fumarate on Bone Mineral Density: A Systematic Review and Meta-analysis. Antivir. Ther. 2020, 25, 21–32. [Google Scholar] [CrossRef]
- Mills, A.; Arribas, J.R.; Andrade-Villanueva, J.; DiPerri, G.; Van Lunzen, J.; Koenig, E.; Elion, R.; Cavassini, M.; Madruga, J.V.; Brunetta, J.; et al. Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in Antiretroviral Regimens for Virologically Suppressed Adults with HIV-1 Infection: A Randomised, Active-Controlled, Multicentre, Open-Label, Phase 3, Non-Inferiority Study. Lancet Infect. Dis. 2016, 16, 43–52. [Google Scholar] [CrossRef]
- Pozniak, A.; Arribas, J.; Gathe, J.; Gupta, S.; Post, F.A.; Bloch, M.; Avihingsanon, A.; Crofoot, G.; Benson, P.; Lichtenstein, K.; et al. Switching to Tenofovir Alafenamide, Coformulated with Elvitegravir, Cobicistat, and Emtricitabine, in HIV-Infected Adults with Renal Impairment: 96-Week Results from a Single-Arm, Multicenter, Open-Label Phase 3 Study. J. Acquir. Immune Defic. Syndr. 2016, 71, 530–537. [Google Scholar] [CrossRef]
- Hill, A.; Hughes, S.L.; Gotham, D.; Pozniak, A.L. Tenofovir Alafenamide versus Tenofovir Disoproxil Fumarate: Is There a True Difference in Efficacy and Safety? J. Virus Erad. 2018, 4, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Walmsley, S.; Clarke, R.; Lee, T.; Singer, J.; Cheung, A.M.; Smaill, F. BEING: Bone Health in Aging Women with HIV: Impact of Switching Antiretroviral Therapy on Bone Mineral Density During the Perimenopausal Period. AIDS Res. Hum. Retroviruses 2023, 39, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Han, W.M.; Wattanachanya, L.; Apornpong, T.; Jantrapakde, J.; Avihingsanon, A.; Kerr, S.J.; Teeratakulpisarn, N.; Jadwattanakul, T.; Chaiwatanarat, T.; Buranasupkajorn, P.; et al. Bone Mineral Density Changes among People Living with HIV Who Have Started with TDF-Containing Regimen: A Five-Year Prospective Study. PLoS ONE 2020, 15, e0230368. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.L.; Santiuste, C.; Vazquez, M.; Bañón, S.; Rosillo, M.; Gomez, A.; Perez-Eĺas, M.J.; Caballero, C.; Rey, J.M.; Moreno, S. Bone Mineral Density Decline According to Renal Tubular Dysfunction and Phosphaturia in Tenofovir-Exposed HIV-Infected Patients. Aids 2016, 30, 1423–1431. [Google Scholar] [CrossRef]
- Mothobi, N.Z.; Masters, J.; Marriott, D.J. Fanconi Syndrome Due to Tenofovir Disoproxil Fumarate Reversed by Switching to Tenofovir Alafenamide Fumarate in an HIV-Infected Patient. Ther. Adv. Infect. Dis. 2018, 5, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.M.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major Revision Version 12.0 of the European AIDS Clinical Society Guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Soldado-Folgado, J.; Lerma-Chippirraz, E.; Arrieta-Aldea, I.; Bujosa, D.; García-Giralt, N.; Pineda-Moncusi, M.; Trenchs-Rodríguez, M.; Villar-García, J.; González-Mena, A.; Díez-Pérez, A.; et al. Bone Density, Microarchitecture and Tissue Quality after 1 Year of Treatment with Dolutegravir/Abacavir/Lamivudine. J. Antimicrob. Chemother. 2020, 75, 2998–3003. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.H.; Cheng, D.M.; Libman, H.; Nunes, D.P.; Alperen, J.K.; Saitz, R. Alcohol Consumption and HIV Disease Progression. J. Acquir. Immune Defic. Syndr. 2007, 46, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Womack, J.A.; Goulet, J.L.; Gibert, C.; Brandt, C.; Chang, C.C.; Gulanski, B.; Fraenkel, L.; Mattocks, K.; Rimland, D.; Rodriguez-Barradas, M.C.; et al. Increased Risk of Fragility Fractures among HIV Infected Compared to Uninfected Male Veterans. PLoS ONE 2011, 6, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Saitz, R.; Mesic, A.; Ventura, A.S.; Winter, M.R.; Heeren, T.C.; Sullivan, M.M.; Walley, A.Y.; Patts, G.J.; Meli, S.M.; Holick, M.F.; et al. Alcohol Consumption and Bone Mineral Density in People with HIV and Substance Use Disorder: A Prospective Cohort Study. Alcohol. Clin. Exp. Res. 2018, 42, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Jadzic, J.; Milovanovic, P.; Cvetkovic, D.; Ivovic, M.; Tomanovic, N.; Bracanovic, M.; Zivkovic, V.; Nikolic, S.; Djuric, M.; Djonic, D. Mechano-Structural Alteration in Proximal Femora of Individuals with Alcoholic Liver Disease: Implications for Increased Bone Fragility. Bone 2021, 150, 116020. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Morin, S.N.; Martineau, P.; Lix, L.M.; Hans, D.; Leslie, W.D. Frequency of Normal Bone Measurement in Postmenopausal Women with Fracture: A Registry-Based Cohort Study. Osteoporos. Int. 2020, 31, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Olali, A.Z.; Carpenter, K.A.; Myers, M.; Sharma, A.; Yin, M.T.; Al-Harthi, L.; Ross, R.D. Bone Quality in Relation to HIV and Antiretroviral Drugs. Curr. HIV/AIDS Rep. 2022, 19, 312–327. [Google Scholar] [CrossRef]
- Marshall, D.; Johnell, O.; Wedel, H. Meta-Analysis of How Well Measures of Bone Mineral Density Predict Occurrence of Osteoporotic Fractures. Br. Med. J. 1996, 312, 1254–1259. [Google Scholar] [CrossRef]
- Sarkar, S.; Mitlak, B.H.; Wong, M.; Stock, J.L.; Black, D.M.; Harper, K.D. Relationships between Bone Mineral Density and Incident Vertebral Fracture Risk with Raloxifene Therapy. J. Bone Miner. Res. 2002, 17, 1–10. [Google Scholar] [CrossRef]
- Bjarnason, N.H.; Sarkar, S.; Duong, T.; Mitlak, B.; Delmas, P.D.; Christiansen, C. Six and Twelve Month Changes in Bone Turnover Are Related to Reduction in Vertebral Fracture Risk during 3 Years of Raloxifene Treatment in Postmenopausal Osteoporosis. Osteoporos. Int. 2001, 12, 922–930. [Google Scholar] [CrossRef]
- Schini, M.; Vilaca, T.; Lui, L.-Y.; Ewing, S.K.; Thompson, A.; Vittinghoff, E.; Bauer, D.C.; Bouxsein, M.L.; Black, D.M.; Eastell, R. Pre-Treatment Bone Mineral Density (BMD) and the Benefit of Pharmacologic Treatment on Fracture Risk and BMD Change: Analysis from the FNIH-ASBMR SABRE Project. J. Bone Miner. Res. 2024, zjae068. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.H.S.; Raboud, J.; Szadkowski, L.; Szabo, E.; Hu, H.; Wong, Q.; Cheung, A.M.; Walmsley, S.L. Novel Imaging Modalities for the Comparison of Bone Microarchitecture among HIV+ Patients with and without Fractures: A Pilot Study. HIV Clin. Trials 2017, 18, 28–38. [Google Scholar] [CrossRef]
- Sharma, A.; Ma, Y.; Tien, P.; Scherzer, R.; Anastos, K.; Cohen, M.; Hans, D.; Yin, M. HIV Infection Is Associated with Abnormal Bone Microarchitecture: Measurement of Trabecular Bone Score in the Women’s Interagency HIV Study. J. Acuir Immune Defic. Syndr. 2018, 78, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Ciullini, L.; Pennica, A.; Argento, G.; Novarini, D.; Teti, E.; Pugliese, G.; Aceti, A.; Conti, F.G. Trabecular Bone Score (TBS) Is Associated with Sub-Clinical Vertebral Fractures in HIV-Infected Patients. J. Bone Miner. Metab. 2018, 36, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.; Mariñoso, M.L.; Soriano, J.C.; Rubiés-Prat, J.; Aubia, J.; Coll, J.; Bosch, J.; Del Rio, L.; Vila, J.; Goday, A.; et al. Bone Remodelling in Human Immunodeficiency Virus-1-Infected Patients. A Histomorphometric Study. Bone 1995, 16, 185–191. [Google Scholar] [CrossRef]
- Yin, M.T.; Shu, A.; Zhang, C.A.; Boutroy, S.; McMahon, D.J.; Ferris, D.C.; Colon, I.; Shane, E. Trabecular and Cortical Microarchitecture in Postmenopausal HIV-Infected Women. Calcif. Tissue Int. 2013, 92, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Calmy, A.; Chevalley, T.; Delhumeau, C.; Toutous-Trellu, L.; Spycher-Elbes, R.; Ratib, O.; Zawadynski, S.; Rizzoli, R. Long-Term HIV Infection and Antiretroviral Therapy Are Associated with Bone Microstructure Alterations in Premenopausal Women. Osteoporos. Int. 2013, 24, 1843–1852. [Google Scholar] [CrossRef]
- Biver, E.; Calmy, A.; Delhumeau, C.; Durosier, C.; Zawadynski, S.; Rizzoli, R. Microstructural Alterations of Trabecular and Cortical Bone in Long-Term HIV-Infected Elderly Men on Successful Antiretroviral Therapy. Aids 2014, 28, 2417–2427. [Google Scholar] [CrossRef]
- Lo Re, V.; Lynn, K.; Stumm, E.R.; Long, J.; Nezamzadeh, M.S.; Baker, J.F.; Hoofnagle, A.N.; Kapalko, A.J.; Mounzer, K.; Zemel, B.S.; et al. Structural Bone Deficits in HIV/HCV-Coinfected, HCV-Monoinfected, and HIV-Monoinfected Women. J. Infect. Dis. 2015, 212, 924–933. [Google Scholar] [CrossRef]
- Sellier, P.; Ostertag, A.; Collet, C.; Trout, H.; Champion, K.; Fernandez, S.; Lopes, A.; Morgand, M.; Clevenbergh, P.; Evans, J.; et al. Disrupted Trabecular Bone Micro-Architecture in Middle-Aged Male HIV-Infected Treated Patients. HIV Med. 2016, 17, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Kazakia, G.J.; Carballido-Gamio, J.; Lai, A.; Nardo, L.; Facchetti, L.; Pasco, C.; Zhang, C.A.; Han, M.; Parrott, A.H.; Tien, P.; et al. Trabecular Bone Microstructure Is Impaired in the Proximal Femur of Human Immunodeficiency Virus-Infected Men with Normal Bone Mineral Density. Quant. Imaging Med. Surg. 2018, 8, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Foreman, S.C.; Wu, P.H.; Kuang, R.; John, M.D.; Tien, P.C.; Link, T.M.; Krug, R.; Kazakia, G.J. Factors Associated with Bone Microstructural Alterations Assessed by HR-PQCT in Long-Term HIV-Infected Individuals. Bone 2020, 133, 115210. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Maan, E.J.; Berger, C.; Dunn, R.A.; Côté, H.C.F.; Murray, M.C.M.; Pick, N.; Prior, J.C. Deficits in Bone Strength, Density and Microarchitecture in Women Living with HIV: A Cross-Sectional HR-PQCT Study. Bone 2020, 138, 115509. [Google Scholar] [CrossRef]
- Ito, M.; Nishida, A.; Koga, A.; Ikeda, S.; Shiraishi, A.; Uetani, M.; Hayashi, K.; Nakamura, T. Contribution of Trabecular and Cortical Components to the Mechanical Properties of Bone and Their Regulating Parameters. Bone 2002, 31, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Jadzic, J.; Djuric, M. Structural Basis of Increased Bone Fragility in Aged Individuals: Multi-Scale Perspective. Med. Res. 2024, 57, 67–74. [Google Scholar] [CrossRef]
- Shiau, S.; Yin, M.T.; Strehlau, R.; Burke, M.; Patel, F.; Kuhn, L.; Coovadia, A.; Norris, S.A.; Arpadi, S.M. Deficits in Bone Architecture and Strength in Children Living with HIV on Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2020, 84, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Biver, E. Osteoporosis and HIV Infection. Calcif. Tissue Int. 2022, 110, 624–640. [Google Scholar] [CrossRef]
- Delpino, M.V.; Quarleri, J. Influence of HIV Infection and Antiretroviral Therapy on Bone Homeostasis. Front. Endocrinol. 2020, 11, 502. [Google Scholar] [CrossRef]
- Mellert, W.; Kleinschmidt, A.; Schmidt, J.; Festl, H.; Emler, S.; Roth, W.K.; Erfle, V. Infection of Human Fibroblast and Osteoblast-like Cells with HIV-1. AIDS 1990, 4, 527–536. [Google Scholar] [CrossRef]
- Nacher, M.; Serrano, S.; González, A.; Hernández, A.; Mariñoso, M.L.; Vilella, R.; Hinarejos, P.; Díez, A.; Aubia, J. Osteoblasts in HIV-Infected Patients: HIV-1 Infection and Cell Function. Aids 2001, 15, 2239–2243. [Google Scholar] [CrossRef] [PubMed]
- Beaupere, C.; Garcia, M.; Larghero, J.; Fève, B.; Capeau, J.; Lagathu, C. The HIV Proteins Tat and Nef Promote Human Bone Marrow Mesenchymal Stem Cell Senescence and Alter Osteoblastic Differentiation. Aging Cell 2015, 14, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Cotter, E.J.; Chew, N.; Powderly, W.G.; Doran, P.P. HIV Type 1 Alters Mesenchymal Stem Cell Differentiation Potential and Cell Phenotype Ex Vivo. AIDS Res. Hum. Retroviruses 2011, 27, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Gibellini, D.; De Crigins, E.; Ponti, C.; Cimatti, L.; Borderi, M.; Tschon, M.; Giardino, R.; Re, M.C. HIV-1 Triggers Apoptosis in Primary Osteoblasts and HOBIT Cells Through TNFa Activation. J. Med. Virol. 2008, 80, 1507–1514. [Google Scholar] [CrossRef]
- Cotter, E.J.; Malizia, A.P.; Chew, N.; Powderly, W.G.; Doran, P.P. HIV Proteins Regulate Bone Marker Secretion and Transcription Factor Activity in Cultured Human Osteoblasts with Consequent Potential Implications for Osteoblast Function and Development. AIDS Res. Hum. Retroviruses 2007, 23, 1521–1529. [Google Scholar] [CrossRef]
- Caldwell, R.L.; Gadipatti, R.; Lane, K.B.; Shepherd, V.L. HIV-1 TAT Represses Transcription of the Bone Morphogenic Protein Receptor-2 in U937 Monocytic Cells. J. Leukoc. Biol. 2005, 79, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Borderi, M.; Gibellini, D.; Vescini, F.; De Crignis, E.; Cimatti, L.; Biagetti, C.; Tampellini, L.; Re, M.C. Metabolic Bone Disease in HIV Infection. Aids 2009, 23, 1297–1310. [Google Scholar] [CrossRef] [PubMed]
- Watt, J.; Schuon, J.; Davis, J.; Ferguson, T.F.; Welsh, D.A.; Molina, P.E.; Ronis, M.J.J. Reduced Serum Osteocalcin in High-Risk Alcohol Using People Living With HIV Does Not Correlate With Systemic Oxidative Stress or Inflammation: Data From the New Orleans Alcohol Use in HIV Study. Alcohol. Clin. Exp. Res. 2019, 43, 2374–2383. [Google Scholar] [CrossRef]
- Slama, L.; Reddy, S.; Phair, J.; Palella, F.J.; Brown, T.T.; Margolick, J.B.; Crain, B.; Dobs, A.; Farzadegan, H.; Gallant, J.; et al. Changes in Bone Turnover Markers with HIV Seroconversion and ART Initiation. J. Antimicrob. Chemother. 2017, 72, 1456–1461. [Google Scholar] [CrossRef]
- Gibellini, D.; De Crignis, E.; Ponti, C.; Borderi, M.; Clò, A.; Miserocchi, A.; Viale, P.; Carla Re, M. HIV-1 Tat Protein Enhances RANKL/M-CSF-Mediated Osteoclast Differentiation. Biochem. Biophys. Res. Commun. 2010, 401, 429–434. [Google Scholar] [CrossRef]
- Raynaud-Messina, B.; Bracq, L.; Dupont, M.; Souriant, S.; Usmani, S.M.; Proag, A.; Pingris, K.; Soldan, V.; Thibault, C.; Capilla, F.; et al. Bone Degradation Machinery of Osteoclasts: An HIV-1 Target That Contributes to Bone Loss. Proc. Natl. Acad. Sci. USA 2018, 115, E2556–E2565. [Google Scholar] [CrossRef]
- Fakruddin, J.M.; Laurence, J. HIV Envelope Gp120-Mediated Regulation of Osteoclastogenesis via Receptor Activator of Nuclear Factor ΚB Ligand (RANKL) Secretion and Its Modulation by Certain HIV Protease Inhibitors through Interferon-γ/RANKL Cross-Talk. J. Biol. Chem. 2003, 278, 48251–48258. [Google Scholar] [CrossRef] [PubMed]
- Titanji, K.; Vunnava, A.; Sheth, A.N.; Delille, C.; Lennox, J.L.; Sanford, S.E.; Foster, A.; Knezevic, A.; Easley, K.A.; Weitzmann, M.N.; et al. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection. PLoS Pathog. 2014, 10, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Hileman, C.O.; Labbato, D.E.; Storer, N.J.; Tangpricha, V.; McComsey, G.A. Is Bone Loss Linked to Chronic Inflammation in Antiretroviral-Naive HIV-Infected Adults? A 48-Week Matched Cohort Study. Aids 2014, 28, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- McGinty, T.; Mirmonsef, P.; Mallon, P.W.G.; Landay, A.L. Does Systemic Inflammation and Immune Activation Contribute to Fracture Risk in HIV? Curr. Opin. HIV AIDS 2016, 11, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Carrero, A.; Berenguer, J.; Hontañón, V.; Guardiola, J.M.; Navarro, J.; von Wichmann, M.A.; Téllez, M.J.; Quereda, C.; Santos, I.; Sanz, J.; et al. Effects of Hepatitis C Virus (HCV) Eradication on Bone Mineral Density in Human Immunodeficiency Virus/ HCV-Coinfected Patients. Clin. Infect. Dis. 2021, 73, E2026–E2033. [Google Scholar] [CrossRef]
- Husain, N.E.; Noor, S.K.; Elmadhoun, W.M.; Almobarak, A.O.; Awadalla, H.; Woodward, C.L.; Mital, D.; Ahmed, M.H. Diabetes, Metabolic Syndrome and Dyslipidemia in People Living with HIV in Africa: Re-Emerging Challenges Not to Be Forgotten. HIV/AIDS—Res. Palliat. Care 2017, 9, 193–202. [Google Scholar] [CrossRef]
- Caeran, G.; De Almeida, L.L.; Ilha, T.A.S.H.; De Carvalho, J.A.M.; Stein, C.; Moresco, R.N.; Haygert, C.J.P.; Comim, F.V.; Premaor, M.O. Insulin Resistance and Its Association with Osteoporosis in People Living with HIV. J. Endocr. Soc. 2022, 6, bvac148. [Google Scholar] [CrossRef]
- Kim, T.W.; Ventura, A.S.; Winter, M.R.; Heeren, T.C.; Holick, M.F.; Walley, A.Y.; Bryant, K.J.; Saitz, R. Alcohol and Bone Turnover Markers among People Living with HIV and Substance Use Disorder. Alcohol. Clin. Exp. Res. 2020, 44, 992–1000. [Google Scholar] [CrossRef]
- Liang, J.; Nosova, E.; Reddon, H.; Nolan, S.; Socías, E.; Barrios, R.; Milloy, M.J. Longitudinal Patterns of Illicit Drug Use, Antiretroviral Therapy Exposure and Plasma HIV-1 RNA Viral Load among HIV-Positive People Who Use Illicit Drugs. Aids 2020, 34, 1389–1396. [Google Scholar] [CrossRef]
- Harris, V.W.; Brown, T.T. Bone Loss in the HIV-Infected Patient: Evidence, Clinical Implications, and Treatment Strategies. J. Infect. Dis. 2012, 205, 391–398. [Google Scholar] [CrossRef]
- Duvivier, C.; Kolta, S.; Assoumou, L.; Ghosn, J.; Rozenberg, S.; Murphy, R.L.; Katlama, C.; Costagliola, D. Greater Decrease in Bone Mineral Density with Protease Inhibitor Regimens Compared with Nonnucleoside Reverse Transcriptase Inhibitor Regimens in HIV-1 Infected Naive Patients. Aids 2009, 23, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Soldado-Folgado, J.; Rins-Lozano, O.; Arrieta-Aldea, I.; Gonzále-Mena, A.; Cañas-Ruano, E.; Knobel, H.; Garcia-Giralt, N.; Güerri-Fernández, R. Changes in Bone Quality after Switching from a TDF to a TAF Based ART: A Pilot Randomized Study. Front. Endocrinol. 2023, 14, 1076739. [Google Scholar] [CrossRef]
- Malizia, A.P.; Cotter, E.; Chew, N.; Powderly, W.G.; Doran, P.P. HIV Protease Inhibitors Selectively Induce Gene Expression Alterations Associated with Reduced Calcium Deposition in Primary Human Osteoblasts. AIDS Res. Hum. Retroviruses 2007, 23, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.W.H.; Wei, S.; Faccio, R.; Takeshita, S.; Tebas, P.; Powderly, W.G.; Teitelbaum, S.L.; Ross, F.P. The HIV Protease Inhibitor Ritonavir Blocks Osteoclastogenesis and Function by Impairing RANKL-Induced Signaling. J. Clin. Investig. 2004, 114, 206–213. [Google Scholar] [CrossRef]
- Karras, A.; Lafaurie, M.; Bourgarit, A.; Droz, D.; Sereni, D.; Legendre, C.; Martinez, F.; Molina, J. Tenofovir-Related Nephrotoxicity in Human Immunodeficiency Virus—Infected Patients: Three Cases of Renal Failure, Fanconi Syndrome, and Nephrogenic Diabetes Insipidus. Clin. Infect. Dis. 2003, 36, 1070–1074. [Google Scholar] [CrossRef]
- McComsey, G.A.; Tebas, P.; Shane, E.; Yin, M.T.; Overton, E.T.; Huang, J.S.; Aldrovandi, G.M.; Cardoso, S.W.; Santana, J.L.; Brown, T.T. Bone Disease in HIV Infection: A Practical Review and Recommendations for HIV Care Providers. Clin. Infect. Dis. 2010, 51, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Aberg, J.A.; Gallant, J.E.; Ghanem, K.G.; Emmanuel, P.; Zingman, B.S.; Horberg, M.A. Primary Care Guidelines for the Management of Persons Infected with HIV: 2013 Update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 58, e1–e34. [Google Scholar] [CrossRef]
- Biver, E.; Calmy, A.; Aubry-Rozier, B.; Birkhauser, M.; Bischoff-Ferrari, H.; Ferrari, S.; Frey, D.; Kressig, R.; Lamy, O.; Suhm, N.; et al. Diagnosis, Prevention, and Treatment of Bone Fragility in People Living with HIV: A Position Statement from the Swiss Association against Osteoporosis. Osteoporos. Int. 2019, 30, 1125–1135. [Google Scholar] [CrossRef]
Study (Reference) | Study Design | Number of Patients | Assessed Skeletal Site | Main Results on ART-Induced BMD Alterations |
---|---|---|---|---|
Moore A. et al. [25] | Case–control study | male, n = 221 NRTI, n = 42 PI, n = 147 | Total body, LV | Low total body BMD was associated with low body weight prior to commencing cART, while low lumbar BMD was associated with increased lactate concentrations. |
Carr A. et al. [26] | Cross-sectional study | n = 105 male, n = 75 NNRTI, n = 47 | LV, PF, FN | Low BMD was associated with using a PI-based cART regimen. Age, sex, race, and smoking were not associated with skeletal outcomes. |
Knobel H. et al. [27] | Cross-sectional study | n = 80 male, n = 58 PI, n = 37 | LV, PF | Low BMD was noted in PLWHIV, but without a significant association with any of the specific cART regimens. |
Bruera D. et al. [16] | Case–control study | n = 142 male, n = 113 PI, n = 42 non-PI, n = 36 | Total body, LV, PF | Low BMD at all assessed skeletal sites was noted in PLWHIV, irrespective of the cART regimen used. |
Fernandez-Rivera J. et al. [28] | Prospective study | n = 89 PI, n = 32 NNRTI, n = 15 | LV, FN | Low BMD was associated with PI-based cART, low plasma albumin level, and male sex. Bone loss did not substantially progress after 1 year of continued therapy. |
Amiel C. et al. [29] | Cross-sectional study | n = 148 PI, n = 49 non-PI, n = 51 | LV, FN | Low BMD was noted in PLWHIV, predominantly related to the low body weight, irrespective of the cART regimen used. |
Garcia Aparicio A. et al. [30] | Cross-sectional study | n = 30 PI, n = 17 | LV, PF, FN | The use of PI-based cART regimens was not associated with BMD alterations, while vitamin D deficiency and hypogonadism contributed to bone loss in the included individuals. |
Brown T. et al. [23] | Meta-analysis | n = 884 ART, n = 824 PI, n = 791 | LV, PF | Use of cART and especially the use of PI-based cART regimens were associated with low BMD. |
Arnsten J. et al. [31] | Cross-sectional study | n = 328 ART, n = 285 PI, n = 242 | LV, FN | Low BMD at both analyzed skeletal sites was associated with HIV infection after adjusting for age, weight, race, testosterone level, and prednisone and illicit drug use, irrespective of the cART regimen. |
Madeddu G. et al. [32] | Longitudinal study | n = 67 ART, n = 62 PI, n = 27 | LV, PF | Low BMD was associated with cART use in PLWHIV. Bone alterations may persist over time and further worsen with accelerated turnover, particularly in patients receiving PI-based cART regimens. |
Stellbrink H. et al. [33] | Multicenter longitudinal study | n = 328 TDF, n = 193 | LV, PF | More prominent bone alterations were noted in patients treated with tenofovir–emtricitabine than in patients treated with abacavir–lamivudine. |
McComsey G. et al. [34] | Randomized control trial | n = 328 male, n = 228 | LV, PF | Patients treated with TDF-FTC had significantly lower BMD compared to patients treated with ABC-3TC. Patients treated with ATV/r had lower lumbar BMD but not femoral BMD in comparison to EFV-treated individuals. |
Baranek B. et al. [35] | Meta-analysis | Total number of individuals not reported | LV, PF | TDF caused more substantial BMD loss compared to other ART regimens. The effect was less prominent if used for pre-exposure prophylaxis than as a treatment for PLWHIV. |
Mills A. et al. [36] | Randomized control trial | n = 1448 TDF, n = 477 TAF, n = 959 | LV, PF | Switching to a TAF-containing regimen from the TDF-based regimen was non-inferior for the maintenance of viral suppression and led to improved BMD and renal function. |
Pozniak A. et al. [37] | Randomized control trial | n = 242 | LV, PF | After switching to a TAF-based cART regimen, proteinuria, proximal renal tubular function, and BMD significantly improved over 48 weeks compared to individuals initially on TDF-based cART. |
Hill A. et al. [38] | Meta-analysis | n = 811,134, male, n = 6732 | LV, PF | TDF boosted with ritonavir or cobicistat was associated with higher risks of skeletal alterations and lower HIV RNA suppression rates when compared with TAF. In contrast, when ritonavir and cobicistat were not used, there were no efficacy differences between TAF and TDF, and marginal differences were noted in drug safety. |
Walmsley S. et al. [39] | Randomized control trial | n = 34, female, n = 34 | LV | The trend was noted toward increased lumbar BMD after a switch from a TDF-based cART regimen to a TAF-based cART regimen in perimenopausal and early postmenopausal WLWHIV. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadzic, J.; Dragovic, G.; Lukic, R.; Obradovic, B.; Djuric, M. Bone Tissue Changes in Individuals Living with HIV/AIDS: The Importance of a Hierarchical Approach in Investigating Bone Fragility. J. Pers. Med. 2024, 14, 791. https://doi.org/10.3390/jpm14080791
Jadzic J, Dragovic G, Lukic R, Obradovic B, Djuric M. Bone Tissue Changes in Individuals Living with HIV/AIDS: The Importance of a Hierarchical Approach in Investigating Bone Fragility. Journal of Personalized Medicine. 2024; 14(8):791. https://doi.org/10.3390/jpm14080791
Chicago/Turabian StyleJadzic, Jelena, Gordana Dragovic, Relja Lukic, Bozana Obradovic, and Marija Djuric. 2024. "Bone Tissue Changes in Individuals Living with HIV/AIDS: The Importance of a Hierarchical Approach in Investigating Bone Fragility" Journal of Personalized Medicine 14, no. 8: 791. https://doi.org/10.3390/jpm14080791
APA StyleJadzic, J., Dragovic, G., Lukic, R., Obradovic, B., & Djuric, M. (2024). Bone Tissue Changes in Individuals Living with HIV/AIDS: The Importance of a Hierarchical Approach in Investigating Bone Fragility. Journal of Personalized Medicine, 14(8), 791. https://doi.org/10.3390/jpm14080791