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Abstract: Skeletal alterations and their complications can significantly impact the quality of life and
overall prognosis of patients living with HIV (PLWHIV). Considering skeletal alterations are often
asymptomatic and unapparent during routine clinical evaluation, these conditions are frequently
overlooked in the clinical management of PLWHIV. However, since the use of combined antiretroviral
therapy (cART) has increased life expectancy in PLWHIV effectively, osteopenia, osteoporosis, and
bone fragility are now considered to have a major health impact, with a substantial increase in
healthcare costs. This narrative literature review aimed to provide a comprehensive overview of
the contemporary literature related to bone changes in PLWHIV, focusing on the importance of
taking a multi-scale approach in the assessment of bone hierarchical organization. Even though
a low bone mineral density is frequently reported in PLWHIV, numerous ambiguities still remain
to be solved. Recent data suggest that assessment of other bone properties (on various levels of
the bone structure) could contribute to our understanding of bone fragility determinants in these
individuals. Special attention is needed for women living with HIV/AIDS since a postmenopausal
status was described as an important factor that contributes to skeletal alterations in this population.
Further research on complex etiopathogenetic mechanisms underlying bone alterations in PLWHIV
may lead to the development of new therapeutic approaches specifically designed to reduce the
health burden associated with skeletal disorders in this population. A major challenge in the clinical
management of PLWHIV lies in the adverse skeletal effects of some frequently prescribed cART
regimens (e.g., regimens containing tenofovir disoproxil fumarate), which may require a switch to
other pharmacological approaches for maintained HIV infection (e.g., regimens containing tenofovir
alafenamide). Taken together, the findings are indicative that the HIV/AIDS status should be taken
into consideration when designing new guidelines and strategies for individualized prevention,
diagnosis, and treatment of increased bone fragility.

Keywords: HIV; PLWHIV; bone fracture; bone strength; bone mineral density; hierarchical bone
organization; antiretroviral therapy

1. Introduction

Since the development of combined antiretroviral therapy (cART), there has been a
tendency toward an increasing percentage of people living with HIV/AIDS (PLWHIV)
over the age of 50, which is accompanied by an increased risk of bone fracture in this popu-
lation [1–3]. Recent meta-analyses reported at least a twofold increase in fragility fracture
risk in PLWHIV compared to the general population [2,4]. However, the risk of fragility
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fracture displays a certain level of site specificity in PLWHIV, with the most prominent
susceptibility to vertebral, femoral, and wrist fractures noted in these individuals [2–4].
Particularly worrying is the report on a substantial increase in fracture risk among PLWHIV
aged between 25 and 54 [5], revealing a fracture risk shift to the younger (working age) pop-
ulation [6]. Also, it is important to note that special considerations are needed for women
living with HIV/AIDS (WLWHIV) [7] since the postmenopausal status was described as
an important factor that contributes to an increased fracture risk in this population [2,8].
Moreover, the association between certain cART regimens and the fragility fracture risk is
intensively debated in the contemporary literature [6,9], warranting further research.

Given that the occurrence of bone fractures and their complications are preventable [10,11],
it is important to understand all factors that contribute to increased bone fragility in
PLWHIV. Addressing the issue of an increased fracture risk will improve quality of life,
promote healthy aging, and reduce healthcare costs for these individuals. Considering
the clinical relevance of bone fragility, this article aimed to provide a comprehensive
narrative overview of the contemporary literature related to skeletal alterations in PLWHIV,
with a particular focus on the importance of a multi-scale approach in assessing the bone
hierarchical organization.

2. Literature Search Strategy

An electronic search was conducted using the PubMed/Medline, Cochrane, Web of
Science, and National Library of Medicine—National Institutes of Health databases on 3
June 2024. To identify published articles on skeletal alterations in PLWHIV, two authors
independently obtained search results using the following search terms: “HIV” OR “AIDS”
OR “PLWHIV” OR “WLWHIV” AND “osteopenia” OR “osteoporosis” OR “bone fracture”
OR “bone mineral density” OR “bone micro-architecture” OR “bone quality”. Two authors
independently reviewed the obtained search results. Only preclinical human studies and
clinical studies written in English were considered eligible to be included in this review.
Studies on animal models and studies written in other languages were excluded from this
review. Discrepancies were resolved through joint discussion, and all authors agreed with
the final pool of articles included in this review.

3. Osteodensitometry Findings in PLWHIV

Since it is not always possible to directly assess bone fracture occurrence and bone
fracture risk (especially in an individualized manner), modern studies rely on the measure-
ment of various clinical surrogate endpoints of increased bone fragility [12]. The “gold
standard” in the clinical assessment of bone fragility is the bone mineral density (BMD)
measurement using dual-energy X-ray absorptiometry (DXA) [10]. It is defined as the
bone mineral content (BMC) per analyzed bone area (B.Ar). Still, BMD alterations are most
commonly expressed as a T score (which refers to the number of standard deviations above
or below the mean BMD of a population of healthy female adults at the age of their peak
bone mass). Based on the most recent World Health Organization definition, osteoporosis
is a systemic skeletal disease characterized by low bone mass and micro-architectural dete-
rioration, causing increased susceptibility to fragility fracture, defined as a T score ≤ −2.5.
Osteopenia is diagnosed if T score values are between −1 and −2.5 [10,13]. Alternatively,
the Z score refers to the number of standard deviations above or below the mean BMD of a
population that is of the same sex and age as the investigated patient [14], meaning that Z
scores are preferably used in children, young male patients, premenopausal women, and
for diagnosis of secondary osteoporosis. The prevalence of osteoporosis among PLWHIV
is reported to be very variable (ranging between 0% and 34%) [13,15]. Still, numerous
studies consistently report that a low lumbar spine and hip BMD are present both in
men and women living with HIV/AIDS [8,15–19], which was confirmed in recent meta-
analyses [4,20,21]. The discrepancy in previous reports about the skeletal alterations in
PLWHIV could at least partially be explained by heterogeneity in the study design, number
of participants, age, weight, and gender of the participants, and presence of accompanying
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comorbidities. These cofounding effects point towards the reasoning that the underlying
factors causing low BMD in PLWHIV are multifactorial, warranting further clarification in
future well-designed, large, prospective clinical studies. The most important obstacle in
the clinical management of bone changes in PLWHIV is their asymptomatic nature [22],
leaving them unapparent and frequently overlooked during routine clinical evaluations.
Thus, it is of most importance to include data about the HIV/AIDS status when developing
reliable guidelines for the diagnosis, treatment, and prevention of bone fragility. Based on
heterogeneity and potential bias in the previous studies, an individualized approach in
the clinical assessment of skeletal alteration in PLWHIV is mandatory to address covariant
effects of other comorbidities effectively.

4. Antiretroviral Therapy Effects on Osteodensitometry Findings in PLWHIV

Skeletal alterations associated with cART have been a significant concern for years,
given that a substantially increased risk of low BMD was noted in individuals on cART
compared to treatment-naïve individuals [20,23,24]. A summary of the main cART-induced
bone effects is given in Table 1.

Table 1. The main findings of contemporary studies on the potential adverse effects of antiretroviral
therapy on bone mineral density in patients living with HIV/AIDS.

Study
(Reference)

Study
Design

Number
of Patients

Assessed
Skeletal

Site

Main Results on ART-Induced
BMD Alterations

Moore A.
et al. [25] Case–control study

male, n = 221
NRTI, n = 42
PI, n = 147

Total body,
LV

Low total body BMD was associated with low
body weight prior to commencing cART, while

low lumbar BMD was associated with increased
lactate concentrations.

Carr A.
et al. [26]

Cross-sectional
study

n = 105
male, n = 75

NNRTI, n = 47
LV, PF, FN

Low BMD was associated with using a PI-based
cART regimen. Age, sex, race, and smoking were

not associated with skeletal outcomes.

Knobel H.
et al. [27]

Cross-sectional
study

n = 80
male, n = 58

PI, n = 37
LV, PF

Low BMD was noted in PLWHIV, but without a
significant association with any of the specific

cART regimens.

Bruera D.
et al. [16] Case–control study

n = 142
male, n = 113

PI, n = 42
non-PI, n = 36

Total body,
LV, PF

Low BMD at all assessed skeletal sites was noted
in PLWHIV, irrespective of the cART

regimen used.

Fernandez-
Rivera J.
et al. [28]

Prospective study
n = 89

PI, n = 32
NNRTI, n = 15

LV, FN

Low BMD was associated with PI-based cART,
low plasma albumin level, and male sex. Bone

loss did not substantially progress after 1 year of
continued therapy.

Amiel C.
et al. [29]

Cross-sectional
study

n = 148
PI, n = 49

non-PI, n = 51
LV, FN

Low BMD was noted in PLWHIV, predominantly
related to the low body weight, irrespective of the

cART regimen used.

Garcia
Aparicio A.
et al. [30]

Cross-sectional
study

n = 30
PI, n = 17 LV, PF, FN

The use of PI-based cART regimens was not
associated with BMD alterations, while vitamin D

deficiency and hypogonadism contributed to
bone loss in the included individuals.

Brown T.
et al. [23] Meta-analysis

n = 884
ART, n = 824

PI, n = 791
LV, PF Use of cART and especially the use of PI-based

cART regimens were associated with low BMD.
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Table 1. Cont.

Study
(Reference)

Study
Design

Number
of Patients

Assessed
Skeletal

Site

Main Results on ART-Induced
BMD Alterations

Arnsten J.
et al. [31]

Cross-sectional
study

n = 328
ART, n = 285

PI, n = 242
LV, FN

Low BMD at both analyzed skeletal sites was
associated with HIV infection after adjusting for

age, weight, race, testosterone level, and
prednisone and illicit drug use, irrespective of the

cART regimen.

Madeddu G.
et al. [32] Longitudinal study

n = 67
ART, n = 62

PI, n = 27
LV, PF

Low BMD was associated with cART use in
PLWHIV. Bone alterations may persist over time

and further worsen with accelerated turnover,
particularly in patients receiving PI-based

cART regimens.

Stellbrink H.
et al. [33]

Multicenter
longitudinal study

n = 328
TDF, n = 193 LV, PF

More prominent bone alterations were noted in
patients treated with tenofovir–emtricitabine than

in patients treated with abacavir–lamivudine.

McComsey
G. et al. [34]

Randomized
control trial

n = 328
male, n = 228 LV, PF

Patients treated with TDF-FTC had significantly
lower BMD compared to patients treated with

ABC-3TC. Patients treated with ATV/r had lower
lumbar BMD but not femoral BMD in

comparison to EFV-treated individuals.

Baranek B.
et al. [35] Meta-analysis

Total number of
individuals not

reported
LV, PF

TDF caused more substantial BMD loss
compared to other ART regimens. The effect was

less prominent if used for pre-exposure
prophylaxis than as a treatment for PLWHIV.

Mills A.
et al. [36]

Randomized
control trial

n = 1448
TDF, n = 477
TAF, n = 959

LV, PF

Switching to a TAF-containing regimen from the
TDF-based regimen was non-inferior for the
maintenance of viral suppression and led to

improved BMD and renal function.

Pozniak A.
et al. [37]

Randomized
control trial n = 242 LV, PF

After switching to a TAF-based cART regimen,
proteinuria, proximal renal tubular function, and

BMD significantly improved over 48 weeks
compared to individuals initially on

TDF-based cART.

Hill A.
et al. [38] Meta-analysis n = 811,134,

male, n = 6732 LV, PF

TDF boosted with ritonavir or cobicistat was
associated with higher risks of skeletal alterations

and lower HIV RNA suppression rates when
compared with TAF. In contrast, when ritonavir

and cobicistat were not used, there were no
efficacy differences between TAF and TDF, and
marginal differences were noted in drug safety.

Walmsley S.
et al. [39]

Randomized
control trial

n = 34,
female, n = 34 LV

The trend was noted toward increased lumbar
BMD after a switch from a TDF-based cART

regimen to a TAF-based cART regimen in
perimenopausal and early

postmenopausal WLWHIV.

Abbreviations: LV—lumbar vertebrae; PF—proximal femur; FN—femoral neck; cART—combined antiretroviral
therapy; BMD—bone mineral density; PLWHIV—people living with HIV/AIDS; WLWHIV—women living
with HIV/AIDS; NRTI—nucleoside analogue reverse transcriptase inhibitor; NNRTI—non-nucleoside reverse
transcriptase inhibitor; PI—proteinase inhibitor; TDF-FTC—tenofovir disoproxil fumarate emtricitabine; ABC-
3TC—abacavir–lamivudine; ATV/r—atazanavir–ritonavir; EFV—efavirenz; TDF—tenofovir disoproxil fumarate;
TAF—tenofovir alafenamide.

In short, initial pioneering studies reached contrary conclusions regarding the negative
bone effects of cART containing protease inhibitors (PIs, Table 1) [16,23,26,31,32]. Also,
several previous studies reported that cART based on tenofovir disoproxil fumarate (TDF)
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was associated with a low BMD [24,33–35,40]. The recent meta-analysis revealed that the
widely available TDF regimen was associated with a substantial decrease in bone mass
compared to other cART regimens used for pre-exposure prophylaxis and treatment of active
HIV infection [35]. Bone loss associated with TDF use could at least be partially explained
by its negative effect on kidney function (TDF-induced Fanconi syndrome and phospha-
turia) [24,41,42], which was reported to be successfully restored upon TDF discontinuation
and switching to tenofovir alafenamide (TAF)-based cART regimens [24,36,37,39]. These data
were incorporated in the newest European AIDS Clinical Society guidelines, recommending
TAF as the first-choice therapy over TDF for PLWHIV with skeletal alterations and kidney
diseases [43].

Still, it is important to note that even though low BMD was noted, the TDF usage was
not accompanied by a significant fracture risk increase [35], revealing the major limitation
of BMD as a sole bone fragility determinant. It is indicative that this two-dimensional X-ray
imaging factor cannot solely explain bone fragility, meaning that other bone properties
should be investigated to complete the bone fragility puzzle in PLWHIV. This reasoning is
supported by previous reports on the improvement of altered bone mechanical properties
after switching from a TDF- to a TAF-based cART, which was independent of significant
BMD alterations [44]. Moreover, alcohol abuse was reported to increase the risk of bone
fractures in PLWHIV [24,45,46], but without a significant association between alcohol abuse
and changes in vertebral or femoral BMD [47]. This suggests that the relationship between
alcohol abuse and bone health, even in PLWHIV, could be influenced by factors not solely
related to changes in BMD [48], warranting further detailed research.

5. The Importance of Multi-Scale Bone Assessment in PLWHIV

Since bone fracture occurrence is primarily dependent on characteristics of the mechan-
ical load (external factors), bone properties (intrinsic factors), and their mutual interaction
(Figure 1), it is evident that increased susceptibility to bone fractures cannot be fully ex-
plained by alterations in DXA-assessed BMD values. It is known that a considerable
number of individuals with bone fractures have physiological BMD values [49], meaning
that other bone properties (on various levels of a hierarchical bone organization, Figure 1)
should be investigated to fully understand all factors that contribute to increased bone
fragility in PLWHIV [50]. Moreover, BMD measurement is of limited informative value in
individualized fracture risk assessment [51], highlighting the need for research on other
bone fragility determinants in PLWHIV. The importance of applying a hierarchical ap-
proach in assessing bone properties is highlighted by the fact that some therapy regimens
improved bone strength and reduced the fracture risk without being accompanied by an
adequately increasing BMD [52–54].

Several attempts have been made to overcome the limitations of exclusively relying
on DXA-generated BMD in clinical fracture risk assessment, one of which is known as the
trabecular bone score (TBS) [55]. This gray-level textural measurement uses high-quality
DXA images to indirectly estimate the lumbar micro-architecture (L1–L4). Recent studies
revealed that PLWHIV are less likely to have normal TBS values [56]. Moreover, sub-clinical
vertebral fracture occurrence was recently reported to be associated with TBS values in HIV-
infected patients [57]. Also, loss of lean mass in PLWHIV was associated with lower TBS
values, implying its potential as a therapeutic target for improving aging-associated bone
strength decline [56]. Still, TBS has a major disadvantage due to its applicability to only one
skeletal site and since it is an indirect measure of bone micro-architecture. To overcome these
limitations, high-resolution peripheral quantitative computed tomography (HR-pQCT)
was developed to allow a noninvasive 3D method for the clinical assessment of the bone
micro-architecture at the distal radius and tibia. As shown in Table 2, the contemporary
literature suggests that PLWHIV can display a range of micro-architectural alterations,
which can contribute to site-specific bone strength decline in these individuals [55,58–66].
Namely, the most prominent alterations were noted in the distal tibia compared to the
distal radius of PLWHIV. The differences in previous data about bone micro-architectural
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changes in PLWHIV may have originated from the study design (and associated bias of
inclusion and exclusion criteria), the number of participants included in the study, the sex
and age of the participants, the use of different cART regimes, and the presence of covariant
bone-affecting comorbidities (Table 2). Also, the reliable applicability of HRpQCT is limited
by its high costs and by the inability to access other clinically relevant fracture sites (e.g.,
proximal femora), indicating the need to use other state-of-the-art methodologies to further
investigate other bone fragility determinants in PLWHIV [50]. Also, distinguishing the
potential differences between trabecular and cortical bones and their contribution to the
bone fragility of PLWHIV should be thoroughly pursued in the future using high-resolution
imaging approaches [67].
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Figure 1. Bone strength determinants in PLWHIV: the importance of the multi-scale approach in the
assessment of bone hierarchical organization. Since low-intensity force (a fall from standing height) is
not sufficient to fracture a healthy bone, this is indicative that the main cause of increased bone fragility
originates from the structural bone features. It is important to note that the contemporary literature
contains limited data about submicro- and nano-scale bone properties in PLWHIV, warranting
further research.

Considering the lack of data in the contemporary literature (Figure 1), future studies
should focus on morpho-structural and functional assessment of the osteocyte lacunar net-
work, functional assessment of other bone cells, morpho-structural assessment of mineral
and organic components of the bone extracellular matrix, and functional assessment of
bone marrow adiposity to elucidate its role in increased bone fragility among PLWHIV.
The informative value of these studies could be improved by utilizing multiple state-of-the-
art methods to analyze various bone features within the same bone specimen from each
individual patient [68]. Finally, by integrating clinical data, the hierarchical approach in
bone assessment could lead to the development of patient-specific diagnostic algorithms
for predicting bone strength in PLWHIV.
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Table 2. Contemporary studies on bone micro-architectural alterations in PLWHIV.

Study
(Reference)

Study
Design

Number
of Patients with

HIV
Imaging Method Assessed

Skeletal Site
Main Results on Bone

Micro-Architecture

Serrano S.
et al. [58]

Case–control
study

n = 22
male, n = 13
female, n = 9

Optic
microscopy Iliac bone

No significant difference in BVTV,
Tb.Th, or Tb.N; significantly
reduced osteoid volume and

mildly altered osteoblast activity
in PLWHIV.

Yin M.
et al. [59]

Case–control
study

n = 46
female, n = 46
on ART, n = 37

HRpQCT DR, DT

No significant difference in
trabecular or cortical

micro-architecture in DR; reduced
tibial Ct.Th was noted in

postmenopausal WLWHIV; cART
did not display a significant effect

on bone micro-architecture.

Calmy A.
et al. [60]

Case–control
study

n = 22
female, n = 22
on ART, n = 22

HRpQCT DR, DT

No significant difference in radial
micro-architecture; low tibial

Tb.N and high tibial Tb.Sp were
noted in premenopausal

WLWHIV; cART did not display a
significant effect on bone

micro-architecture.

Biver E.
et al. [61]

Case–control
study

n = 28
male, n = 28

on ART, n = 28
HRpQCT DR, DT

Significantly low radial Tb.N and
Ct.Th, coupled with high radial
Tb.Sp, were noted in PLWHIV;

reduced tibial Tb.Th was noted in
men older than 60 years with

long-term HIV infection.

Lo Re V.
et al. [62]

Case–control
study

n = 100
female, n = 100

HCV/HIV, n = 50
HRpQCT DT

Low tibial Ct.Th was noted in
WLWHIV, while tibial trabecular
density and Ct.Th were lower in

individuals with
HCV/HIV confection.

Sellier P
et al. [63]

Case–control
study

n = 100
male, n = 53

on TDF, n = 53
HRpQCT DR, DT

Trabecular micro-architecture
deteriorated, while no significant
changes were noted in the cortical
compartment of PLWHIV treated

with TDF.

Tan D.
et al. [55]

Case–control
study

n = 46
male, n = 36

with fracture, n = 23
HRpQCT DR, DT

PLWHIV with prior bone fracture
had a lower tibial trabecular bone
mass and Ct.Th, coupled with a
mild trend toward higher radial

cortical porosity.

Kazakia G.
et al. [64]

Case–control
study

n = 8
male, n = 8

on ART, n = 8

MRI
HRpQCT PF, DR, DT

Lower Tb.Th and Tb.N of the
femoral head, coupled with lower
tibial Tb.N and higher tibial Tb.Sp

in PLWHIV, compared to
uninfected controls.

Foreman S.
et al. [65]

Cross-sectional
study

n = 43
male, n = 37

on ART, n = 43
HRpQCT UDR, UDT

Malnutrition, physical activity,
longer duration of HIV infection,

and use of the TDF/PI
combination were associated with

an altered bone
micro-architecture in PLWHIV.
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Table 2. Cont.

Study
(Reference)

Study
Design

Number
of Patients with

HIV
Imaging Method Assessed

Skeletal Site
Main Results on Bone

Micro-Architecture

MacDonald
H. et al.

[66]

Case–control
study

n = 50
female, n = 50
on ART, n = 50

HRpQCT DR, DT

Lower radial Tb.N and Tb.Th,
coupled with lower tibial Tb.Th,

were noted in WLWHIV.
Tenofovir treatment may

contribute to these bone deficits.

Shiau S.
et al. [69]

Case–control
study

n = 172
boys, n = 86

on ART, n = 172
pQCT DR, DT

Reduced trabecular area, Ct.Th,
and periosteal cortical

circumference were noted in
children living with HIV

compared to uninfected controls.

Abbreviations: DR—distal radius; DT—distal tibia; PF—proximal femur; UDR—ultra-distal radius;
UDT—ultra-distal tibia; BV/TV—bone volume/tissue volume; Tb.Th—trabecular thickness; Tb.N—trabecular
number; Tb.Sp—trabecular separation; Ct.Th—cortical thickness; HRpQCT— high-resolution peripheral quan-
titative computed tomography; cART—combined antiretroviral therapy; TDF—tenofovir disoproxil fumarate;
PI—protease inhibitor; PLWHIV—people living with HIV; WLWHIV—women living with HIV.

6. The Molecular Mechanisms Involved in Etiopathogenesis of Skeletal Alterations
in PLWHIV

Etiopathogenetic mechanisms underlying bone alterations in PLWHIV are complex
and not fully understood (Figure 2). It is also important to note that bone alterations could
be associated with the direct effect of HIV infection per se, with the direct or indirect toxic
effect of cART, and with the indirect effect of other well-known confounding bone-affecting
factors (e.g., aging, postmenopausal hormonal changes, body weight) [70]. It is known
that bone loss in PLWHIV results from the complex interplay between immunological
disbalance, cytokine disruptions, nutritional deficiencies, low serum calcium and vitamin
D levels, hypogonadism and other hormonal disturbances, liver and kidney dysfunction,
and low levels of physical activity/immobilization (Figure 2) [10,13,24,71].

Initial pioneering studies reached contrary conclusions regarding the possibility that
HIV could affect bone cells and display cytopathic effects [72,73]. However, more recent
studies revealed that HIV trans-activator of transcription (Tat) and negative regulatory
factor (Nef) are associated with reduced osteoblastic differentiation of bone marrow mes-
enchymal stem cells (Figure 2), causing a predominant differentiation to the adipocyte
lineage [71,74]. Also, these HIV proteins are shown to induce senescence of bone marrow
mesenchymal stem cells through nuclear factor-κB pathway activation and inhibition of
autophagy [74,75]. Furthermore, HIV proteins can trigger in vitro osteoblast apoptosis
mediated by the up-regulation of tumor necrosis factor-α (TNF-α), which may be asso-
ciated with reduced bone formation [71,76,77]. The direct HIV interference with bone
formation is heightened by altered calcium deposition and alkaline phosphatase activity
and by reduced levels of bone morphogenetic protein-2 (BMP-2) [78,79]. Furthermore,
altered osteocalcin and sclerostin levels were suggested to contribute to bone alterations
noted in PLWHIV [80,81]. On the other hand, HIV proteins Tat and Vpr increase monocyte
differentiation into osteoclasts [82,83], as well as boost bone resorption through increased
expression of RANKL and lower expression of osteoprotegerin (OPG) [71,84]. A posi-
tive feedback loop exists between RANKL production and HIV replication, which may
be relevant to bone loss in PLWHIV (Figure 2). Also, it has been noted that the altered
serum RANKL/OPG ratio contributes to skeletal abnormalities in PLWHIV compared to
non-infected individuals [85]. Persistent activation of pro-inflammatory cytokines (TNF-
α, interleukin-1—IL-1, interleukin-6—IL-6,) has an activation effect predominantly on
bone resorption in PLWHIV [86,87]. It is important to note that this hyperinflammatory
effect on increased bone resorption is amplified in individuals with liver disease due to
HCV coinfection [70,88]. Moreover, components of metabolic syndrome, dyslipidemia,
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metabolic-associated fatty liver disease, type 2 diabetes mellitus, and insulin resistance
have negative effects on bone turnover, contributing to bone loss in individuals living with
HIV/AIDS [89,90].
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Other factors that may contribute to skeletal alterations in PLWHIV are associated with
alcohol abuse, use of opioids, heroin, or other illicit drugs, corticosteroid use, and cART
use [13,91,92]. The cART-associated effect on etiopathogenetic mechanisms of bone loss
in PLWHIV was extensively elaborated elsewhere [13,79], but it is important to note that
various cART regimens could display variable effects on bone health [93]. Recent studies
suggested that PI has a predominant effect on an increased rate of bone remodeling [94].
Moreover, TDF-based cART regimens were reported to affect bone turnover through the
reduction in extracellular adenosine levels, mediated by the inhibition of ATP release from
bone cells, leading to predominant bone resorption [95]. In addition, TDF interferes with
the binding of vitamin D with vitamin D-binding protein, reducing its availability for the
production of the active form of vitamin D in the kidneys [95]. Lower vitamin D levels result
in less calcium and phosphorus being absorbed in the intestines, which could be associated
with higher levels of parathyroid hormone and subsequent bone resorption increase [95].
On the other hand, due to differences in pharmacokinetics, plasma concentrations of the
active metabolite are lower in TAF-based cART regimens, meaning that TAF has been
reported to have a better bone health safety profile [95]. There are a few data that suggest
that tenofovir and indinavir have direct or indirect negative effects on osteoblast function
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(bone formation), while ritonavir has a negative effect on bone resorption via declining
osteoclast differentiation [96–98], warranting further research.

Since our understanding of the multifactorial etiopathogenetic mechanisms responsi-
ble for declining bone health in PLWHIV is based on limited research data, future research
should focus on using state-of-the-art methodologies to conduct human bone assessments
that will fully resolve the bone fragility puzzle in these individuals. These new insights may
lead to the development of new therapeutic modalities that will be specifically designed to
mitigate the health burden associated with skeletal disorders in PLWHIV.

7. Conclusions

Skeletal alterations are common in PLWHIV. Numerous studies have contributed to
our understanding of bone fragility determinants in PLWHIV, but countless ambiguities
persist. More detailed research on bone properties (especially at the submicro- and nano-
scale) is required to improve our understanding of bone fragility determinants in PLWHIV.
Combined with the available clinical data, taking a hierarchical approach to evaluating
structural bone properties could set the basis for developing a patient-specific diagnostic
algorithm that will reliably predict the fracture risk in PLWHIV. Additionally, apart from
general guidelines for good bone health, specific clinical guidelines for individualized
prevention, diagnosis, and treatment of skeletal disorders in PLWHIV should be estab-
lished and regularly implemented [43,99–101], especially in countries with resource-limited
clinical settings.
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