New Biomarkers in Liver Fibrosis: A Pass through the Quicksand?
Abstract
:1. Introduction
2. Main Associated Etiologies
3. Main Aspect of the Pathophysiology of Liver Fibrosis
4. Main Diagnosis Strategies
4.1. Liver Biopsies
4.2. Imaging Techniques
4.3. Non-Invasive Tests and Tools
- -
- Bilirubin.
- -
- α1-fetoprotein (AFP), an oncofetal protein, used as marker for HCC [67].
- -
- α-2-macroglobulin (A2M), a proteinase inhibitor synthesized by hepatocytes. Its concentration is age-dependent [68].
- -
- -
- Apolipoprotein-1 (ApoA1) is a high-density lipoprotein that functions as anti-atherogenic agent with defined role in liver steatosis and cirrhosis [71].
- -
- Albumin.
- -
- Gamma-glutamyl transpeptidase (GGT) is an enzyme present on the cell membrane of various cells, with a major contribution to the serum concentration in the liver. This varies by sex, age, and ethnicity. Moreover, different stages of increase are predictors of different diseases.
- -
- IL-33, a member of the IL-1 family, plays a role in mast cell activation, Th2 differentiation, and dendritic cell development in bone marrow cultures. Furthermore, it has a clear proinflammatory role in autoimmune diseases, allergic diseases, and chronic inflammatory diseases. Its role extends to the host response to viral infections such as HIV, HCV, and DENV (dengue virus). Increased levels of IL-33 are related to liver damage in CHC patients and to the development of HCV/HBV infection into liver fibrosis. IL-33 serum levels are significantly elevated in CHC and HCC patients compared to healthy controls, but no significant difference was observed between them. In particular, serum levels of IL-33 are significantly correlated with the HCV RNA load and are higher in the latest stages of fibrosis than in the earlier stages, according to METAVIR scores. IL-33 levels are higher in fibrosis and seem to positively correlate with the development and progression of fibrosis and liver damage. IL-33 serum levels correlate significantly with TGF-β1 serum levels. In particular, IL-33 promotes the activation of macrophages, which promote TGF-β, further upregulating IL-33 expression. This correlation strengthens their role in the fibrosis process. Moreover, IL-33 promotes the production of INF-gamma by NK cells. The latter, together with IL-6, plays an important role in liver injury and HCV infection. Their serum levels are higher in CHC patients and might indicate active viral replication and pathogenic progression. IL-33 can promote the production of IL-10 in macrophage-derived foam cells; thus, the levels of these two interleukins are correlated [114].
- IL-17 is a family of six members, one of which is IL-17E, also known as IL-25. They are mainly secreted by Th17 cells. IL-17 has a protective role against infections caused by extracellular pathogens as well as in chronic inflammation, autoimmune diseases, and tumor growth. Additionally, it plays a role in the adaptive immune response against HCV and HBV. IL-17 is frequently elevated in patients with liver cirrhosis, autoimmune hepatitis, steatohepatitis, and alcohol-related HCC. In fact, it is associated with liver inflammation and damage, contributing to disease progression. IL-17 serum levels are significantly higher in CHC and HCC patients compared to healthy controls; furthermore, HCC patients show higher levels than CHC patients. These levels correlate with the degree of liver fibrosis, even though they do not correlate with HCV RNA loads. Serum IL-17 levels are higher and correlate with ALT levels in HBV patients. Given that IL-17 concentrations are linked to HCC, some groups have studied its relationship with AFP levels and how these predict HCC occurrence over a 4-year period. In this context, IL-17 concentrations appear to be useful for significantly identifying patients at risk during the next 4 years. Combining IL-17 with AFP measures with an available free formula result in a risk score with better performance than IL-17 and AFP alone [114,115].
- IL-25, also known as IL-17E, regulates Th2 responses against helminthic parasites and allergic inflammation. IL-25 serum levels are significantly higher in HCC patients compared to CHC patients and healthy controls [114].
- IL-10 is known for its dual role; in fact, it plays in both immune suppression and immune stimulation. It is associated with a worse prognosis in HCV patients. IL-10 serum levels are increased in patients with CLD, including hepatitis, cirrhosis, HBV, HCC, and CHC. These levels are closely associated with disease progression and inflammation and correlate with ALT serum levels. Higher levels of IL-10 are associated with a poor prognosis in several types of cancer. IL-10 has been assessed as a marker for HCC to predict postoperative recurrence, as its serum levels decrease after tumor removal. However, it has not been validated for clinical use. IL-10 could be used as a complementary tumor marker to the traditional AFP to identify a subset of HCC patients with a low AFP level. IL-10 levels may be related to hepatic injury caused by cirrhotic processes rather than tumor load. Additionally, IL-10 offers additional prognostic value to the existing tumor staging system [114,116,117,118].
- IL-6 is a pleiotropic cytokine with multiple physiological and pathological functions. In physiological conditions, its blood and interstitial concentrations are extremely low. These levels increase with aging, inflammation, and pathological conditions, particularly in liver disease. IL-6 is expressed by HSCs after HIF-1α induction. During liver inflammation, hepatic IL-6 levels can be more than 100 ng/mL. IL-6 induces acute-phase inflammatory proteins during infection. Chronic exposure to IL-6, due to chronic inflammatory insults, determines the setting up of chronic liver disease. Higher concentrations of IL-6 are found in several CLDs, such as NAFLD/MASLD, NASH, HCC, hepatocarcinogenesis, and the progression of the disease with a poor prognosis. IL-6 does not correlate with AFP. In addition, there is no significant survival difference between patients with high or low levels of serum IL-6 [117,118,119,120,121,122].
4.4. Combined Non-Invasive Imaging and Serum Tests
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iredale, J.P. Models of liver fibrosis: Exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Investig. 2007, 117, 539–548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Novo, E.; Cannito, S.; Paternostro, C.; Bocca, C.; Miglietta, A.; Parola, M. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys. 2014, 548, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Bocca, C.; Novo, E.; Miglietta, A.; Parola, M. Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 477–488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vallonthaiel, A.G.; Baloda, V.; Singh, L.; Yadav, R.; Kilambi, R.; Battu, S.; Sreenivas, V.; Pal, S.; Acharya, S.K.; DattaGupta, S.; et al. Histological analyses of trucut liver biopsies from patients with noncirrhotic portal fibrosis and extra-hepatic portal vein obstruction. Indian J. Pathol. Microbiol. 2021, 64 (Suppl. 1), S12–S135. [Google Scholar] [CrossRef] [PubMed]
- Pocino, K.; Stefanile, A.; Basile, V.; Napodano, C.; D’Ambrosio, F.; Di Santo, R.; Callà, C.A.M.; Gulli, F.; Saporito, R.; Ciasca, G.; et al. Cytokines and Hepatocellular Carcinoma: Biomarkers of a Deadly Embrace. J. Pers. Med. 2023, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, M.; MacNaughtan, J.; Jalan, R.; Pinzani, M. Beyond scoring: A modern interpretation of disease progression in chronic liver disease. Gut 2013, 62, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Pocino, K.; Napodano, C.; Marino, M.; Di Santo, R.; Miele, L.; De Matthaeis, N.; Gulli, F.; Saporito, R.; Rapaccini, G.L.; Ciasca, G.; et al. A Comparative Study of Serum Angiogenic Biomarkers in Cirrhosis and Hepatocellular Carcinoma. Cancers 2022, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marcellin, P.; Kutala, B.K. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018, 38 (Suppl. 1), 2–6. [Google Scholar] [CrossRef] [PubMed]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells 2021, 10, 2759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Zarrin, A.; Akhondi, H. Viral Hepatidities. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Jophlin, L.L.; Singal, A.K.; Bataller, R.; Wong, R.J.; Sauer, B.G.; Terrault, N.A.; Shah, V.H. ACG Clinical Guideline: Alcohol-Associated Liver Disease. Am. J. Gastroenterol. 2024, 119, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver fibrosis in NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic strategies. Mol. Aspects Med. 2024, 95, 101231. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Chuah, K.H.; Rajaram, R.B.; Lim, L.L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fischer, H.P.; Goltz, D. Autoimmune Lebererkrankungen [Autoimmune liver diseases]. Pathologe 2020, 41, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Yuming, Z.; Ruqi, T.; Gershwin, M.E.; Xiong, M. Autoimmune Hepatitis: Pathophysiology. Clin. Liver Dis. 2024, 28, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019, 65, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pellicoro, A.; Ramachandran, P.; Iredale, J.P.; Fallowfield, J.A. Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 2014, 14, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Seki, E.; Schwabe, R.F. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 2015, 61, 1066–1079. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karsdal, M.A.; Nielsen, S.H.; Leeming, D.J.; Langholm, L.L.; Nielsen, M.J.; Manon-Jensen, T.; Siebuhr, A.; Gudmann, N.S.; Rønnow, S.; Sand, J.M.; et al. The good and the bad collagens of fibrosis—Their role in signaling and organ function. Adv. Drug Deliv. Rev. 2017, 121, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Kantari-Mimoun, C.; Castells, M.; Klose, R.; Meinecke, A.K.; Lemberger, U.J.; Rautou, P.E.; Pinot-Roussel, H.; Badoual, C.; Schrödter, K.; Österreicher, C.H.; et al. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology 2015, 61, 2042–2055. [Google Scholar] [CrossRef] [PubMed]
- Novo, E.; di Bonzo, L.V.; Cannito, S.; Colombatto, S.; Parola, M. Hepatic myofibroblasts: A heterogeneous population of multifunctional cells in liver fibrogenesis. Int. J. Biochem. Cell Biol. 2009, 41, 2089–2093. [Google Scholar] [CrossRef] [PubMed]
- Bocca, C.; Protopapa, F.; Foglia, B.; Maggiora, M.; Cannito, S.; Parola, M.; Novo, E. Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants 2022, 11, 1278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Higashi, T.; Friedman, S.L.; Hoshida, Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017, 121, 27–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barry, A.E.; Baldeosingh, R.; Lamm, R.; Patel, K.; Zhang, K.; Dominguez, D.A.; Kirton, K.J.; Shah, A.P.; Dang, H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front. Cell Dev. Biol. 2020, 8, 709. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mederacke, I.; Hsu, C.C.; Troeger, J.S.; Huebener, P.; Mu, X.; Dapito, D.H.; Pradere, J.P.; Schwabe, R.F. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 2013, 4, 2823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kisseleva, T. The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology 2017, 65, 1039–1043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forbes, S.J.; Parola, M. Liver fibrogenic cells. Best. Pract. Res. Clin. Gastroenterol. 2011, 25, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Krenkel, O.; Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 2017, 17, 306–321. [Google Scholar] [CrossRef] [PubMed]
- Napodano, C.; Carnazzo, V.; Basile, V.; Pocino, K.; Stefanile, A.; Gallucci, S.; Natali, P.; Basile, U.; Marino, M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int. J. Mol. Sci. 2023, 24, 16556. [Google Scholar] [CrossRef] [PubMed]
- Gadd, V.L.; Skoien, R.; Powell, E.E.; Fagan, K.J.; Winterford, C.; Horsfall, L.; Irvine, K.; Clouston, A.D. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014, 59, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Clouston, A.D.; Powell, E.E.; Walsh, M.J.; Richardson, M.M.; Demetris, A.J.; Jonsson, J.R. Fibrosis correlates with a ductular reaction in hepatitis C: Roles of impaired replication, progenitor cells and steatosis. Hepatology 2005, 41, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bartolomé, Á.; López-Rodríguez, R.; Borque, M.J.; González-Moreno, L.; Real-Martínez, Y.; García-Buey, L.; Moreno-Otero, R.; Sanz-Cameno, P. Angiopoietin-2/angiopoietin-1 as non-invasive biomarker of cirrhosis in chronic hepatitis C. World J. Gastroenterol. 2016, 22, 9744–9751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitsuhashi, N.; Shimizu, H.; Ohtsuka, M.; Wakabayashi, Y.; Ito, H.; Kimura, F.; Yoshidome, H.; Kato, A.; Nukui, Y.; Miyazaki, M. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 2003, 37, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Osawa, Y.; Yoshio, S.; Aoki, Y.; Korenaga, M.; Imamura, M.; Oide, T.; Okawara, M.; Kawai, H.; Tsutsui, Y.; Yoshida, Y.; et al. Blood angiopoietin-2 predicts liver angiogenesis and fibrosis in hepatitis C patients. BMC Gastroenterol. 2021, 21, 55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bedossa, P.; Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. Hepatology 1996, 24, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Matsukawa, A. Role of Macrophages in Liver Fibrosis. Acta Med. Okayama 2024, 78, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, C.Y. Interleukins in liver disease treatment. World J. Hepatol. 2024, 16, 140–145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mihm, S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int. J. Mol. Sci. 2018, 19, 3104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Adachi, K.; Seki, E.; Nakanishi, K. Cytokine-induced inflammatory liver injuries. Curr. Mol. Med. 2003, 3, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.M.; Bostick, M.K.; Campe, C.B.; Xu, J.; Maher, J.J. Infiltrating neutrophils in bile duct-ligated livers do not promote hepatic fibrosis. Hepatol. Res. 2003, 25, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yamamoto, G.; Fuji, H.; Kisseleva, T. Interleukin-17 in Liver Disease Pathogenesis. Semin. Liver Dis. 2021, 41, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Tovar, E.; Muriel, P. NLRP3 inflammasome in hepatic diseases: A pharmacological target. Biochem. Pharmacol. 2023, 217, 115861. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Andreata, F.; Beccaria, C.G.; Iannacone, M. Priming and Maintenance of Adaptive Immunity in the Liver. Annu. Rev. Immunol. 2024, 42, 375–399. [Google Scholar] [CrossRef] [PubMed]
- European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, M.; Zhao, W.; Shi, Y.; Sun, Y.; Wu, X.; You, H.; Jia, J. Key points of 2015 EASL-ALEH clinical practice guidelines: Non invasive tests for evaluation of liver severity and prognosis. Zhonghua Gan Zang Bing Za Zhi 2015, 23, 488–492. (In Chinese) [Google Scholar] [PubMed]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; De Groote, J.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.; et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2023, 23, 273–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, C.; Li, R.; Zhang, W. Progress in non-invasive detection of liver fibrosis. Cancer Biol. Med. 2018, 15, 124–136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bedossa, P.; Dargère, D.; Paradis, V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003, 38, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Park, H.C.; Joo, Y.; Lee, O.J.; Lee, K.; Song, T.K.; Choi, C.; Choi, M.H.; Yoon, C. Automated classification of liver fibrosis stages using ultrasound imaging. BMC Med. Imaging 2024, 24, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, G.L. Non-invasive assessments for liver fibrosis: The crystal ball we long for. J. Gastroenterol. Hepatol. 2018, 33, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Stasi, C.; Milani, S. Evolving strategies for liver fibrosis staging: Non-invasive assessment. World J. Gastroenterol. 2017, 23, 191–196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Loomba, R.; Adams, L.A. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berzigotti, A.; França, M.; Martí-Aguado, D.; Martí-Bonmatí, L. Imaging biomarkers in liver fibrosis. Radiologia 2018, 60, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Aleknavičiūtė-Valienė, G.; Banys, V. Clinical importance of laboratory biomarkers in liver fibrosis. Biochem. Med. 2022, 32, 030501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nallagangula, K.S.; Nagaraj, S.K.; Venkataswamy, L.; Chandrappa, M. Liver fibrosis: A compilation on the biomarkers status and their significance during disease progression. Future Sci. OA 2017, 4, FSO250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gressner, O.A.; Gao, C. Monitoring fibrogenic progression in the liver. Clin. Chim. Acta 2014, 433, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Afdhal, N.; McHutchison, J.; Brown, R.; Jacobson, I.; Manns, M.; Poordad, F.; Weksler, B.; Esteban, R. Thrombocytopenia associated with chronic liver disease. J. Hepatol. 2008, 48, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Peck-Radosavljevic, M. Thrombocytopenia in chronic liver disease. Liver Int. 2017, 37, 778–793. [Google Scholar] [CrossRef] [PubMed]
- Hanif, H.; Ali, M.J.; Susheela, A.T.; Khan, I.W.; Luna-Cuadros, M.A.; Khan, M.M.; Lau, D.T. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J. Gastroenterol. 2022, 28, 216–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naveau, S.; Poynard, T.; Benattar, C.; Bedossa, P.; Chaput, J.C. Alpha-2-macroglobulin and hepatic fibrosis. Diagnostic interest. Dig. Dis. Sci. 1994, 39, 2426–2432. [Google Scholar] [CrossRef] [PubMed]
- Naryzny, S.N.; Legina, O.K. Haptoglobin as a Biomarker. Biochem. Mosc. Suppl. B Biomed. Chem. 2021, 15, 184–198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wan, B.N.; Zhou, S.G.; Wang, M.; Zhang, X.; Ji, G. Progress on haptoglobin and metabolic diseases. World J. Diabetes 2021, 12, 206–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naveau, S.; Thaury, J.; Barri-Ova, N.; Balian, A.; Dauvois, B.; Njiké-Nakseu, M.; Prévot, S.; Agostini, H.; Perlemuter, G. Predictive factors for pure steatosis in alcoholic patients. Alcohol. Clin. Exp. Res. 2009, 33, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Sandnes, M.; Ulvik, R.J.; Vorland, M.; Reikvam, H. Hyperferritinemia-A Clinical Overview. J. Clin. Med. 2021, 10, 2008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E.; NASH Clinical Research Network. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2012, 55, 77–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Q.; Gao, M.; Yang, H.; Mei, L.; Zhong, R.; Han, P.; Liu, P.; Zhao, L.; Wang, J.; Li, J. Serum ferritin levels are associated with advanced liver fibrosis in treatment-naive autoimmune hepatitis. BMC Gastroenterol. 2022, 22, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scoditti, E.; Sabatini, S.; Carli, F.; Gastaldelli, A. Hepatic glucose metabolism in the steatotic liver. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lurie, Y.; Webb, M.; Cytter-Kuint, R.; Shteingart, S.; Lederkremer, G.Z. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J. Gastroenterol. 2015, 21, 11567–11583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.; Wang, X.; Karsdal, M.A.; Leeming, D.J.; Genovese, F. Molecular serum markers of liver fibrosis. Biomark. Insights 2012, 7, 105–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, M.; Afdhal, N.H. Liver Fibrosis Determination. Gastroenterol. Clin. N. Am. 2019, 48, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Amernia, B.; Moosavy, S.H.; Banookh, F.; Zoghi, G. FIB-4, APRI, and AST/ALT ratio compared to FibroScan for the assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease in Bandar Abbas, Iran. BMC Gastroenterol. 2021, 21, 453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karsdal, M.A.; Daniels, S.J.; Holm Nielsen, S.; Bager, C.; Rasmussen, D.G.K.; Loomba, R.; Surabattula, R.; Villesen, I.F.; Luo, Y.; Shevell, D.; et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 2020, 40, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Rosenberg, W.M. The enhanced liver fibrosis (ELF) test in diagnosis and management of liver fibrosis. Br. J. Hosp. Med. 2018, 79, 694–699. [Google Scholar] [CrossRef] [PubMed]
- van Kleef, L.A.; Francque, S.M.; Prieto-Ortiz, J.E.; Sonneveld, M.J.; Sanchez-Luque, C.B.; Prieto-Ortiz, R.G.; Kwanten, W.J.; Vonghia, L.; Verrijken, A.; De Block, C.; et al. Metabolic Dysfunction-Associated Fibrosis Score Predicts Liver Fibrosis Risk and Outcome in the General Population with Metabolic Dysfunction. Gastroenterology 2024, 167, 357–367.e9. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, R.; Yaghi, C.; Saade Riachy, C.; Schlosser, A.; Hamade, A.; Holmskov, U.; Medlej-Hashim, M.; Sørensen, G.L.; Jounblat, R. Serum MFAP4, a novel potential biomarker for liver cirrhosis screening, correlates with transient elastography in NAFLD patients. JGH Open 2023, 7, 197–203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iakovleva, V.; Wuestefeld, A.; Ong, A.B.L.; Gao, R.; Kaya, N.A.; Lee, M.Y.; Zhai, W.; Tam, W.L.; Dan, Y.Y.; Wuestefeld, T. Mfap4: A promising target for enhanced liver regeneration and chronic liver disease treatment. NPJ Regen. Med. 2023, 8, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanaan, R.; Medlej-Hashim, M.; Jounblat, R.; Pilecki, B.; Sorensen, G.L. Microfibrillar-associated protein 4 in health and disease. Matrix Biol. 2022, 111, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Parsian, H. Hyaluronic Acid: From biochemical characteristics to its clinical translation in assessment of liver fibrosis. Hepat. Mon. 2013, 13, e13787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gudowska, M.; Gruszewska, E.; Panasiuk, A.; Cylwik, B.; Flisiak, R.; Świderska, M.; Szmitkowski, M.; Chrostek, L. Hyaluronic acid concentration in liver diseases. Clin. Exp. Med. 2016, 16, 523–528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neuman, M.G.; Cohen, L.B.; Nanau, R.M. Hyaluronic acid as a non-invasive biomarker of liver fibrosis. Clin. Biochem. 2016, 49, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Lajoie, A.; Heaton, S.; Pianko, S.; Behling, C.A.; Bylund, D.; Pockros, P.J.; Blatt, L.M.; Conrad, A.; McHutchison, J.G. Clinical use of hyaluronic acid as a predictor of fibrosis change in hepatitis C. J. Gastroenterol. Hepatol. 2003, 18, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Seki, E. Hyaluronan in liver fibrosis: Basic mechanisms, clinical implications, and therapeutic targets. Hepatol. Commun. 2023, 7, e0083. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nøjgaard, C.; Johansen, J.S.; Christensen, E.; Skovgaard, L.T.; Price, P.A.; Becker, U.; EMALD Group. Serum levels of YKL-40 and PIIINP as prognostic markers in patients with alcoholic liver disease. J. Hepatol. 2003, 39, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.B.; Knudsen, C.S.; Parkner, T. Procollagen III, N-terminal propeptide (PIIINP): Establishment of reference intervals in Northern European adults and children using the MAGLUMI 800 chemiluminescence immunoassay. Scand. J. Clin. Lab. Investig. 2021, 81, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Stefano, J.T.; Guedes, L.V.; de Souza, A.A.A.; Vanni, D.S.; Alves, V.A.F.; Carrilho, F.J.; Largura, A.; Arrese, M.; Oliveira, C.P. Usefulness of collagen type IV in the detection of significant liver fibrosis in nonalcoholic fatty liver disease. Ann. Hepatol. 2021, 20, 100253. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Yang, J.J.; Shi, K.H.; Huang, C.; Zhang, L.; Lv, X.W.; Li, J. The significance of YKL-40 protein in liver fibrosis. Inflamm. Res. 2014, 63, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, E.; Mano, Y.; Yoshio, S.; Shoji, H.; Sugiyama, M.; Korenaga, M.; Ishida, T.; Arai, T.; Itokawa, N.; Atsukawa, M.; et al. Serum YKL-40 as a marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Sci. Rep. 2016, 6, 35282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Younesi, S.; Parsian, H. Diagnostic accuracy of glycoproteins in the assessment of liver fibrosis: A comparison between laminin, fibronectin, and hyaluronic acid. Turk. J. Gastroenterol. 2019, 30, 524–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, D.; Zheng, J.; Cui, X.; Chen, Y.; He, Q.; Lv, R.; Li, Z.; Zhao, S. Analysis of cholyglycine acid as a biomarker for the early diagnosis of liver disease by fluorescence polarization immunoassay. Sens. Actuators B Chem. 2018, 256, 846–852. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C. Analysis of current status of quantitative detection of biomarkers for liver fibrosis in Clinical labs in China. J. Clin. Lab. Anal. 2022, 36, e24490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonelli, G.; Visentin, S.; Tasinato, A.; Rocco, G.; Zemin, F.; Volentiera, E.; Faggian, D.; Cosmi, E.; Plebani, M. Cholylglycine determination by an automated chemiluminescence immunoassay: Preliminary results in the intrahepatic cholestasis of pregnancy. J. Lab. Precis. Med. 2019, 4, 35. [Google Scholar] [CrossRef]
- Yang, Y.M.; Seki, E. TNFα in liver fibrosis. Curr. Pathobiol. Rep. 2015, 3, 253–261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dewidar, B.; Meyer, C.; Dooley, S.; Meindl-Beinker, A.N. TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells 2019, 8, 1419. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Budi, E.H.; Schaub, J.R.; Decaris, M.; Turner, S.; Derynck, R. TGF-β as a driver of fibrosis: Physiological roles and therapeutic opportunities. J. Pathol. 2021, 254, 358–373. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, I.; Moreno-Càceres, J.; Sánchez, A.; Dooley, S.; Dewidar, B.; Giannelli, G.; Ten Dijke, P.; IT-LIVER Consortium. TGF-β signalling and liver disease. FEBS J. 2016, 283, 2219–2232. [Google Scholar] [CrossRef] [PubMed]
- Trampuž, S.R.; van Riet, S.; Nordling, Å.; Ingelman-Sundberg, M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023, 12, 302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lipson, K.E.; Wong, C.; Teng, Y.; Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012, 5 (Suppl. 1), S24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Glass, O.; Henao, R.; Patel, K.; Guy, C.D.; Gruss, H.J.; Syn, W.; Moylan, C.A.; Streilein, R.; Hall, R.; Diehl, A.M.; et al. Serum interleukin-8 osteopontin, and monocyte chemoattractant protein 1 are associated with hepatic fibrosis in patients with nonalcoholic fatty liver disease. Hepatol. Commun. 2018, 2, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, A.; Fakhry, M.M.H.; Ashmawy, A.A.; Omar Khalifa, A.M.H. Significance of biglycan and osteopontin as non-invasive markers of liver fibrosis in patients with chronic hepatitis B virus and chronic hepatitis C virus. J. Investig. Med. 2019, 67, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Bruha, R.; Jachymova, M.; Petrtyl, J.; Dvorak, K.; Lenicek, M.; Urbanek, P.; Svestka, T.; Vitek, L. Osteopontin: A non-invasive parameter of portal hypertension and prognostic marker of cirrhosis. World J. Gastroenterol. 2016, 22, 3441–3450. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, P.; Sun, D.; Bu, Q.; Li, G. Prognostic value of osteopontin in patients with hepatocellular carcinoma: A systematic review and metaanalysis. Medicine 2018, 97, e12954. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Jeong, S.; Xia, Q.; Kong, X. Role of Osteopontin in Liver Diseases. Int. J. Biol. Sci. 2016, 12, 1121–1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bruha, R.; Vitek, L.; Smid, V. Osteopontin—A potential biomarker of advanced liver disease. Ann. Hepatol. 2020, 19, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Srungaram, P.; Rule, J.A.; Yuan, H.J.; Reimold, A.; Dahl, B.; Sanders, C.; Lee, W.M.; Acute Liver Failure Study Group. Plasma osteopontin in acute liver failure. Cytokine 2015, 73, 270–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Askoura, M.; Abbas, H.A.; Al Sadoun, H.; Abdulaal, W.H.; Abu Lila, A.S.; Almansour, K.; Alshammari, F.; Khafagy, E.-S.; Ibrahim, T.S.; Hegazy, W.A.H. Elevated Levels of IL-33, IL-17 and IL-25 Indicate the Progression from Chronicity to Hepatocellular Carcinoma in Hepatitis C Virus Patients. Pathogens 2022, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.H.; Lai, M.W.; Lin, Y.H.; Chu, Y.D.; Lin, C.L.; Lin, W.R.; Huang, Y.H.; Wang, T.H.; Chien, R.N.; Hu, T.H.; et al. Plasma interleukin-17 and alpha-fetoprotein combination effectively predicts imminent hepatocellular carcinoma occurrence in liver cirrhotic patients. BMC Gastroenterol. 2021, 21, 177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shakiba, E.; Ramezani, M.; Sadeghi, M. Evaluation of serum interleukin-10 levels in hepatocellular carcinoma patients: A systematic review and meta-analysis. Clin. Exp. Hepatol. 2018, 4, 35–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chau, G.Y.; Wu, C.W.; Lui, W.Y.; Chang, T.J.; Kao, H.L.; Wu, L.H.; King, K.L.; Loong, C.C.; Hsia, C.Y.; Chi, C.W. Serum interleukin-10 but not interleukin-6 is related to clinical outcome in patients with resectable hepatocellular carcinoma. Ann. Surg. 2000, 231, 552–558. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hsia, C.Y.; Huo, T.I.; Chiang, S.Y.; Lu, M.F.; Sun, C.L.; Wu, J.C.; Lee, P.C.; Chi, C.W.; Lui, W.Y.; Lee, S.D. Evaluation of interleukin-6, interleukin-10 and human hepatocyte growth factor as tumor markers for hepatocellular carcinoma. Eur. J. Surg. Oncol. 2007, 33, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.J.; Zhang, H.L.; Chen, F.; Guo, X.J.; Liu, Q.G.; Hou, J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp. Hematol. Oncol. 2024, 13, 62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurbatova, I.V.; Topchieva, L.V.; Dudanova, O.P.; Shipovskaya, A.A. The Role of the Soluble Interleukin-6 Receptor in the Progression of Nonalcoholic Fatty Liver Disease. Bull. Exp. Biol. Med. 2023, 174, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.T.; Koliogiannis, D.; Drefs, M.; Schirren, M.; von Ehrlich-Treuenstätt, V.; Nieß, H.; Renz, B.; Ilmer, M.; Andrassy, J.; Guba, M.O.; et al. Baseline Interleukin-6 as a Preoperative Biomarker for Liver Fibrosis. Visc. Med. 2024, 39, 184–192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kou, K.; Li, S.; Qiu, W.; Fan, Z.; Li, M.; Lv, G. Hypoxia-inducible factor 1α/IL-6 axis in activated hepatic stellate cells aggravates liver fibrosis. Biochem. Biophys. Res. Commun. 2023, 653, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Veidal, S.S.; Bay-Jensen, A.C.; Tougas, G.; Karsdal, M.A.; Vainer, B. Serum markers of liver fibrosis: Combining the BIPED classification and the neo-epitope approach in the development of new biomarkers. Dis. Markers 2010, 28, 15–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thiele, N.D.; Wirth, J.W.; Steins, D.; Koop, A.C.; Ittrich, H.; Lohse, A.W.; Kluwe, J. TIMP-1 is upregulated, but not essential in hepatic fibrogenesis and carcinogenesis in mice. Sci. Rep. 2017, 7, 714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hemmann, S.; Graf, J.; Roderfeld, M.; Roeb, E. Expression of MMPs and TIMPs in liver fibrosis—A systematic review with special emphasis on anti-fibrotic strategies. J. Hepatol. 2007, 46, 955–975. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lei, F.; Wen, C.; Ge, Q.; Zhu, L. Cytokeratin 18 can help predict liver fibrosis in HCV infected patients with type 2 diabetes mellitus. BMC Gastroenterol. 2021, 21, 391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Korver, S.; Bowen, J.; Pearson, K.; Gonzalez, R.J.; French, N.; Park, K.; Jenkins, R.; Goldring, C. The application of cytokeratin-18 as a biomarker for drug-induced liver injury. Arch. Toxicol. 2021, 95, 3435–3448. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Altaf, B.; Rehman, A.; Jawed, S.; Raouf, A. Association of liver biomarkers and cytokeratin-18 in Nonalcoholic fatty liver disease patients. Pak. J. Med. Sci. 2020, 36, 387–390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darweesh, S.K.; AbdElAziz, R.A.; Abd-ElFatah, D.S.; AbdElazim, N.A.; Fathi, S.A.; Attia, D.; AbdAllah, M. Serum cytokeratin-18 and its relation to liver fibrosis and steatosis diagnosed by FibroScan and controlled attenuation parameter in nonalcoholic fatty liver disease and hepatitis C virus patients. Eur. J. Gastroenterol. Hepatol. 2019, 31, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Mandelia, C.; Collyer, E.; Mansoor, S.; Lopez, R.; Lappe, S.; Nobili, V.; Alkhouri, N. Plasma Cytokeratin-18 Level As a Novel Biomarker for Liver Fibrosis in Children with Nonalcoholic Fatty Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, Y.; Shen, M.; Xu, H.; Li, Z.; He, N. Golgi protein 73 and its diagnostic value in liver diseases. Cell Prolif. 2019, 52, e12538. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, Z.; Li, Z.; Wang, H.; Liu, Y.; Xu, Y.; Mo, R.; Ren, P.; Chen, L.; Lu, J.; Li, H.; et al. Algorithm of Golgi protein 73 and liver stiffness accurately diagnoses significant fibrosis in chronic HBV infection. Liver Int. 2017, 37, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Gatselis, N.K.; Tornai, T.; Shums, Z.; Zachou, K.; Saitis, A.; Gabeta, S.; Albesa, R.; Norman, G.L.; Papp, M.; Dalekos, G.N. Golgi protein-73: A biomarker for assessing cirrhosis and prognosis of liver disease patients. World J. Gastroenterol. 2020, 26, 5130–5145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peng, S.; Wu, Q.; Huang, X.; He, X.; Li, Z.; Xu, J.; Wang, L.; Zhuang, J. Diagnostic Value of Serum Golgi Protein 73 for Liver Fibrosis: A Systematic Review and Meta-Analysis. Dig. Dis. 2023, 41, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.L.; Liu, R.Y.; An, K.; Tang, S.; Wu, J.; Yang, Q. TET3 as a non-invasive screening tool for the detection of fibrosis in patients with chronic liver disease. Sci. Rep. 2023, 13, 6382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, X.; Zhang, Y.; Wang, C.; Wang, X. TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct. Target. Ther. 2023, 8, 297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; Sun, X.; Zhang, R.; Cao, T.; Cai, S.Y.; Boyer, J.L.; Zhang, X.; Li, D.; Huang, Y. A Positive Feedback Loop of TET3 and TGF-β1 Promotes Liver Fibrosis. Cell Rep. 2020, 30, 1310–1318.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gensluckner, S.; Wernly, B.; Datz, C.; Aigner, E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants 2024, 13, 208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eslam, M.; Ahlenstiel, G.; George, J. Interferon Lambda and Liver Fibrosis. J. Interferon Cytokine Res. 2019, 39, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hou, X.; Mo, K.; Li, N.; An, C.; Liu, G.; Pan, Z. Serum non-coding RNAs for diagnosis and stage of liver fibrosis. J. Clin. Lab. Anal. 2022, 36, e24658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, L.; Thiele, M.; Geyer, P.E.; Rasmussen, D.N.; Webel, H.E.; Santos, A.; Gupta, R.; Meier, F.; Strauss, M.; Kjaergaard, M.; et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat. Med. 2022, 28, 1277–1287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nallagangula, K.S.; Shashidhar, K.N.; Lakshmaiah, V.; Muninarayana. Evolution of proteomic biomarker for chronic liver disease: Promise into reality. J. Circ. Biomark. 2018, 7, 1849454418777186. [Google Scholar] [CrossRef] [PubMed]
- Veselkin, E.; Kondratyev, M.; Lurie, Y.; Ron, E.; Santo, M.; Reif, S.; Elashvili, I.; Bar, L.; Lederkremer, G.Z. A secreted form of the asialoglycoprotein receptor, sH2a, as a novel potential noninvasive marker for liver fibrosis. PLoS ONE 2011, 6, e27210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kawagishi, N.; Suda, G.; Kimura, M.; Maehara, O.; Yamada, R.; Tokuchi, Y.; Kubo, A.; Kitagataya, T.; Shigesawa, T.; Suzuki, K.; et al. Baseline elevated serum angiopoietin-2 predicts long-term non-regression of liver fibrosis after direct-acting antiviral therapy for hepatitis C. Sci. Rep. 2021, 11, 9207. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bartolomé, A.; López-Rodríguez, R.; Rodríguez-Muñoz, Y.; Martín-Vílchez, S.; Borque, M.J.; García-Buey, L.; González-Moreno, L.; Real, Y.; Moreno-Otero, R.; Sanz-Cameno, P. Angiopoietin-2 Serum Levels Improve Noninvasive Fibrosis Staging in Chronic Hepatitis C: A Fibrogenic-Angiogenic Link. PLoS ONE 2013, 8, e66143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fodor, D.; Jung, I.; Turdean, S.; Satala, C.; Gurzu, S. Angiogenesis of hepatocellular carcinoma: An immunohistochemistry study. World J. Hepatol. 2019, 11, 294–304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taura, K.; De Minicis, S.; Seki, E.; Hatano, E.; Iwaisako, K.; Osterreicher, C.H.; Kodama, Y.; Miura, K.; Ikai, I.; Uemoto, S.; et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008, 135, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Foucquier, J.; Younossi, Z.M.; Harrison, S.A.; Newsome, P.N.; Chan, W.K.; Yilmaz, Y.; De Ledinghen, V.; Costentin, C.; Zheng, M.H.; et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores. J. Hepatol. 2023, 78, 247–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basheer, M.; Naffaa, M.; Assy, N. Non-invasive biomarkers of liver fibrosis in non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, 398–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noureddin, M.; Mena, E.; Vuppalanchi, R.; Samala, N.; Wong, M.; Pacheco, F.; Polanco, P.; Sakkal, C.; Antaramian, A.; Chang, D.; et al. Increased accuracy in identifying NAFLD with advanced fibrosis and cirrhosis: Independent validation of the Agile 3+ and 4 scores. Hepatol. Commun. 2023, 7, e0055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, J.H.; Lee, H.A.; Kim, S.U. Noninvasive imaging biomarkers for liver fibrosis in nonalcoholic fatty liver disease: Current and future. Clin. Mol. Hepatol. 2023, 29, S136–S149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khalifa, A.; Rockey, D.C. The utility of liver biopsy in 2020. Curr. Opin. Gastroenterol. 2020, 36, 184–191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bravo, A.A.; Sheth, S.G.; Chopra, S. Liver biopsy. N. Engl. J. Med. 2001, 344, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.; Lewin, D.N.; Sasso, R.; Rockey, D.C. The Utility of Liver Biopsy in the Evaluation of Liver Disease and Abnormal Liver Function Tests. Am. J. Clin. Pathol. 2021, 156, 259–267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neuberger, J.; Patel, J.; Caldwell, H.; Davies, S.; Hebditch, V.; Hollywood, C.; Hubscher, S.; Karkhanis, S.; Lester, W.; Roslund, N.; et al. Guidelines on the use of liver biopsy in clinical practice from the British Society of Gastroenterology, the Royal College of Radiologists and the Royal College of Pathology. Gut 2020, 69, 1382–1403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vernuccio, F.; Cannella, R.; Bartolotta, T.V.; Galia, M.; Tang, A.; Brancatelli, G. Advances in liver US, CT, and MRI: Moving toward the future. Eur. Radiol. Exp. 2021, 5, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.N.; Fowler, K.J.; Ozturk, A.; Potu, C.K.; Louie, A.L.; Montes, V.; Henderson, W.C.; Wang, K.; Andre, M.P.; Samir, A.E.; et al. Liver fibrosis imaging: A clinical review of ultrasound and magnetic resonance elastography. J. Magn. Reson. Imaging 2020, 51, 25–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammed, O.S.; Attia, H.G.; Mohamed, B.M.S.A.; Elbaset, M.A.; Fayed, H.M. Current investigations for liver fibrosis treatment: Between repurposing the FDA-approved drugs and the other emerging approaches. J. Pharm. Pharm. Sci. 2023, 26, 11808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Y.S.; Seki, E. In Vivo and In Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cell Mol. Gastroenterol. Hepatol. 2023, 16, 355–367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napodano, C.; Pocino, K.; Stefanile, A.; Marino, M.; Miele, L.; Gulli, F.; Basile, V.; Pandolfi, F.; Gasbarrini, A.; Rapaccini, G.L.; et al. COVID-19 and hepatic involvement: The liver as a main actor of the pandemic novel. Scand. J. Immunol. 2021, 93, e12977. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L. Hepatic Fibrosis and Cancer: The Silent Threats of Metabolic Syndrome. Diabetes Metab. J. 2024, 48, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Popa, S.L.; Ismaiel, A.; Abenavoli, L.; Padureanu, A.M.; Dita, M.O.; Bolchis, R.; Munteanu, M.A.; Brata, V.D.; Pop, C.; Bosneag, A.; et al. Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review. Medicina 2023, 59, 992. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bera, C.; Hamdan-Perez, N.; Patel, K. Non-Invasive Assessment of Liver Fibrosis in Hepatitis B Patients. J. Clin. Med. 2024, 13, 1046. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Santo, R.; Vaccaro, M.; Romanò, S.; Di Giacinto, F.; Papi, M.; Rapaccini, G.L.; De Spirito, M.; Miele, L.; Basile, U.; Ciasca, G. Machine learning-assisted FTIR analysis of circulating extracellular vesicles for cancer liquid biopsy. J. Pers. Med. 2022, 12, 949. [Google Scholar] [CrossRef] [PubMed]
Name | Biomarker Involved | Cutoff |
---|---|---|
Liver function test or liver damage test [77,80] | AST/ALT ratio | In chronic viral hepatitis, values of 1.0 are identified as the cutoff: below it, patients are not at risk of cirrhosis. Major values are seen in manifested cirrhosis. |
APRI—AST Platelet Ratio Index [54,57,77,79,80,81] | AST (UI/L)/platelet count (109/L) × 100 | NAFLD/MASLD disease has a 1.0 cutoff: minor values identify low risk (NPV = 84%); major values identify high risk (PPV = 37%). AUROC: 0.67. In HCV infection, values below 1.0 identify low risk (NPV = 100%). Values greater than 2.0 identify high risk (PPV = 65%); intermediate values (1.0; 2.0) are indeterminate. AUROC: 0.94 In HBV infection, the cutoff is 1.0–1.5: less for low risk (NPV = 86%), more for high risk (PPV = 39%). AUROC: 0.75 It is utilized also in ALD, but cutoffs have not been identified yet. |
FIB4—fibrosis 4 [54,59,63,77,79,80,81] | [age (years) × AST(UI/L)]/platelet count (109/L) × ALT (UI/L)]2 | In NAFLD/MASLD disease, values below 1.30 stand for low risk (NPV = 90%); values greater than 2.67 for high risk (PPV = 80%); intermediate values (1.30; 3.35) are indeterminate. AUROC: 0.80 In HCV infection, values lower than 1.45 identify a low risk for advanced fibrosis (NPV = 90%), values greater than 3.25 identify a high risk for advanced fibrosis (PPV 65%), and values greater than 5.88 stand for a high risk for advanced fibrosis (PPV = 82.5%). Intermediate values (1.45; 3.25) are indeterminate. AUROC: 0.765–0.83. In HBV infection, values less than 1.58 identify a low risk for advanced fibrosis (NPV = 84.6%) and values greater than 5.17 identify a high risk for advanced fibrosis (PPV 83.3%). Intermediate values (1.58–5.17) are undetermined. AUROC: 0.845 |
Fibrotest or FibroSure [77,79] | α2-Macroglobulin, apolipoprotein A1, haptoglobin, γ-glutamyl transpeptidase, bilirubin | In NAFLD/MASLD disease, the identified cutoff value is 0.30 (NPV = 97%). AUROC: 0.88 In HCV infection, the identified cutoff value is 0.52 (NPV = 94%). AUROC: 0.84 In HBV infection, the identified cutoff value is 0.48 (NPV = 90%) AUROC: 0.82 |
FORN index [59,63,79] | Platelet count, cholesterol levels, age, γ-glutamyl transpeptidase | AUROC: 0.76 for fibrosis detection and AUROC: 0.87 for cirrhosis detection |
Hepascore [63,77,79] | HA, bilirubin, GGT, α2-macroglobulin, age, gender | In NAFLD/MASLD disease, the identified cutoff value is 0.37 (NPV = 97%). AUROC: 0.81 In HCV disease, the identified cutoff value is 0.47 (NPV = 95%). AUROC: 0.86 In HBV infection, the identified cutoff value is 0.42 (NPV = 90%). AUROC: 0.82 |
Fibrometer [63,79] | Glucose, AST, ferritin, platelet count, ALT, body weight, age | AUROC: 0.82 for fibrosis detection and AUROC: 0.91 for cirrhosis |
Cirrhometer [79] | Fibrometer with specific coefficients | |
NFS—NAFLD Fibrosis Score [77] | Age, body mass index, hyperglycemia, platelet count, albumin, AST/ALT Ratio | In NAFLD/MASLD disease, values <−1.455 stands for no advanced fibrosis/low risk (NPV = 88%), while values >−0.675 stand for advanced fibrosis/high risk (PPV = 82%). Intermediate values (>−1.455 and <−0.675) are indetermined. AUROC: 0.82–0.85 |
ELF panel—Enhanced Liver Fibrosis panel [63,77,81,82] | HA, TIMP-1, PIIINP | In NAFLD/MASLD disease, the identified cutoff is 10.35 (NPV = 94%). AUROC: 0.94 In HCV infection, the identified cutoff is 0.063 (NPV = 95%). AUROC: 0.773 In HBV infection, the identified cutoff is 8.4 (NPV = 88%). AUROC: 0.69 |
MAF-5 Metabolic Dysfunction Associated Fibrosis Score [83] | Waist circumference, body mass, AST, platelet count | In metabolic dysfunction, values less than 0 identify no fibrosis risk (NPV = 96.7%), while values greater than 1 identify a high fibrosis risk (PPV = 28%). |
Name | Analytical and Clinical Facts |
---|---|
Hyaluronic acid (HA) [54,62,63,89,90,91,97] | In HCV and HBV infection, the upper cutoff is 98 µg/L. AUROC = 0.79 for cirrhosis and 0.72 for fibrosis detection. It was found to have sensitivity and specificity ≥ 90% in detecting liver fibrosis, with an estimated accuracy of 86%. |
N-terminal pro-peptide of collagen type III (PIIINP) [54,63,92,93] | In AC and cholestasis diseases and chronic HBV infection, it has 94% sensitivity and 81% specificity in detecting cirrhosis. For liver fibrosis detection, it was found to have a sensitivity and specificity ≥ 90%, with an estimated diagnostic accuracy of 74%. |
Type 4 collagen [63,94] | Higher concentration has been found in HBV, HCV infection, and NASH patients. |
Glycoprotein YKL-40 [63,77,92] | In HCV infection, it has an AUROC of 0.81 for fibrosis detection. |
Laminin [54,63,97] | In HBV infection, it shows 71.9% sensitivity and 80% specificity for the assessment of liver fibrosis and during the follow-up. In HCV patients, it is used for the assessment of the liver fibrosis stage and during the follow-up. Estimated diagnostic accuracy of 81%. |
Cholylglycine [99,100] | Its concentration increases in acute hepatitis/cirrhosis/liver damage. |
TGF-β [63,101] | Its concentration correlates with disease progression. If it is less than 75 ng/mL, the disease is considered stable. There is also a correlation with ALD and HCV infection. The AUROC is 0.835 for the assessment of fibrosis. The estimated diagnostic accuracy is 67%. |
TGF-α [63,101] | It is used in ALD and HBV infection. |
Connective tissue growth factor (CTGF) [77] | Its values have shown an AUROC of 0.887 in correlation with fibrosis and an AUROC of 0.955 in correlation with cirrhosis. |
Osteopontin (OPN) [107,108,109,110,111,112,113] | The AUC, sensitivity, and specificity in predicting any stage of fibrosis were 99%, 96%, and 100% in HBV patients and 97.4%, 96.5%, and 100% in HCV patients. Values over 80 ng/mL correlate with a high risk of portal hypertension, with 75% sensitivity and 63% specificity. |
IL-33 [114] | Higher levels are detected in CHC and HCC patients compared to healthy individuals, according to liver fibrosis and HCV RNA loads. |
IL-17 [114,115] | Higher levels are detected in HCC (greater levels) and CHC than in healthy patients, according to the fibrosis degree. |
IL-17 + AFP [114,115] | Above the optimum cutoff of 4.5072, patients are at an increased risk of developing HCC, with a sensitivity of 100% and specificity of 79.9% (AUC = 0.933). |
IL-25 [114] | Higher levels are detected in HCC (greater levels) and CHC than in healthy patients. |
IL-10 [114,116,117,118] | IL-10 serum levels are increased in patients with several CLDs. These levels are closely associated with disease progression and inflammation. Higher levels are associated with a poor prognosis. |
IL-6 [117,118,119,120,121,122] | Very low concentrations are detected under physiological conditions, but these concentrations rise to more than 100 ng/mL in CLD, such as NAFLD/MASLD, NASH, HCC. Higher levels are associated with a poor prognosis. |
Platelet endothelial cell adhesion molecule 1 (PECAM-1 or CD 31) [147,148] | The higher the expression, the more severe or advanced the disease state; conversely, the lower the expression, the closer it is to a normal state. |
MMPs and TIMPs [25,81,123] | MMPs’ values increase in fibrosis while TIMPs’ values decrease They better correlate with cirrhosis. |
CK18 [77,135] | It has shown an AUROC of 0.84 for fibrosis detection in ALD patients. |
Golgi protein-73 (GP-73) [135] | It has shown better correlation with cirrhosis in different CLDs with AUROC = 0.9. |
Ten-eleven translocation protein 3 (TET3) [77,135] | Its values are higher in fibrosis patients. Its power is promising if combined with FIB-4. |
Ferritin + BMI [77] | In NAFLD/MASLD patients, they can detect advance fibrosis and cirrhosis with AUROC = 0.87. |
Oxidative stress biomarkers (MDA and SOD) [77] | In HCV infection, it has shown an AUROC of 0.9 for detecting fibrosis and an AUROC of 0.8 for detecting cirrhosis. |
IFN-L3 [77] | It has been studied in HCV infection and a higher concentration in advanced fibrosis was revealed. |
MFAP-4 [77] | It has an AUROC of 0.76 for detecting cirrhosis and an AUROC of 0.76 for detecting fibrosis. |
α2m/hemopexin ratio [77] | In HCV Infection, it has shown an AUROC of 0.80 when correlated with significant fibrosis and an AUROC of 0.92 when correlated with advanced fibrosis. |
sH2a + ALT [77] | In HCV infection, values yielded an AUROC of 0.79 for significant fibrosis detection and an AUROC of 0.86 for advanced fibrosis and cirrhosis detection. |
AngioScore (AS) [37,39,145,146] | The AUC values were 0.886 for F.1, 0.920 for F.2, and 0.923 for F.3. A cutoff of 1.58 corresponded to a specificity of over 90%, identifying patients with low fibrosis and correctly classifying 67.5% of patients with an accuracy of 76.8%. The optimal cutoffs were more effective at identifying patients with moderate and severe fibrosis. |
Test | Pros | Cons |
---|---|---|
Liver biopsy (gold standard) | It represents a direct analysis of the histological status of the liver. This method is highly established, with the scoring system having been developed since 1980. | It is a surgical procedure that requires at least one day at the hospital, which means it can be expensive (it depends on national healthcare/health insurance). The procedure requires high expertise in sampling and interpreting results. The specimens represent only a minimal part of the entire liver, and often, they are unique. Results typically take about 2 weeks, depending on the laboratory efficiency. Standardization is largely dependent on manual processes. Patients are exposed to significant stress and substantial risks of pain, bleeding, and infections. |
Imaging techniques | Usually, these refer to several techniques that allow the direct observation of the liver’s status and enable quantitative measures (CPA). These represent non-invasive, quick, and safe procedures. The standardization process for these techniques and imaging results is ongoing, and there is significant interest in using artificial intelligence algorithms for this purpose. Scores are based on the liver biopsy score system. | These procedures require high-cost instruments that are usually available only in specialized clinical settings. They are expensive for both the national healthcare system and for the patient. The failure rate and the effectiveness of the measures depend on the patient’s body characteristics, with higher failure rates in patients suffering from ascites and obesity. The expertise of the operators remains a key factor. Despite standardization efforts, measurements from different techniques are not comparable. |
Serum biomarkers | Non-invasive, repeatable, cost-effective, safer, quick, and better-tolerated measurements. They enable early detection for at-risk patients and open the way to the development of new stratification and prognostication models. They rely on the detection of biomarkers that reflect the following: (I) changes in the ECM structure; (II) molecules derived from liver damage; (III) molecules related to liver function; (IV) molecules derived from the immune response after liver injury; (V) antibodies, antigens, nucleic acids of hepatotropic viruses; (VI) molecules impacting on liver metabolism; (VII) cytokines. Combining these biomarkers with imaging tests can positively impact results. These tests are usually well standardized, and the techniques are continually being developed. | Non-invasive tests are very promising but show high susceptibility to factors such as gender, age, sex, time of blood sampling, quality of blood sampling, and quality and modality of storage. Moreover, their specificity could be invalidated by non-liver inflammation. Single-marker measurements appear to be inefficient. The combination of different biomarkers or with imaging tests is instrumental in increasing accuracy. Importantly, this process can result in freely available formulas or proprietary (paid) algorithms Despite the general availability of routine laboratory tests, not all biomarkers are accessible in every facility, resulting in longer testing times. The more recent biomarkers require further study to be applied effectively and focused expertise to ensure the best result. Results should be carefully evaluated to understand their real meaning based on the stage of the disease. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliaferro, M.; Marino, M.; Basile, V.; Pocino, K.; Rapaccini, G.L.; Ciasca, G.; Basile, U.; Carnazzo, V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J. Pers. Med. 2024, 14, 798. https://doi.org/10.3390/jpm14080798
Tagliaferro M, Marino M, Basile V, Pocino K, Rapaccini GL, Ciasca G, Basile U, Carnazzo V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? Journal of Personalized Medicine. 2024; 14(8):798. https://doi.org/10.3390/jpm14080798
Chicago/Turabian StyleTagliaferro, Marzia, Mariapaola Marino, Valerio Basile, Krizia Pocino, Gian Ludovico Rapaccini, Gabriele Ciasca, Umberto Basile, and Valeria Carnazzo. 2024. "New Biomarkers in Liver Fibrosis: A Pass through the Quicksand?" Journal of Personalized Medicine 14, no. 8: 798. https://doi.org/10.3390/jpm14080798
APA StyleTagliaferro, M., Marino, M., Basile, V., Pocino, K., Rapaccini, G. L., Ciasca, G., Basile, U., & Carnazzo, V. (2024). New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? Journal of Personalized Medicine, 14(8), 798. https://doi.org/10.3390/jpm14080798