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Abstract: Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the West-
ern world, characterized by frequent relapses despite temporary remissions. Our study integrated
publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences
between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate
healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable
upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin
receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease.
Key pathways implicated in CLL progression involve RNA processing, stress resistance, and im-
mune response deficits. Furthermore, we identified three existing drugs—Bosutinib, Vorinostat, and
Panobinostat—for potential further investigation in drug repurposing in CLL. We also found limited
correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics
in understanding gene expression regulation mechanisms. This generally known disparity highlights
once again that mRNA levels do not accurately predict protein abundance due to many regulatory
factors, such as protein degradation, post-transcriptional modifications, and differing rates of transla-
tion. These results demonstrate the value of integrating omics data to uncover deregulated proteins
and pathways in cancer and suggest new therapeutic avenues for CLL.

Keywords: chronic lymphocytic leukemia; lymphoma; proteomics; transcriptomics; drug repurposing;
personalized medicine

1. Introduction

Chronic Lymphocytic Leukemia (CLL) is a blood malignancy marked by the pro-
gressive clonal proliferation of B-cell-like cells in the blood, bone marrow, and secondary
lymphoid tissues [1–3]. Despite advancements in research, significant progress in disease
prognosis and the development of therapeutic strategies addressing the diverse genetic
profiles and clinical outcomes of CLL remains elusive [4–6]. Although patients often ini-
tially respond well to treatment and may remain disease-free for years, relapses into active
CLL are common, challenging standardized treatment approaches [7]. Therefore, there is
an urgent need for a deeper understanding of CLL’s development, progression, staging,
and relapse mechanisms, as well as the conception of novel therapies to effectively manage
this disease.

While the etiology of CLL remains unknown, certain recurrent chromosomal abnor-
malities are associated with the disease (e.g., 13q del, 11q del, 17p del, trisomy 12); some
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may help in disease prognosis (11q del, 17p del), whereas certain gene mutations are con-
sidered as drivers of CLL [8,9]. Moreover, CLL cases are classified based on the acquired
mutations in immunoglobulin heavy chain variable region gene (IGHV), which categorizes
patients in those with “mutated” M-CLL and “unmutated” U-CLL patients [10,11]. M-CLL
patients are typically characterized by better clinical outcomes than U-CLL [12]. Moreover,
molecular lesions, such as overexpression of zeta-chain associated (ZAP-70) and CD38, as
well TP53 dysfunction, are also associated with unfavorable disease outcomes [13,14]. Ad-
ditionally, another typical feature of this disease is heterogeneity of both symptomatology
and pathophysiology, which poses a great challenge for complete disease understanding
and treatment [4,7,15]. For instance, while some patients suffer from aggressive disease
forms with short survival time, others demonstrate a slow-growing disease with large
periods of remission [16,17]. Therefore, accurate detection of the disease, as well as effective
treatments are still needed.

The complexity of CLL pathogenesis, mediated by several genetic, epigenetic, tran-
scriptomic, and proteomic alterations, necessitates thorough profiling to determine the
disease’s complex molecular basis [18]. The technological advances in the field of se-
quencing, mass spectrometry, and bioinformatics over the last decades have enabled the
multi-omics analysis of samples in CLL. Microarray gene expression studies have helped in
characterizing different CLL subtypes through differential deregulated genes and pathways
on transcriptome level related to disease development [19–21]. Moreover, next-generation
sequencing further advanced the resolution of the identified alterations on transcriptome
level and helped in grouping genes into large networks (spliceosome, proteasome, and ri-
bosome) that determine disease progression and survival [22]. Nevertheless, transcriptome
alterations do not always predict protein changes due, among other factors, to regulatory
mechanisms that activate or deactivate the translation of specific transcripts, and therefore
proteomic approaches are currently considered as the best approach to elucidate complex
disease mechanisms [23]. Proteomics provides valuable insights into cellular conditions,
focusing on proteins, the key operators of phenotype and cellular activity [24,25]. Unlike
transcriptomics, it uncovers the real-time activities and responses within cells to environ-
mental changes [26]. The human proteome is highly dynamic and diverse, far exceeding the
gene count due to alternative splicing and post-translational modifications (PTMs) [27–32].
Technological advances enable rapid, both qualitative and quantitative high-throughput
proteome analysis, allowing simultaneous sample evaluation and enhancing analytical
power [33,34]. Proteomics offers crucial information for disease mechanism elucidation,
such as cancer, and supports precision medicine by reflecting a patient’s current state for
biomarker discovery and improved treatment decisions [35–39]. Indeed, various studies
in the field have analyzed the proteomic landscape of CLL revealing valuable insights
and protein alterations related to prognosis and survival, including nucleophosmin [40],
Cytochrome c oxidase polypeptide VIb (COXG) [41], LEF-1 [42,43], and hematopoietic
lineage cell-specific protein 1 (HS1) [44].

Furthermore, as previously presented by our group, large scale proteomic and tran-
scriptomic data can be utilized to identify FDA approved drugs with therapeutic potential
in CLL and MCL (drug repurposing) [45,46]. This strategy of drug identification offers
multiple advantages compared to de novo development, including drastically reduced cost,
effort, and time [45]. Previous studies have proven numerous compounds efficacious for
additional indications, which may be used alone (e.g., acitretin, alitretinoin, and aplidine)
or in combination with known CLL drugs, such as clemastine with ibrutinib [47,48].

The aim of the present study was to integrate proteomic, transcriptomic, and patient
survival data to identify deregulated pathways in CLL, as well as propose the expansion of
the application of already existing drugs (drug repurposing) in CLL patients. In this context,
we utilized three publicly available proteomic data sets that compared the isolated B-cell
proteome; in total, 35 patients with 12 healthy controls. We extracted the most significantly
deregulated proteins (both increased and decreased) between cancer and healthy cells
and identified their impact in patient survival probability (Kaplan–Meyer plots). Next,
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proteomic data were integrated with transcriptomic data to evaluate their correlation and
reveal possible regulation mechanisms in protein expression. We noted transcriptome
alterations were associated with corresponding proteomic changes in only a small subset
of proteins. We generated protein-protein interaction networks and performed functional
enrichment analysis to determine what pathways may promote CLL development. Finally,
focusing on the identified pathways as well as the differentially deregulated proteins, we
explored how currently approved drugs may be off-label used in CLL patients (Figure 1).
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Figure 1. An Integrated Bioinformatics Workflow for Data Analysis and Drug Discovery in CLL.
(1) Data Acquisition: The workflow begins with the acquisition of -omics data from various databases
including ProteomeXchange, GEO, UCSC Xena, and PRIDE. This step involves collecting-omics
data from CLL patients and control groups represented by orange and green dots, respectively.
(2) Data Processing and Analysis: The collected data is then processed, integrated and analyzed
using tools such as Perseus, Google Colab, and Venny. This step is visualized with bar charts
depicting differentially expressed genes or proteins between CLL patients and control groups (red:
up-regulated, green: down-regulated). (3). Functional Analysis: Next, functional analysis of the
deregulated genes or proteins is performed using databases and tools like STRING, Cytoscape, Gene
Ontology, and KEGG. The results are illustrated as interaction networks and pathways between
differentially expressed genes or proteins. (4) Drug Discovery: Finally, the workflow integrates drug
discovery databases such as DrugBank, PANDRUGS, and ClinicalTrials.gov to identify potential
therapeutic targets and existing drugs that could be repurposed. In this step, repurposed drugs are
depicted as aligning with specific deregulated pathways and proteins. This comprehensive workflow
allows for the systematic integration of multi-omics data, functional analysis, and drug repurposing,
facilitating the identification of potential therapeutic targets and treatments in CLL.

2. Materials and Methods
2.1. Proteomic Data Selection

Proteomic data of CLL were selected through ProteomeXchange Consortium [49], an
open data source that enables internationally coordinated standard data submission and
distribution pipelines using the key proteomics repositories, Pride [50], and MassIVE [51].
The search input was either “chronic lymphocytic leukemia” or “CLL”. Only two datasets,
PXD002004 and PXD006578, had proteomic data of peripheral B-cell cytoplasm from both
CLL patients and healthy controls. To enrich the identified data, the PubMed database was
also searched for studies with proteomic data. Except for the studies of Johnston et al. 2018
(PXD002004) [52] and Mayer et al. 2017 (PXD006578) [53], only Thurgood et al. 2019
(proteomic dataset3—PDS3) [54] compared the proteome of peripheral B-cell cytoplasm be-
tween CLL patients and healthy controls (Supplemental Table S1), thus this study was also
selected. The numbers of CLL patients versus healthy donors in PXD006578, PXD002004,
and PDS3 were 9:6, 14:3, and 12:3, respectively. In total, our study reanalyzed proteomic
datasets derived from 35 samples patients and 12 healthy individuals.

2.2. Transcriptomic Data Selection

Transcriptomic data of CLL were selected using Gene Expression Omnibus (GEO) [55].
GEO is a global public repository that collects and freely disseminates high-throughput gene
expression and functional genomics data. The search input was either “chronic lymphocytic
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leukemia” or “CLL”. Only two datasets, GSE26725 and GSE22529, had transcriptomic data
of peripheral B-cell cytoplasm from both CLL patients and healthy controls (Supplemental
Table S1). The numbers of CLL patients versus healthy donors in transcriptomic datasets,
GSE26725 and GSE22529, were 12:5 and 41:11, respectively. In total, transcriptomic data
from 53 samples patients and 16 healthy individuals were integrated with proteomic data
in our muti-omics study.

2.3. Data Processing and Integration

To compare the proteome of the three studies and integrate them with transcriptomic
data, common nomenclature and measurement units were needed. In all studies, the
“official name/symbol of gene” was chosen, as well as the “Log2[(measurement of pro-
teins/genes of CLL patients)/(measurement of proteins/genes of healthy donors)]” or
“Log2(Fold Change)” or “Log2(FC)” was calculated. If needed, the protein name was
converted to gene (official name/symbol) through the BioDBnet [56], an online web re-
source that provides integrated access to a variety of biological databases and enables the
conversions of identifiers from one database to another database identifiers or annotations.
Log10(p value) was also calculated to statistically evaluate the measurements. Filters of
Log2(FC) > 0.3 and Log10(p value) > 1.3 were used for the significant deregulated proteins.
Processed data from the five different datasets are available in Supplemental Table S2. Data
were integrated by Colab, a product from Google Research, that allows anybody to create
and execute arbitrary python code directly in the browser, making it ideal for data analysis.
The orders of the python code were searched through pandas (2.2.2), a software package
that allows high-performance data manipulation in Python. The main work performed in
Colab was to merge the excel tables of the different datasets and calculate the means for
the same IDs. Interestingly, the dataset GSE22529 had data from two different probe sets,
which were therefore re-averaged. Merged data are available in Supplemental Table S3.

2.4. Comparative Analysis and Data Visualization

Comparative analysis was conducted using BioVenn [57], an application that com-
pares and visualizes biological lists using area-proportional Venn diagrams. Graphs were
made in GraphPad Prism 8 and Excel. Volcano plots were also made in Excel. Scat-
terplots forms that enable easy visual identification of the proteins’ expression in the
three different datasets, highlighting the statistical significance (Log10(p value)) versus
magnitude of change (Log2(FC)). In order to elucidate the relationship, as well as the dif-
ference between the datasets, Principal Component Analysis (PCA) [58] and Hierarchical
Clusters—Heatmaps were performed in Perseus-MaxQuant [59], a software that offers
a complete framework for statistical analysis of large-scale quantitative proteomics data
(http://www.perseus-framework.org, accessed on 25 June 2024). The PCA and Heatmaps
providing a visual representation of the differences/similarities between both the three
proteomic datasets and transcriptomics are available in Supplemental Figures S1–S3.

2.5. Survival Analysis

For the patient survival analysis, we utilized the web-based visual exploration tool
UCSC xena [60] that facilitates the study of multi-omic data, such as SNPs and small
INDELs, large structural variants, gene-level copy number, segmented copy number, and
more. Moreover, it combines data from the main multi-person initiatives that have been
completed thus far, including TCGA [61], ICGC [62], and GTEx [63]. For our analysis,
we collected the data produced in the ICGC study for each one of the top 10 deregulated
proteins. We used “the copy number variation” option that compared patients with high
expression of the protein of interest vs. those with low expression (using a custom cutoff
value for each protein). Figures and statistical values were created using the built-in tool
of the Xena platform More specifically, the Xena Browser employs the log-rank test to
compare the Kaplan–Meier curves. The Xena Browser reports the test statistics (χ2) and
p-value (χ2 distribution).

http://www.perseus-framework.org
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2.6. Functional/Pathway Enrichment Analysis

Networks and pathways of the deregulated proteins/genes were generated by String
DB [64] and Cytoscape [65]. String DB predicts protein-protein interactions, displays the
score of data support, and may cluster data points based on similarity to reveal the un-
derlying structure of data. Clustering was made based on k-means with six clusters in
the proteins of increased and decreased levels, and with three clusters in the top five up-
and down-regulated proteins, to unravel the most important deregulated pathways. The
co-expression scores were also provided by String DB. Specifically, the interactors of the
five up- and down-regulated proteins provided by STRING were also searched in our
merged multiomics data to find possible deregulation, either in proteomics or transcrip-
tomics level. Cytoscape is also an open-source bioinformatics software platform that
allows the visualization of molecular interaction networks (https://cytoscape.org/, ac-
cessed on 25 June 2024). GOlorize [66] tool was used to portray the Gene Ontology (GO)
categories that were statistically overrepresented in the up- and down-regulated sets of
proteins, respectively.

2.7. Drug Repurposing

The most significantly upregulated proteins were aligned to repurposed drugs by
Pandrugs [67], a bioinformatics tool that prioritizes anticancer drug therapies based on
individual genomic data. The options used were drugs that are used both in cancer
and other pathologies, and are either FDA approved or in clinical trials, and interact
directly with the desired target or the deregulated pathway. The drug list found is in the
Supplemental Table S4. Drug candidates with gene score > 0.6 and drug score > 0.7 were
selected as best candidates. The evaluation of these drugs was further assessed based
on key pharmacological criteria, including potential indications for CLL, avoidance of
chemotherapeutic agents, FDA approval in similar cancer types, primary mechanism of
action, and the number of targets identified.

3. Results
3.1. Proteomic Data Integration and Processing Reveal Major Differences between Healthy and
CLL Cells

For our proteomics analysis, we incorporated data from three independent studies
that used B-cells originating from CLL patients and healthy donors [52–54]. The data were
generated with both label (PXD002004) and label-free techniques (PXD006578, PDS3) and
by different MS/MS instruments. The age of the study population ranged between 60 and
73 years old, which corresponds to the average age of diagnosis. In total, we included
data from 35 patients and 12 healthy individuals, hence our study represents the largest
comparative analysis (between healthy and cancer samples) in the field to date.

Two of the three studies included in our analysis reported the identification of a similar
number of proteins (6920 and 5888), whereas the third detected 1575. This diversity may be
due to the different identification method utilized by the Thurgood et al. group (PDS3),
who employed a SWATH approach (Sequential Window Acquisition of all Theoretical
Spectra) [68,69], as well as due to differences in the identification criteria used by the
groups. Moreover, discrepancy was observed in the analysis of differentially expressed
proteins, as ~2000 proteins were referenced in two studies, while only 343 were reported
in the third (p-value < 0.05, log2(FC) > 0.3 (0.1)). Given the considerable variance in the
number of reported proteins across datasets, we decided to include proteins changed
in the same manner (up or down-regulation) in at least two of the three studies. The
analysis identified 1023 differentially expressed proteins (Figure 2) between healthy and
CLL samples, with 608 upregulated and 415 downregulated in CLL (Figure 3). In terms
of protein-protein interaction, all proteins were found to be highly connected (Figure 3C).
Moreover, the generated list of proteins included several known biomarker candidates
implicated with both the initiation and the progression of CLL, such as FAM50A [70],
IKZF3 [71], KRAS [72], MAP2K1 [73], SAMHD1 [74], and SF3B1 [75]. We also noted that

https://cytoscape.org/
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the degree of deregulation is higher in PXD006578, albeit the rest of the datasets exhibit a
similar pattern (Figure 3A). Overall, our results support the notion that the concerted action
of 1023 proteins can distinguish cancer from healthy cells and promote tumorigenesis.
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Figure 2. Proteins detected in the three selected proteomics datasets. (A) Total proteins detected
in each dataset. The small number of proteins identified in the PDS3 dataset is due to the different
approach. (B) Venn diagram and volcano plots of the total proteins detected. Venn diagram shows
the common proteins identified in the three datasets, covering almost 70% of the proteins. Volcano
plots show the deregulation of the proteins in relation with the probability. PDS3 has no volcano
plot cause the whole data were not publicly available. (C) Differentially expressed proteins in each
dataset. Filters used are p-value < 0.05 and log2(FC) > 0.3 (0.1). (D) Venn diagram and volcano plots
of the differentially expressed proteins. 1165 proteins were detected in at least two datasets. The red
dots in the volcano plot indicate significant protein detection, whereas black dots not significant.

3.2. Identification of Proteins with Prognostic Nature in CLL Development

Some of the listed proteins may play a more significant role in CLL development over
others. To determine such candidates, we selected the top 20 proteins that show the highest
deregulation score in CLL cells. By this analysis, we found that YEATS domain containing
protein 2 (YEATS2), a chromatin reader, is the most significantly upregulated protein in
patients’ cells, with a log2 fold-change equal to 4977. YEATS2 has previously been found to
promote tumorigenesis in lung cancer by colocalizing with H3K27 acetylation, facilitating
the transcription of essential genes for cell multiplication [76]. However, as the role of this
protein in CLL remains unclear, we sought to identify the impact of its upregulation in
CLL patients. For this purpose, we calculated how the protein affects the probability that a
patient will survive up to a certain time point (survival-Kaplan–Meier curves). Interestingly,
we found that patients with high expression of YEATS2 had a markedly lower survival
probability compared to patients with low expression (p < 0.0001). This profound effect is
evident already from the initialization of tumor development and lasts until the final stages.
Hence, YEATS2 is likely an important factor in CLL development, as with lung cancer,
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and further investigation is required to elucidate its role. Furthermore, WDR5, which is
one of the proteins, interactors of YEATS2 (they both participate in the Ada2/Gcn5/Ada3
transcription activator complex) and its primary co-expression factor (score 0.089), was
found to be around 150% upregulated (Figure 4A). In a similar fashion, Polymeric Im-
munoglobulin Receptor (PIGR) was also found significantly upregulated in CLL cells, as
it is in many other types of cancer [77]. In accordance with YEATS2, PIGR upregulation
seems also capable of reducing survival probability in CLL patients’ samples, albeit to a
lesser extent than YEATS2 and without statistical significance. Additional proteins with
significant upregulated scores (BTF3 [78], SNRPA [79], and NUTF2 [80]), which promote
cancer in other types of malignances, also lead to lower survival probability in CLL patients
(Figure 5), apart from BTF3 that seems to affect survival only during the initial days of
disease development. Interestingly, proteins, RSP23, NUP62, and SNRPA1, SNRPB, SNRPC,
SNRD2, SNRD3, SNRPE, SNRPF, and U2AF2, which are known to be associated with BTF3,
NUTF2, and SNRPA, respectively, were also found upregulated (Figure 4).

J. Pers. Med. 2024, 14, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 3. Differentially expressed proteins in CLL. (A) Heatmap of differentially expressed proteins 
in CLL. There are 1023 differentially expressed proteins between healthy and CLL samples detected 
in at least two datasets and modified in the same direction (up or down-regulation) between da-
tasets. (B) Number of deregulated proteins in CLL. 608 proteins are up-regulated and 415 are down-
regulated. (C) Protein-protein interactions of the deregulated proteins. There are strong interactions 
between proteins that are deregulated in CLL. (D) Top 15 up- and down-regulated proteins. The 
deregulated proteins include several known candidates implicated with both the initiation and the 
progression of CLL, such as FAM50A, IKZF3, KRAS, MAP2K1, SAMHD1 and SF3B1. Top 15 upreg-
ulated proteins have a 6–32 fold increase, while down regulated proteins have a 10–30 fold decrease 
(score: Log2(FC)). 

3.2. Identification of Proteins with Prognostic Nature in CLL Development 
Some of the listed proteins may play a more significant role in CLL development over 

others. To determine such candidates, we selected the top 20 proteins that show the high-
est deregulation score in CLL cells. By this analysis, we found that YEATS domain con-
taining protein 2 (YEATS2), a chromatin reader, is the most significantly upregulated pro-
tein in patients’ cells, with a log2 fold-change equal to 4977. YEATS2 has previously been 
found to promote tumorigenesis in lung cancer by colocalizing with H3K27 acetylation, 
facilitating the transcription of essential genes for cell multiplication [76]. However, as the 
role of this protein in CLL remains unclear, we sought to identify the impact of its upreg-
ulation in CLL patients. For this purpose, we calculated how the protein affects the prob-
ability that a patient will survive up to a certain time point (survival-Kaplan–Meier 
curves). Interestingly, we found that patients with high expression of YEATS2 had a mark-
edly lower survival probability compared to patients with low expression (p < 0.0001). 
This profound effect is evident already from the initialization of tumor development and 
lasts until the final stages. Hence, YEATS2 is likely an important factor in CLL develop-
ment, as with lung cancer, and further investigation is required to elucidate its role. Fur-
thermore, WDR5, which is one of the proteins, interactors of YEATS2 (they both partici-
pate in the Ada2/Gcn5/Ada3 transcription activator complex) and its primary co-expres-
sion factor (score 0.089), was found to be around 150% upregulated (Figure 4A). In a 

Figure 3. Differentially expressed proteins in CLL. (A) Heatmap of differentially expressed proteins
in CLL. There are 1023 differentially expressed proteins between healthy and CLL samples detected
in at least two datasets and modified in the same direction (up or down-regulation) between datasets.
(B) Number of deregulated proteins in CLL. 608 proteins are up-regulated and 415 are downregulated.
(C) Protein-protein interactions of the deregulated proteins. There are strong interactions between
proteins that are deregulated in CLL. (D) Top 15 up- and down-regulated proteins. The deregulated
proteins include several known candidates implicated with both the initiation and the progression of
CLL, such as FAM50A, IKZF3, KRAS, MAP2K1, SAMHD1 and SF3B1. Top 15 upregulated proteins
have a 6–32 fold increase, while down regulated proteins have a 10–30 fold decrease (score: Log2(FC)).
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Figure 4. Main interactors of the top deregulated proteins and how they are affected in CLL.
(A) Interactors of YEATS2. YEATS2 seems to be co-expressed with its already known interactor
WDR5, only at the proteomic level. (B) Interactors of PIGR. PIGR is upregulated both in proteomic
and transcriptomic level, whereas its interactors, FCRL5, FCRL2, and PIGM, were upregulated only
at the transcriptomic level. (C) Interactors of BTF3. BTF3 seems to have co-expression with RPS23
at the proteomic level. (D) Interactors of SNRPA. SNRPA has co-expression with the most of its
interactors (SNRPA1, SNRPB, SNRPC, SNRD2, SNRD3, SNRPF and U2AF2) at proteomic level
and only one interactor, SNRPE, found to be upregulated at transcriptomic level. (E) Interactors
of NUTF2. NUP62 was only found up-regulated both at proteomic and transcriptomic level and
NUP214 was up-regulated at transcriptomic level. (F) Interactors of PPBP. PPBP was also found
down-regulated at transcriptomics level, as many of its interactors (CCR1, CCR2, CXCR4 and PF4),
whereas only one interactor, PF4 was down-regulated at proteomics level. (G) Interactors of GP1BA.
Two of its interactors, ITGAM and ITGB, were also found downregulated both at proteomic and
transcriptomic level, while two, YWHAZ and SELP had opposite behavior. (H) Interactors of MPO.
MPO seems to co-expressed with AZU1, PRTN3, APOA1 and CES1, whereas PTGS1 was also found
deregulated at transcriptomic level. Red triangles depict over-expression, Green depicts under-
expression, Colored filled triangles depict deregulation at proteomic level, Plain triangles depict
deregulation at transcriptomic level. The thickness of the lines correlates with the confidence (the
strength of the data support) in the network connections between proteins (solid lines: connections
with high confidence; dotted lines: connections with lower confidence).
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Figure 5. Survival-Kaplan–Meier curves of the top 10 deregulated proteins in CLL. Among the
top 5 up-regulated proteins, (A) YEATS2, (B) PIGR, (D) SNRPA and (E) NUTF2 have a lower survival
probability in CLL patients, apart from (C) BTF3 that seems to affect survival only during the
initial days of disease development. Among the top 5 down-regulated proteins, (F) FGB, (G) LTBP1
and (H) PPBP seem to not affect the survival curves, while (I) GP1BA and (J) MPO, when they are
downregulated, heavily affected patient survival. Xena Browser compares the different Kaplan–Meier
curves using the log-rank test. The Browser reports the test statistics (χ2) and p-value (χ2 distribution).

On the contrary, various proteins showed significant levels of downregulation, includ-
ing FGB, LTBP1, PPBP, GP1BA, and MPO. Of these proteins an interesting candidate is
Glycoprotein Ib Platelet Subunit Alpha (GP1BA), a surface membrane glycoprotein with
a major function in platelet adhesion during a vascular injury [81]. GP1BA is not only
significantly downregulated in our proteomic dataset but also patients with this alteration
have a significantly lower survival probability compared to patients with higher GP1BA
expression (p = 1.195 × 10−7). Correspondingly, Myeloperoxidase (MPO) protein is another
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protein that demonstrated reduced expression in CLL cells and heavily affected patient
survival from the initial stages of disease development (p = 2.686 × 10−13). MPO is a heme
protein that serves as a major component of neutrophils, and high MPO expression was
associated with favorable outcomes in patients with acute myeloid leukemia (AML) [82].
Interestingly, proteins that are known have co-expression with GP1BA (ITGB2 and ITGAM)
and MPO (AZU1 and PRTN3) were also found to be downregulated (Figure 4). Finally,
the rest of the proteins investigated (FGB, LTBP1, PPBP) had only a subtle effect in patient
survival (with no statistical significance between groups with high and low expression),
hence implying that they may act indirectly in CLL development. Nevertheless, the coor-
dinated analysis of proteomics and patient survival data revealed dependence between
these two variables and allowed us to identify prominent factors that may act as drivers of
disease progression.

3.3. Integration of Proteomic Data with Transcriptomics Shows Limited Correlation

The cumulative analysis of many types of omics data has the capacity to significantly
improve the molecular characterization of a given cellular state, unveiling the underlying
complexity needed for disease subtyping. Thus, we attempted to compare our proteomic
data with high-quality transcriptome data to obtain a more thorough picture of the molecu-
lar imbalances existing in patient cells. For this purpose, we selected two datasets, GSE26725
and GSE22529, that contain transcriptome data generated through microarrays using 12
and 41 patient samples, respectively. First, we performed data pre-processing by averaging
the values of the different probesets that measure the same transcript. Thus, GSE26725
had 30804 and GSE22529 referenced 25,959 identifiers, both of which were substantially
larger than the number of proteins identified in proteomic experiments due to the targeting
of non-coding areas of the genome. Approximately 81% of the identified loci were found
common in both datasets and another 15% was unique in the larger GSE26725 dataset.
After integrating the identifiers found in the proteomic datasets, only 3.21% (994) of the
transcripts had a protein counterpart, while only 0.02% of the differentially expressed
proteins were not detected in the transcriptomic data.

As previously observed, transcript levels may not be a reliable indicator of protein
levels due to a variety of cellular mechanisms that buffer protein biosynthesis (including
alternative splicing, transcript stability, translational efficiency, and others). Hence, to
examine how transcript levels connect with their protein counterparts, we integrated all
datasets with their quantitation values into a single graph. We observed only a modest
agreement between proteomic and transcriptomic data, since only a minority of the proteins
show the exact same regulation in both mRNA and protein level, while the majority
show a higher degree of deregulation in the one type of data over the other (r2 = 0.306).
Nevertheless, a group of significantly upregulated proteins found in the proteomic dataset
were, likewise, strongly upregulated in the transcriptomic dataset (CCDC88A, INPP5F,
PIGR, DNMBP, SGPP1, CHDH, GCLC, and CLNK). Similarly, a group of downregulated
proteins showed strong concordance with the transcriptomic data (LYZ, FCN1, CD14,
S100A9, S100A8, SORL1, ALDH2, GLRX, ANXA1, KCTD12, CYBB, and PPBP). Conversely,
there was no consistency between the transcriptomic and proteomic data for YEATS2,
which had the highest deregulation score in our proteomic dataset (Figure 6), perhaps
indicating a transcript independent regulation of YEATS2 in CLL. On the other hand, PIGR,
the second highest deregulated protein, was found increased at the transcriptional level,
as were the only two genes, FCRL5 and FCRL2, known to be co-expressed with PIGR
(scores 0.070 and 0.076, respectively, Figure 6B). Conclusively, this analysis showed the
added value of combining both proteomic and transcriptomic data in elucidating complex
disease mechanisms.
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tool that incorporates known and predicted protein-protein interactions from over 20 mil-
lion proteins out of 5090 organisms [83]. We selected interactions characterized by confi-
dence (rather than just evidence) and clustered all proteins based on k-means. In total, 608 
upregulated proteins were grouped into 6 densely populated clusters with functions re-
lated to stress response, RNA modification, metabolism, and gene expression (string DB, 
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ticipating in the spliceosome pathway with various roles and functionality across the pro-
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Figure 6. Integration of proteomics and transcriptomics data. (A) Heatmap of the two selected
transcriptomic datasets. The two datasets display a similar transcriptome profile. (B) Number of
identifiers in each dataset used for the data integration. “Proteomics” represents the list of the
1023 common differential expressed proteins. (C) Venn diagram of the two transcriptomics datasets
and the proteomics list. Essentially, the list of differentially expressed proteins “fished” their genes
from the transcriptomics datasets. (D) Scatter plot of the common identifiers at both proteomics
and transcriptomics level. Zoom in the most up- or down-regulated proteins that have common
regulation at both proteomic and transcriptomic level.

3.4. Protein-Protein Interaction Network Analysis Reveals Affected Cellular Processes in
Tumor Cells

Next, we attempted to obtain insights into the functionality of the differentially ex-
pressed proteins by clustering them based on protein-protein interactions using two distinct
bioinformatic tools (String DB and Cytoscape). First, we used String DB, a web-based tool
that incorporates known and predicted protein-protein interactions from over 20 million
proteins out of 5090 organisms [83]. We selected interactions characterized by confidence
(rather than just evidence) and clustered all proteins based on k-means. In total, 608 upreg-
ulated proteins were grouped into 6 densely populated clusters with functions related to
stress response, RNA modification, metabolism, and gene expression (string DB, k-means
clustering, Figure 7A). The RNA modification cluster contained 41 proteins participating in
the spliceosome pathway with various roles and functionality across the process of RNA
degradation (Figure 7A). Another group consisted of eight proteins related to the synthesis
of amino acids, while a third one appeared to confer cellular resistance to stress. Notably,
this latter group included prominent members of the heat-shock and the antioxidant re-
sponse, such as HSPA4, HSPA8, HSPA9, and SOD1. On the contrary, the 415 downregulated
proteins were likewise grouped into 6 large clusters with the primary functional enrich-
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ments being lipid metabolism, immune system response, as well as cell communication
(Figure 7B). Perhaps the most interesting subcluster was the immune system response
that seems to confer resistance to Leukocyte- mediated clearance by downregulating the
integrin members ITGAM, ITGB1, ITGB2, and ITGAL. Moreover, cellular transport was
also compromised in tumor cells through downregulation of 38 proteins related to vesicle-
mediated transport, as well as important proteins involved in vesicle docking involved in
exocytosis (such as VPS33B, RAB3D, VAMP3, and SCFD1). Finally, downregulated proteins
seem to rewire the normal lipid metabolic program in CLL cells, likely promoting energy
production through free fatty acids in a similar mechanism to that seen in adipocytes (as
previously shown in [84]).
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Figure 7. Protein-protein interaction networks of upregulated and downregulated proteins using
stringDB. For both networks the following parameters were used: interactions characterized by
confidence (instead of only evidence) and clustering of all proteins based on k-means. (A) Only
upregulated proteins were used to create this network. Proteins were grouped into 6 main clusters
and overrepresentation analysis was performed using the built-in stringDB tool. Each cluster was
manually labeled with the function (or pathway) mediated by the proteins belonging in that cluster.
(B) Same analysis as with (A), using the downregulated set of proteins.

Moreover, we utilized Cytoscape, which is an open-source software platform that
facilitates visualization of protein networks and their integration with annotations, gene
expression, and other types of data [65]. These are similar to string DB proteins clustered in
various groups using the independent tool of cytoscape. For instance, upregulated proteins
were found again to relate with metabolic processes, cellular response to stimulus and
DNA damage, and regulation of apoptosis/cell death (upregulated proteins, Figure 8A).
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The latter group is composed out of 42 proteins (such as GLO1, XIAP, PHB, FOXO1, HSPD1,
and TRAF1) and seem to drive evasion of cell death, a trait which represents a main
hallmark of cancer. Moreover, another large cluster, composed of 350 proteins, was related
to cell metabolism, including processes such as tricarboxylic acid cycle, oxidoreductase
activity and glycolysis. The same analysis for downregulated proteins showed that these
factors coordinate regulation of cell adhesion, immune system processes, and cytoskeleton
organization (Figure 8B). The latter cluster is interesting as it probably confers plasticity and
resistance of the cancer cell in both mobility and metastasis. Finally, other major functions
mediated through the group of downregulated proteins include stress response, vesicle
mediated transport, and regulation of cell communication.
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Figure 8. Protein-protein interaction networks of upregulated and downregulated proteins using
cytoscape. (A) Upregulated proteins were used to create this network. GOlorize tool was used to
visualize the Gene Ontology (GO) categories which are statistically overrepresented in the upregu-
lated set of proteins. Each cluster was manually labeled with the function (or pathway) mediated by
the proteins belonging in that cluster. (B) Same analysis as with (A), using the downregulated set of
proteins. Unique refers to proteins that are categorized into multipleGO categories. These proteins
are considered unique because there is no other protein classified into the exact same combination of
GO categories. This distinct classification underscores their unique functional annotations within
the dataset.

3.5. Drug Repurposing Shows Potential New Treatments against CLL

The group of upregulated proteins confers the main traits of cancer cells and differen-
tiates them from healthy one. Thus, we used this group of proteins to identify candidate
compounds for treatment in CLL patients. For this purpose, we have used Pandrugs, a
bioinformatic tool that incorporates thousands of drug-target associations obtained from
4703 genes and 9073 unique compounds. In our analysis, we mainly focused on approved
compounds and excluded experimental or clinical trial candidates so that the identified
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drugs may be easily implemented in the clinical practice surpassing the need for new
clinical trials. Moreover, we selected only the best candidates, characterized by increased
sensitivity against a significantly deregulated protein. We identified a total of 782 potential
drugs, with the majority of them (601 drugs) targeting a member of a deregulated path-
way, and a smaller group of 181 drugs directly targeting a specific protein (Supplemental
Table S4, Figure 9). Among them, 411 drugs (52.6%) are currently in an experimental stage,
230 drugs (26%) are in clinical trials, and 168 (21.5%) are approved drugs. Additionally, our
drug candidates also target significant enzyme families, such as oxidoreductases, receptor
tyrosine kinases, cyclooxygenase inhibitors, serine/threonine kinases, and others. Notably,
among the identified drugs, we found a known compound that is already used against
CLL, the bcl-2 inhibitor venetoclax, a finding that validates our data analysis.
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Figure 9. Drug identification using the Pandrugs software (version: 2024.06), based on the upreg-
ulated set of proteins (608 proteins). (A) Pie chart depicting an overview of the approval status
(approved, experimental or in clinical trials) of the identified compounds. (B) Overview of the main
drug families that the identified compounds belong in. (C) Drug score chart depicting all identified
compounds separated based on their dscore (considers factors such as approval status, number of
associated genes and numbers of sources, x-axis) and gscore (considers the importance of the targeted
genes for the cancer cell, y-axis). Drugs with high g- and d-score are characterized as best candidates,
and they are depicted in upper right corner of the graph.

PanDrugs ranks identified compounds based on two criteria: dscore, which considers
factors such as approval status, number of associated genes, and numbers of sources,
and gscore, which takes into account the importance of the targeted genes for the cancer
cell. Based on both these metrics, the identified drugs were categorized into two groups.
The first group contained compounds characterized by high gscore and relatively high
sensitivity (but lower than group 2) against the target protein. Group 2 drugs exhibited even
higher sensitivity against their target proteins but demonstrated a lower gscore compared
to group 1. Another important attribute is that drugs from group 2 target directly a specific
protein, while drugs from group 1 may have a direct target but also may target a protein
associated with the protein of interest (that belongs in the same pathway) (Table 1, Figure 9).
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Table 1. The table shows the best drugs candidates repurposed in CLL based on our bioinformatic
analysis. Information about the drug name, target of the overexpressed proteins, type of drug-target
interaction, their main mechanism of action, FDA drug indication and possible indication in CLL
based on already existing data are provided in each column.

Drug Target Type of Interaction Mechanism of Action Indication Possible Indication
in CLL Reference

Arsenic trioxide

CARD11, CDC37,
CDKN1B, PRKCB,
PTPN2, RUVBL1,

SMAD2 and TRAF3

pathway inhibitor

not completely understood
causes morphological

changes and
DNA fragmentation

promyelocytic
leukemia CT PhIII [85]

Bosutinib
CDC37, CDKN1B,

GRB2, RASSF1 and
SMAD2

pathway inhibitor

inhibits the activity of the
oncogenic Bcr-Abl kinase
and Src-family of kinases
such as Src, Lyn and Hck

CML - [86]

Vorinostat HDAC2, HDAC7
and SMAD2 pathway inhibitor inhibition of HDAC activity CTCL CT PhII [87]

Romidepsin HDAC2, HDAC7
and SMAD2 pathway inhibitor HDAC inhibitor CTCL CT PhI [88]

Panobinostat HDAC2, HDAC7
and SMAD2 pathway inhibitor deacetylase (DAC) inhibitor multiple myeloma CT PhII [89]

Belinostat HDAC2, HDAC7
and SMAD2 pathway inhibitor histone deacetylase

(HDAC) inhibitor PTCL experimental [90]

Regorafenib
CDC37, GRB2,

RASSF1
and SMAD2

pathway inhibitor tyrosine kinase inhibitor

colorectal cancer,
gastrointestinal
stromal tumors,
hepatocellular

carcinoma

CT PhI [91]

Palbociclib CDKN1B and
SMAD2 pathway inhibitor

inhibition of cyclin
D-CDK4/6

complex activity
breast cancer CT PhI [92]

Imatinib GRB2 and SMAD2 pathway inhibitor
inhibits the activity of the
oncogenic Bcr-Abl kinase

and other kinases

leukemias,
myelodysplastic/

myeloproliferative
disease, systemic

mastocytosis,
hypereosinophilic

syndrome,
dermatofibrosarcoma

protuberans,
gastrointestinal
stromal tumors

CT PhII [93]

Ponatinib GRB2 and SMAD2 pathway inhibitor multi-target
kinase inhibitor CML CT PhI [94]

Ribociclib CDKN1B and
SMAD2 pathway inhibitor

inhibitor of
cyclin-dependent kinase

(CDK) 4 and 6
breast cancer - [95]

Abemaciclib CDKN1B and
SMAD2 pathway inhibitor inhibits CDK4 and CDK6 breast cancer CT PhI [96]

Nilotinib SMAD2 pathway inhibitor inhibits the activity of the
oncogenic Bcr-Abl kinase CML - [97]

Dasatinib SMAD2 pathway inhibitor

inhibition of BCR-ABL,
SRC family (SRC, LCK,

YES, FYN), c-KIT, EPHA2,
and PDGFRβ

CML, ALL CT PhII [98]

Axitinib SMAD2 pathway inhibitor VEGFR and
kinase inhibitor renal cell carcinoma - [99]

Valproic acid HDAC2, HDAC7
and SMAD2 pathway inhibitor

inhibitor of GABA, impacts
the extracellular

signal-related kinase
pathway (ERK), impact
fatty acid metabolism,

HDAC inhibitor

anticonvulsant CT PhII [100]

Phenylbutyric acid HDAC2, HDAC7
and SMAD2 pathway inhibitor conjugated with

phenylacetyl-CoA urea cycle disorders experimental [101]

Bortezomib

BCL2, CDC37,
PSMA3, PSMB1,
PSMB8, PSMC2,
PSMC3, PSMC4,
PSMD2, PTPN2
and YWHAQ

direct inhibitor inhibitor of the
26S proteasome

multiple myeloma,
MCL CT PhI [102]
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Table 1. Cont.

Drug Target Type of Interaction Mechanism of Action Indication Possible Indication
in CLL Reference

Paclitaxel

BCL2, CDC37,
MAP2, MAP4,

PTPN2
and YWHAQ

direct inhibitor
interferes with the normal

function of
microtubule growth

Kaposi’s sarcoma and
cancer of the lung,
ovarian, and breast

CT PhII [103]

Venetoclax
BCL2, CDC37,

PTPN2
and YWHAQ

direct inhibitor BCL-2 inhibitor CLL, SLL, AML FDA aproved [104]

Eribulin Mesylate
BCL2, CDC37,

PTPN2
and YWHAQ

direct inhibitor microtubule inhibitor breast cancer - [105]

Docetaxel

BCL2, CDC37,
MAP2, MAP4,

PTPN2
and YWHAQ

direct inhibitor
interferes with the normal

function of
microtubule growth

breast cancer, NSCL,
prostate cancer, gastric
adenocarcinoma, head

and neck cancer

CT PhI [106]

Thus, the best hits of group 1 were arsenic trioxide, bosutinib, vorinostat, romidepsin,
panobinostat, and regorafenib. Interestingly, all these drugs are already approved for
the fight against various forms of blood cancer, such as promyelocytic leukemia [107],
CML [108], Cutaneous T-cell lymphoma [109], and multiple myeloma [110] (Table 1) [107].
Arsenic trioxide affected eight upregulated proteins in our dataset (CARD11, CDC37,
CDKN1B, PRKCB, PTPN2, RUVBL1, SMAD2, and TRAF3). Moreover, bosutinib, a tyrosine
kinase inhibitor, is perhaps the best candidate identified, as it is already in use against
chronic myeloid leukemia [108] and was found to target five upregulated proteins (CDC37,
CDKN1B, GRB2, RASSF1, and SMAD2). Bosutinib had a high score of both drug suitability
(dscore) and gene significance (gscore). Finally, vorinostat, romidepsin, and panobinostat
were also characterized by high dscore and gscore due to their capacity to bind to the
histone deacetylase inhibitors HDAC2 and HDAC7 as well as SMAD2. Another interesting
candidate characterized by high values of dscore and gscore is regorafenib [111], which
targeted four proteins of our dataset (CDC37, GRB2, RASSF1, and SMAD2) and represents
a targeted therapy associated with limited toxicity.

Group 2 genes directly targeted an upregulated protein albeit with a slightly lower
gscore, and contained the following drugs: Bortezomib, paclitaxel, venetoclax, eribulin
mesylate, and docetaxel. Bortezomib is perhaps the best candidate out of this group as it a
targeted therapy already used for the treatment of multiple myeloma [112] and mantle cell
lymphoma [113]. Bortezomib targeted 11 proteins, including 8 proteasome subunits (BLC2,
CDC37, PSMA3, PSMB1, PSMB8, PSMC2, PSMC3, PSMC4, PSMD2, PTPN2, and YWHAQ).
Moreover, this group contained venetoclax, which, as mentioned earlier, is already used
against high-risk del17p/mutated-TP53 CLL and patients refractory to chemotherapy [114].
Finally, paclitaxel [115], eribulin mesylate [116], and docetaxel [117] are all chemothera-
peutic compounds that would likely be active against CLL cells but will associate with the
typical side effects of chemotherapy.

4. Discussion

Technological advances over the past years have provided an extraordinary amount
of data from the genome, transcriptome, and proteome analysis of cancer samples. The
challenge, nowadays, is to integrate these diverse types of omics data to further compre-
hend complex diseases and granting more effective, safer therapeutic strategies for the
application of precision medicine tailored to specific pathomolecular entities. The integra-
tion of proteomics with multi-omic data and clinical information creates a comprehensive
understanding of biological processes and disease mechanisms. This integrated approach
allows for the correlation of proteome abundance with transcriptome abundance and clini-
cal outcomes, leading to more precise biomarker discovery and a better understanding of
disease pathways and putative drug targets [9,118,119]. CLL is an example of complex and
heterogeneous disease that lacks an effective therapy. This study combined transcriptomic,
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proteomic, patient survival data, and a drug repurposing approach questing for novel
disease modifying factors and potential new drugs in CLL treatment and management [9].

First, we focused on the proteomic analysis of over 30 CLL patient samples and
12 healthy donors derived from 3 independent studies with publicly available data. The
cumulative analysis of this data revealed that CLL cells differ from healthy cells in the
regulation levels of 1023 proteins (608 upregulated and 415 downregulated). YEATS2, PIGR,
BTF3, SNRPA, and NUTF2 were the top five upregulated proteins, whereas FGB, LTBP1,
PPBP, GP1BA, and MPO were the most significantly downregulated proteins. Interestingly,
by integrating patient survival data, we found that four out of the five top upregulated
proteins (YEATS2, PIGR, SNRPA, and NUTF2) had a putative prognostic nature in CLL
progression (Figure 5).

This effect is most profound for YEATS2, which is the protein with the highest up-
regulated value in CLL cells. YEATS2 is a subunit of the ATAC complex, which has an
acetyltransferase activity on histones H3 and H4. Thus, the activity of YEATS2 offers
resistance to various transcriptional repressors and enhances transcription of large gene
sets, including several MAP kinases [120]. As a consequence of this function, YEATS2
overexpression has been linked with various types of cancer, including non-small cell
lung cancer, head and neck squamous cell carcinoma, and pancreatic cancer [76,121,122].
Mechanistically, it has been found in previous studies that YEATS2 overexpression stim-
ulated the PI3K/AKT pathway and altered the extracellular matrix structure, facilitating
the proliferation, migration, and metastasis of hepatocellular carcinoma (HCC) cells [123].
Moreover, in non-small cell lung cancer, YEATS2 acted as a histone H3K27ac reader, or-
chestrating a transcriptional program critical for tumorigenesis. This program included
the transcription of genes encoding ribosomal proteins, regulators of DNA replication,
and components of the proteasome machinery. Additionally, we should note that WDR5,
the major interactor of YEATS2, was also found to be strongly upregulated in our CLL
samples. WDR5 plays a critical role in CLL by participating in the MLL/SET1 histone
methyltransferase complex [124]. This complex is essential for regulating gene expression
through histone methylation, particularly at histone H3 lysine 4 (H3K4), a mark associated
with active transcription [125]. In CLL, dysregulation of WDR5 can lead to abnormal
expression of genes involved in cell proliferation, survival, and differentiation, which are
pivotal in disease progression [124]. In conclusion, further study is required to unveil the
function and potential prognostic value of YEATS2 and WDR5 in CLL cells.

Similarly, another interesting candidate identified through our analysis was SNRPA.
This protein belongs in the spliceosomal U1 snRNP complex, which mediates the recog-
nition of the pre-mRNA 5′ splice-site and initiates the process of splicing in eukaryotes.
Interestingly, a general defect in splicing has been recognized as a major event in CLL
development through various studies in the field [39,126,127]. Thus, overexpression of
SNRPA is likely a significant factor in CLL pathogenesis by contributing to splicing aberra-
tions observed in patient cells. Similarly, PIGR was also found to be strongly upregulated
in CLL cells. PIGR has been previously studied in HCC, colon cancer, pancreatic cancer,
osteosarcoma, and glioma, where its high expression has been associated with unfavorable
prognoses [128–130]. Conversely, studies have indicated favorable outcomes with PIGR ex-
pression in patients with different cancers, such as those affecting the upper gastrointestinal
tract, lung, endometrium, ovaries, and breast [126,129,130]. Mechanistically, PIGR has been
identified as a promoter of cellular transformation and proliferation in HCC [131]. Thus,
PIGR emerges as a new factor in CLL pathogenesis that waits for further investigation.
Taken together, our data propose that YEATS2, SNRPA, and, to a lesser degree, PIGR and
NUTF2 may have a significant prognostic value in CLL patients.

Furthermore, to further improve the understanding of the cellular conditions existing
in patient cells, we integrated transcriptomic data from 53 patients into the already analyzed
proteomic datasets. The independent transcriptomic data showed very similar groups
of deregulated genes, and most of them had a corresponding protein in our proteomic
dataset. Nevertheless, it has been previously shown that there is limited agreement between
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proteomic and transcriptomic data [132]. A significant factor is the post-transcriptional
regulation of protein expression, which can obscure direct correlations between mRNA
levels and protein abundance [133]. Processes such as mRNA stability, translation efficiency,
and post-translational modifications play crucial roles in determining the final protein
composition detected in proteomic analyses [134]. Additionally, technical aspects of data
acquisition and analysis contribute to the discordance. Accordingly, we observed that only a
small fraction of genes had the same type of regulation when comparing the transcriptomic
with the proteomic datasets (r2 = 0.32). This phenomenon was profound when analyzing
YEATS2, which is strongly upregulated at the protein level, but merely changes in terms
of abundancy at the mRNA level. As noted earlier, aberrant splicing observed in CLL
cells [135] may be a key contributing factor in the identified discrepancy between mRNA
and protein levels. In conclusion, this data suggests that alterations at the mRNA level
should be interpreted with caution, especially if proteomic data are not available for the
given cellular type.

Subsequently, we utilized our datasets to identify the major pathways involved in CLL
pathogenesis by performing network and enrichment analysis of the proteomic datasets.
Interestingly, both known pathways (such as RNA processing and metabolism), but also
new processes (such as vesicle-mediated transport), were found to be deregulated in CLL
patient cells. In total, the upregulated proteins in CLL cells clustered into groups that seem
to promote stress resistance (heat-shock proteins), modify the normal metabolic routes,
promote modifications of the RNA, and drive apoptosis evasion. On the contrary, the
downregulated set of proteins seems to compromise the physiological immune system
responses and, thus, lead to immune system evasion, as well as inflammatory signaling.
The considerably overexpressed PIGR protein (Figure 5B), a recognized pro-inflammatory
molecule involved in immunoglobulin trafficking across the cellular membrane [136],
is likely to contribute to this trend. Conclusively, diverse proteins groups generate a
distinct environment in CLL cells that influences important processes, including improved
stress resistance, RNA modification in the spliceosome, apoptosis evasion, and promoting
cancer progression.

Finally, as previously noted [44], drug repurposing is a feasible and cost-effective
approach to identify novel therapies. Published examples in CLL include the use of
antihistamines with ibrutinib [46], or the administration of single compounds, such as
nelfinavir and chloroquine [137]. In the current study, we used an in silico approach,
utilizing existing results originating from in vitro experiments to bioinformatically correlate
deregulated proteins and pathways with chemical compounds. This analysis led to the
identification of a wealth of compounds that are already used in CLL (such as venetoclax),
but also new drugs with potential therapeutic use in CLL.

These drugs include the chemotherapeutic agents arsenic trioxide and romidepsin,
which are characterized by high score values but are associated with the typical side-effects
of chemotherapy. Moreover, we identified various targeted therapies, such as bosutinib
(CML [108], vorinostat (CTCL) [138], panobinostat (multiple myeloma) [139], and rego-
rafenib (colon, intestine, rectum, and stomach cancer [110,140]) and bortezomib (multiple
myeloma and MCL) [141]. Bosutinib is a tyrosine kinase inhibitor that targets ABL and
SRC family kinases, which may disrupt signaling pathways involved in cell proliferation
and survival [142]. In our dataset, bosutinib targeted the following five proteins, CDC37,
CDKN1B, GRB2, RASSF1, and SMAD2 (Table 1), which collectively regulate growth, prolif-
eration, differentiation, and apoptosis [143–145]. Notably, there is an additional example
were bosutinib was similarly repurposed against neuroblastoma, where it was shown capa-
ble of suppressing oncogenic activity via targeting multiple signaling pathways including
Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 [146]. On the other hand,
Vorinostat and Panobinostat may exert a different role in CLL cells by affecting histone
acetylation through targeting HDAC2, HDAC7, and SMAD2 (Table 1). By modulating
these factors, Vorinostat and Panobinostat likely alter chromatin structure, impacting gene
expression and cellular processes. As a matter of fact, the histone modification pathway
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was found significantly altered in our overrepresentation analysis (Figure 8A), thus ex-
plaining the potential mechanism of action and the activity of these drugs. Moreover,
bortezomib shows potential for repurposing in CLL treatment due to its ability to target
various upregulated proteasome components (Figure 8A) and modulating BCL2-mediated
apoptosis. Taken together, these compounds are characterized by their targeted nature,
which is associated with minimal or no toxicity. Conclusively, our analysis suggests that
further exploration of vorinostat, pabinostat, regorafenib, and bortezomib in CLL might be
of high research and clinical interest in experimental models of CLL.

Nevertheless, our study has certain limitations, as it relied exclusively on publicly
available datasets. First, the varying sample collection methods, patient demographics, and
clinical conditions across studies are factors that complicate data analysis and validation.
This limitation is evident with the PDS3 proteomic dataset, which employed a different
proteomic approach and thus reported fewer proteins than the PXD002004 and PXD006578
datasets. To overcome this inconsistency, we decided to only include proteins modified in
the same direction (up- or down-regulation) in at least two of the three studies. There is also
the possibility of selection bias, as the datasets analyzed may preferentially include certain
patient subgroups, potentially skewing the results. To address this issue, we employed
and analyzed data of varying techniques (including transcriptomics and patient survival)
to reduce selection bias issues. Taken together, though our study has certain limitations,
we believe that the use of multiple datasets of different techniques provides insights into
the different manifestations and subtypes of CLL, addressing the diverse biological and
clinical landscapes of the disease.
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CLL Chronic Lymphocytic Leukemia
CT PhI Clinical Trial Phase I
CT PhII Clinical Trial Phase II
CT PhIII Clinical Trial Phase III
CTCL Cutaneous T-cell lymphoma
FDA Food and Drug Administration
GEO Gene Expression Omnibus
GTEx Genotype-Tissue Expression
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GO Gene Ontology
ICGC International Cancer Genome Consortium
IGHV immunoglobulin heavy chain variable region gene
INDELs Insertion-deletion mutations
KEGG Kyoto Encyclopedia of Genes and Genomes

Log2(FC)
Log2[(measurement of proteins/genes of CLL patients)/(measurement of proteins/
genes of healthy donors)]

M-CLL mutated CLL
MCL mantle cell lymphoma
PCA Principal Component Analysis
PIGR Polymeric immunoglobulin receptor
PRIDE PRoteomics IDEntifications database
SNPs Single nucleotide polymorphisms
SNRPA Small nuclear ribonucleoprotein polypeptide A
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
SWATH Sequential Window Acquisition of all Theoretical Spectra
TCGA Cancer Genome Atlas
U-CLL unmutated CLL
YEATS2 YEATS domain-containing protein 2
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