Effectiveness of Nintendo Wii Fit© for Physical Therapy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection Process and Data Extraction
2.4. Assessment of the Risk of Bias and Methodological Quality
2.5. Data Analysis
3. Results
3.1. Study Selection
3.2. Description of the Studies
- −
- −
- −
- −
- −
- −
- −
- −
- Ski Jump: The player must squat with their knees bent and push forward on the Nintendo Wii Balance Board© to gain speed. At the end of the ramp, the player must extend their knees and then keep their balance when landing [57].
- −
- Perfect 10: The player must sway their hips left, right, up, and down on the balance board for a score adding up to the total shown on the upper left of the screen [58].
- −
- −
- Skateboard Arena: The player must propel a skateboard by removing one foot from the balance board and then placing it back, as on a real skateboard, while simultaneously leaning to the left and right to turn [58].
- −
- Rhythm Boxing: The player must punch the dartboards on the right or left (via the Nintendo Wiimote© and Nintendo Wii Nunchuk©), moving their feet at the same time on the balance board and following a rhythmic sequence [60].
- −
- Basic Step: The player must step on and off the Nintendo Wii Balance Board© in time with the on-screen steps [60].
- −
- Hula Hoop: The player must achieve as many spins of the hula hoop as possible in 70 s while on the balance board [60].
- −
- Torso Twist: The player must twist their body diagonally to both sides on the balance board, avoiding bending forward, to train their abdominal muscles [60].
- −
- Rowing Squat: The player must squat down on the Nintendo Wii Balance Board© while performing a rowing motion to train their thighs and back muscles [60].
3.3. Synthesis of Meta-Analysis Results between Experimental and Control Groups
3.3.1. Functional Mobility
3.3.2. Fatigue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Lemus, H.N.; Warrington, A.E.; Rodriguez, M. Multiple Sclerosis: Mechanisms of Disease and Strategies for Myelin and Axonal Repair. Neurol. Clin. 2018, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Goldman, M.D. Epidemiology and Pathophysiology of Multiple Sclerosis. Continuum 2022, 28, 988–1005. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, B.; Mowry, E.M. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum 2019, 25, 596–610. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef]
- Koch-Henriksen, N.; Magyari, M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat. Rev. Neurol. 2021, 17, 676–688. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Eshaghi, A.; Prados, F.; Brownlee, W.J.; Altmann, D.R.; Tur, C.; Cardoso, M.J.; De Angelis, F.; van de Pavert, S.H.; Cawley, N.; De Stefano, N.; et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann. Neurol. 2018, 83, 210–222. [Google Scholar] [CrossRef]
- Sand, I.K. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef]
- Klineova, S.; Lublin, F.D. Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a028928. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef]
- Solaro, C.; Trabucco, E.; Messmer-Uccelli, M. Pain and multiple sclerosis: Pathophysiology and treatment. Curr. Neurol. Neurosci. Rep. 2013, 13, 320. [Google Scholar] [CrossRef]
- Cameron, M.H.; Nilsagard, Y. Balance, gait, and falls in multiple sclerosis. Handb. Clin. Neurol. 2018, 159, 237–250. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Lamers, I.; Kelchtermans, S.; Baert, I.; Feys, P. Upper limb assessment in multiple sclerosis: A systematic review of outcome measures and their psychometric properties. Arch. Phys. Med. Rehabil. 2014, 95, 1184–1200. [Google Scholar] [CrossRef]
- Gonor, S.E.; Carroll, D.J.; Metcalfe, J.B. Vesical dysfunction in multiple sclerosis. Urology. 1985, 25, 429–431. [Google Scholar] [CrossRef]
- Marola, S.; Ferrarese, A.; Gibin, E.; Capobianco, M.; Bertolotto, A.; Enrico, S.; Solej, M.; Martino, V.; Destefano, I.; Nano, M. Anal sphincter dysfunction in multiple sclerosis: An observation manometric study. Open Med. 2016, 11, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Drulovic, J.; Kisic-Tepavcevic, D.; Pekmezovic, T. Epidemiology, diagnosis and management of sexual dysfunction in multiple sclerosis. Acta. Neurol. Belg. 2020, 120, 791–797. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Kubsik-Gidlewska, A.M.; Klimkiewicz, P.; Klimkiewicz, R.; Janczewska, K.; Woldañska-Okoñska, M. Rehabilitation in multiple sclerosis. Adv. Clin. Exp. Med. 2017, 26, 709–715. [Google Scholar] [CrossRef]
- Motl, R.W. Exercise and Multiple Sclerosis. Adv. Exp. Med. Biol. 2020, 1228, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Stenager, E.; Ingemann-Hansen, T. Multiple sclerosis and physical exercise: Recommendations for the application of resistance-, endurance- and combined training. Mult. Scler. 2008, 14, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Bateni, H.; Carruthers, J.; Mohan, R.; Pishva, S. Use of Virtual Reality in Physical Therapy as an Intervention and Diagnostic Tool. Rehabil. Res. Pract. 2024, 2024, 1122286. [Google Scholar] [CrossRef]
- Mat-Rosly, M.; Mat-Rosly, H.; Davis-Oan, G.M.; Husain, R.; Hasnan, N. Exergaming for individuals with neurological disability: A systematic review. Disabil. Rehabil. 2017, 39, 727–735. [Google Scholar] [CrossRef]
- Huygelier, H.; Mattheus, E.; Vanden-Abeele, V.; Van-Ee, R.; Gillebert, C.R. The Use of the Term Virtual Reality in Post-Stroke Rehabilitation: A Scoping Review and Commentary. Psychol. Belg. 2021, 61, 145–162. [Google Scholar] [CrossRef]
- Maranesi, E.; Casoni, E.; Baldoni, R.; Barboni, I.; Rinaldi, N.; Tramontana, B.; Amabili, G.; Benadduci, M.; Barbarossa, F.; Luzi, R.; et al. The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. Int. J. Environ. Res. Public Health. 2022, 19, 14818. [Google Scholar] [CrossRef]
- Holden, M.K. Virtual environments for motor rehabilitation: Review. Cyberpsychol Behav. 2005, 8, 187–211. [Google Scholar] [CrossRef]
- Viau, A.; Feldman, A.G.; McFadyen, B.J.; Levin, M.F. Reaching in reality and virtual reality: A comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J. Neuroeng. Rehabil. 2004, 1, 11. [Google Scholar] [CrossRef]
- Graves, L.E.; Ridgers, N.D.; Stratton, G. The contribution of upper limb and total body movement to adolescents’ energy expenditure whilst playing Nintendo Wii. Eur. J. Appl. Physiol. 2008, 104, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Standen, P.J.; Camm, C.; Battersby, S.; Brown, D.J.; Harrison, M. An evaluation of the Wii Nunchuk as an alternative assistive device for people with intellectual and physical disabilities using switch controlled software. Comput. Educ. 2011, 56, 2–10. [Google Scholar] [CrossRef]
- Rohof, B.; Betsch, M.; Rath, B.; Tingart, M.; Quack, V. The Nintendo® Wii Fit Balance Board can be used as a portable and low-cost posturography system with good agreement compared to established systems. Eur. J. Med. Res. 2020, 25, 44. [Google Scholar] [CrossRef] [PubMed]
- Perrochon, A.; Borel, B.; Istrate, D.; Compagnat, M.; Daviet, J.C. Exercise-based games interventions at home in individuals with a neurological disease: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 366–378. [Google Scholar] [CrossRef]
- Calafiore, D.; Invernizzi, M.; Ammendolia, A.; Marotta, N.; Fortunato, F.; Paolucci, T.; Ferraro, F.; Curci, C.; Cwirlej-Sozanska, A.; de Sire, A. Efficacy of Virtual Reality and Exergaming in Improving Balance in Patients With Multiple Sclerosis: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 773459. [Google Scholar] [CrossRef]
- Elhusein, A.M.; Fadlalmola, H.A.; Awadalkareem, E.M.; Alhusain, E.Y.M.; Alnassry, S.M.; Alshammari, M.; Abdulrahman, E.E.; El Sayed Fadila, D.; Ibrahim, F.M.; Saeed, A.A.M.; et al. Exercise-based gaming in patients with multiple sclerosis: A systematic review and meta-analysis. Belitung. Nurs. J. 2024, 10, 1–14. [Google Scholar] [CrossRef]
- Moeinzadeh, A.M.; Calder, A.; Petersen, C.; Hoermann, S.; Daneshfar, A. Comparing virtual reality exergaming with conventional exercise in rehabilitation of people with multiple sclerosis: A systematic review. Neuropsychol. Rehabil. 2023, 33, 1430–1455. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; Ibancos-Losada, M.D.R.; Zagalaz-Anula, N.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12343. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; Indino, A.; de Scorpio, G.; Moggio, L.; Ammendolia, A. Nintendo WiiTM versus Xbox KinectTM for functional locomotion in people with Parkinson’s disease: A systematic review and network meta-analysis. Disabil. Rehabil. 2020, 44, 331–336. [Google Scholar] [CrossRef]
- Cheok, G.; Tan, D.; Low, A.; Hewitt, J. Is Nintendo Wii an Effective Intervention for Individuals With Stroke? A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2015, 16, 923–932. [Google Scholar] [CrossRef]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; Zagalaz-Anula, N.; Osuna-Pérez, M.C.; Obrero-Gaitán, E.; Lomas-Vega, R. Nintendo Wii Balance Board therapy for postural control in children with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2021, 63, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Shahhar, A.Z.M.; Qasheesh, M.; Shaphe, M.A. Effectiveness of Nintendo Wii on Balance in People with Parkinson’s Disease: A Systematic Review. J. Lifestyle Med. 2022, 12, 105–112. [Google Scholar] [CrossRef]
- Ghazavi-Dozin, S.M.; Mohammad-Rahimi, N.; Aminzadeh, R. Wii Fit-Based Biofeedback Rehabilitation Among Post-Stroke Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Biol. Res. Nurs. 2024, 26, 5–20. [Google Scholar] [CrossRef]
- Garcia-Munoz, C.; Casuso-Holgado, M.J. Effectiveness of Wii Fit Balance board in comparison with other interventions for post-stroke balance rehabilitation. Systematic review and meta-analysis. Rev. Neurol. 2019, 69, 271–279. [Google Scholar] [CrossRef]
- Santos, P.; Scaldaferri, G.; Santos, L.; Ribeiro, N.; Neto, M.; Melo, A. Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson’s disease: A systematic review and meta-analysis. NeuroRehabilitation 2019, 44, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Tripette, J.; Murakami, H.; Ryan, K.R.; Ohta, Y.; Miyachi, M. The contribution of Nintendo Wii Fit series in the field of health: A systematic review and meta-analysis. PeerJ 2017, 5, e3600. [Google Scholar] [CrossRef] [PubMed]
- Argento, O.; Spanò, B.; Pisani, V.; Incerti, C.C.; Bozzali, M.; Foti, C.; Caltagirone, C.; Nocentini, U. Dual-Task Performance in Multiple Sclerosis’ Patients: Cerebellum Matters? Arch. Clin. Neuropsychol. 2021, 36, 517–526. [Google Scholar] [CrossRef]
- Mullins, N.M.; Tessmer, K.A.; McCarroll, M.L.; Peppel, B.P. Physiological and Perceptual Responses to Nintendo® Wii Fit™ in Young and Older Adults. Int. J. Exerc. Sci. 2012, 5, 79–92. [Google Scholar]
- Page, J.M.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Costantino, G.; Montano, N.; Casazza, G. When should we change our clinical practice based on the results of a clinical study? Diagnostic accuracy studies II: The diagnostic accuracy. Intern. Emerg. Med. 2015, 11, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Kromer, T.O.; Tautenhahn, U.G.; de Bie, R.A.; Staal, J.B.; Bastiaenen, C.H. Effects of physiotherapy in patients with shoulder impingement syndrome: A systematic review of the literature. J. Rehabil. Med. 2009, 41, 870–880. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J.P.; Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, A.V., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2019; Volume 3, pp. 241–284. [Google Scholar] [CrossRef]
- Brichetto, G.; Spallarossa, P.; de Carvalho, M.L.; Battaglia, M.A. The effect of Nintendo® Wii® on balance in people with multiple sclerosis: A pilot randomized control study. Mult. Scler. 2013, 19, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.-H. Effects of Virtual Reality Exercise Program on Balance in Multiple Sclerosis Patients. J. Kor. Phys. Ther. 2015, 27, 61–67. [Google Scholar] [CrossRef]
- Nilsagård, Y.E.; Forsberg, A.S.; von Koch, L. Balance exercise for persons with multiple sclerosis using Wii games: A randomised, controlled multi-centre study. Mult. Scler. 2013, 19, 209–216. [Google Scholar] [CrossRef]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Marchetti, M.R.; Pozzilli, C. Home-based balance training using the Wii balance board: A randomized, crossover pilot study in multiple sclerosis. Neurorehabil. Neural. Repair. 2013, 27, 516–525. [Google Scholar] [CrossRef]
- Robinson, J.; Dixon, J.; Macsween, A.; van Schaik, P.; Martin, D. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2015, 7, 8. [Google Scholar] [CrossRef]
- Thomas, S.; Fazakarley, L.; Thomas, P.W.; Collyer, S.; Brenton, S.; Perring, S.; Scott, R.; Thomas, F.; Thomas, C.; Jones, K.; et al. Mii-vitaliSe: A pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open 2017, 7, e016966. [Google Scholar] [CrossRef]
- Yazgan, Y.Z.; Tarakci, E.; Tarakci, D.; Ozdincler, A.R.; Kurtuncu, M. Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2020, 39, 101902. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Bryant, D.; Orange, J.B.; Beedie, T.; Montero-Odasso, M. Effect of Wii Fit© Exercise on Balance of Older Adults with Neurocognitive Disorders: A Meta-Analysis. J. Alzheimers Dis. 2020, 75, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xing, Y.; Wu, Y. Effect of Wii Fit Exercise With Balance and Lower Limb Muscle Strength in Older Adults: A Meta-Analysis. Front. Med. 2022, 9, 812570. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Z.; Zheng, K.; Huang, W.; Liu, F.; Lin, J.; Ren, Z. Benefits of Exergame Training for Female Patients With Fibromyalgia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Arch. Phys. Med. Rehabil. 2022, 103, 1192–1200.e2. [Google Scholar] [CrossRef]
- Cuijpers, P.; Griffin, J.W.; Furukawa, T.A. The lack of statistical power of subgroup analyses in meta-analyses: A cautionary note. Epidemiol. Psychiatr. Sci. 2021, 30, e78. [Google Scholar] [CrossRef]
- Sparrer, I.; Duong-Dinh, T.A.; Ilgner, J.; Westhofen, M. Vestibular rehabilitation using the Nintendo® Wii Balance Board—A user-friendly alternative for central nervous compensation. Acta. Otolaryngol. 2013, 133, 239–245. [Google Scholar] [CrossRef]
- Franco, J.R.; Jacobs, K.; Inzerillo, C.; Kluzik, J. The effect of the Nintendo Wii Fit and exercise in improving balance and quality of life in community dwelling elders. Technol. Health Care 2012, 20, 95–115. [Google Scholar] [CrossRef] [PubMed]
- Zurawski, J.; Glanz, B.I.; Chua, A.; Lokhande, H.; Rotstein, D.; Weiner, H.; Engler, D.; Chitnis, T.; Healy, B.C. Time between expanded disability status scale (EDSS) scores. Mult. Scler. Relat. Disord. 2019, 30, 98–103. [Google Scholar] [CrossRef]
- Miot, H.A. Sample size in clinical and experimental trials. J. Vasc. Bras. 2011, 10, 275–278. [Google Scholar] [CrossRef]
- Harrison, L.J.; Lepley, L.K.; Stevens, S.L.; Coons, J.M.; Fuller, D.K.; Caputo, J.L. The Relationship Between Functional Movement and Balance. Athl. Train Sports Health Care. 2021, 13, e375–e382. [Google Scholar] [CrossRef]
- Ashworth, N.L.; Chad, K.E.; Harrison, E.L.; Reeder, B.A.; Marshall, S.C. Home versus center based physical activity programs in older adults. Cochrane Database Syst. Rev. 2005, 2005, CD004017. [Google Scholar] [CrossRef] [PubMed]
- Farr, W.J.; Green, D.; Bremner, S.; Male, I.; Gage, H.; Bailey, S.; Speller, S.; Colville, V.; Jackson, M.; Memon, A.; et al. Feasibility of a randomised controlled trial to evaluate home-based virtual reality therapy in children with cerebral palsy. Disabil. Rehabil. 2021, 43, 85–97. [Google Scholar] [CrossRef]
- Ghahfarrokhi, M.M.; Banitalebi, E.; Negaresh, R.; Motl, R.W. Home-Based Exercise Training in Multiple Sclerosis: A Systematic Review with Implications for Future Research. Mult. Scler. Relat. Disord. 2021, 55, 103177. [Google Scholar] [CrossRef] [PubMed]
- Schättin, A.; Häfliger, S.; Meyer, A.; Früh, B.; Böckler, S.; Hungerbühler, Y.; de Bruin, E.D.; Frese, S.; Egli, R.S.; Götz, U.; et al. Design and Evaluation of User-Centered Exergames for Patients With Multiple Sclerosis: Multilevel Usability and Feasibility Studies. JMIR Serious Games 2021, 9, e22826. [Google Scholar] [CrossRef] [PubMed]
- Plow, M.; Finlayson, M. A qualitative study exploring the usability of Nintendo Wii fit among persons with multiple sclerosis. Occup. Ther. Int. 2014, 21, 21–32. [Google Scholar] [CrossRef]
- Holper, L.; Coenen, M.; Weise, A.; Stucki, G.; Cieza, A.; Kesselring, J. Characterization of functioning in multiple sclerosis using the ICF. J. Neurol. 2010, 257, 103–113. [Google Scholar] [CrossRef]
Participants | Intervention | ||||||||
---|---|---|---|---|---|---|---|---|---|
Author/s (Year) | Sample Size (Male/ Female) | MS Form EDSS (Points) Time since Diagnosis (Years) | EG/CG: n (Age ± SD) | EG | CG | Duration and Frequency | Outcome | Measuring Instrument | Results |
Brichetto et al. (2013) [56] | 36 (14/22) | EG: ND MS form 3.9 ± 1.6 points 11.2 ± 6.4 years CG: ND MS form 4.3 ± 1.6 points 12.3 ± 7.2 years | EG: 18 (40.7 ± 11.5 y) CG: 18 (43.2 ± 10.6 y) | NWF: Soccer Heading, Ski Slalom, Table Tilt, Snowboard Slalom, Tightrope Walk, and Zazen | CPT: Static and dynamic ex (single or double leg) + equilibrium board + half-kneeling ex. | 4 weeks 3 sessions /week 60 min /session | (1) Functional mobility (2) Postural control (3) Fatigue | (1) BBS (2) Force Platform (3) MFIS | SID: (1) EG: p < 0.05; CG: p < 0.05 (2) Eyes-Open FP → EG: p < 0.05; CG: p < 0.05 Eyes-Closed FP → EG: p < 0.05; CG: p < 0.05 (3) EG: p < 0.05 |
Lee (2015) [57] | 16 (6/10) | EG: 2 PP 5 RR 1 SP 3.0–5.0 points 9.52 ± 5.2 years CG: 1 PP 5 RR 2 SP 3.0–5.0 points 10.12 ± 5.7 years | EG: 8 (39.2 ± 7.2 y) CG: 8 (41.5 ± 8.3 y) | NWF: Soccer Heading, Table Tilt, Penguin Slide, Ski Slalom, Snowboard Slalom, Tightrope Walk, and Ski Jump | No treatment | 8 weeks 3 sessions /week 40 min /session | (1) Postural control | (1) SOT (Force Platform) | SID: (1) SOT-5 → EG: p < 0.05 SOT-6 → EG: p < 0.05 VES → EG: p < 0.05 |
Nilsagård et al. (2013) [58] | 84 (20/64) | EG: 3 PP 26 RR 13 SP ND EDSS score 12.5 ± 8.0 years CG: 1 PP 28 RR 13 SP ND EDSS score 12.2 ± 9.2 years | EG: 42 (50.0 ± 11.5 y) CG: 42 (49.4 ± 11.1 y) | NWF: Penguin Slide, Ski Slalom, Snowboard Slalom, Perfect 10, Soccer Heading, Table Tilt, Tightrope Walk, Balance Bubble, and Skateboard Arena | No treatment | 6–7 weeks 2 sessions /week 30 min /session | (1) Functional mobility | (1) TUG, T25-FW, DGI, MSWS-12, TCS, ABC, FSST | No SDBG (EG/CG): p > 0.05 |
Thomas et al. (2017) [61] | 30 (3/27) | EG: 12 RR 3 SP 1.0–6.0 points <1–>16 years CG: 1 PP 9 RR 2 SP 3 O 1.0–6.0 points <1–>16 years | EG: 15 (50.9 ± 8.08 y) CG: 15 (47.6 ± 9.26 y) | Mii-vitaliSe program: NWF (ND Minigames) + Wii Sports + Wii Sports Resort | Usual care: Multidisciplinary support | 6 months ≥1 session /week ND minutes /session | (1) Fatigue (2) Functional mobility (3) Postural control | (1) FSI (2) 2-MWT, TUG, ST (3) ESOT (Force Platform) | MDAB (95% CI): (1) 0.06 (−1.26, 1.38) (2) 2-MWT → 1.13 (−19.61, 21.86) TUG → −1.06 (−2.70, 0.58) ST → 2.61 (0.03, 5.18) (3) ESOT-1 → 2.00 (−2.96, 6.97); ESOT-2 → 5.62 (−3.79, 15.04); ESOT-3 → 4.41 (−3.87, 12.69); ESOT-4 → 7.91 (0.57, 15.24); ESOT-5 → 0.41 (−14.25, 15.07) |
Yazgan et al. (2020) [62] | 30 (4/26) | EG:1 PP 11 RR 1 SP 2 O 4.16 ± 1.37 points 12.06 ± 6.56 years CG: 14 RR 1 O 4.06 ± 1.26 points 11.06 ± 5.70 years | EG: 15 (47.46 ± 10.53 y) CG: 15 (40.66 ± 8.82 y) | NWF: Penguin Slide, Table Tilt, Ski Slalom, Soccer Heading, and Balance Bubble | No treatment | 8 weeks 2 sessions /week 60 min /session | (1) Functional mobility (2) Fatigue | (1) BBS, TUG, 6-MWT (2) FSS | SID: (1) EG: p = 0.001; CG: p = 0.028 TUG → EG: p = 0.003 6-MWT → EG: p = 0.001 (2) EG: p = 0.002 |
Prosperini et al. (2013) [59] | 36 (11/25) | EG: RR and SP (ND) 1.5–5.0 points 12.2 ± 6.0 years CG: RR and SP (ND) 1.5–5.0 points 9.3 ± 5.3 years | EG: 18 (35.3 ± 8.6 y) CG: 18 (37.1 ± 8.8 y) | NWF: Zazen, Table Tilt, Ski Slalom, Penguin Slide, Tightrope Walk, Soccer Heading, and Balance Bubble | No treatment | 12 weeks 4–5 sessions /week 30 min /session | (1) Postural control (2) Functional mobility | (1) Force Platform (2) FSST, T25-FW | SDBG (EG/CG): (1) Eyes-Open FP → p = 0.016 (2) FSST → p = 0.034, 25-FWT → p = 0.048 |
Robinson et al. (2015) [60] | 56 (18/38) | EG: ND MS form <6.0 points ND years CG1: ND MS form <6.0 points ND years CG2: ND MS form <6.0 points ND years | EG: 20 (52.6 ± 6.1 y) CG1: 19 (53.9 ± 6.5 y) CG2: 17 (51.9 ± 4.7 y) | NWF: Soccer Heading, Ski Slalom, Table Tilt, Tightrope Walk, Rhythm Boxing, Basic Step, Hula Hoop, Torso Twist, and Rowing Squat | CG1: CPT: Traditional balance training CG2: No treatment | 4 weeks 2 sessions /week 40–60 min /session | (1) Postural control (2) Functional mobility | (1) Force Platform (2) MSWS-12, GAITRite | SID: (1) Eyes-open AP Range → EG: p = 0.04; CG1: p = 0.04 Eyes- open ML Range → EG: p = 0.04; CG1: p = 0.01 Eyes-open CoP Velocity → EG: p = 0.01 (2) MSWS-12 → CG1: p = 0.03 |
Author/s (Year) | C1* | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 |
Total Score (out of 10) |
Methodological Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Brichetto et al. (2013) [56] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 5 | Fair |
Lee (2015) [57] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 5 | Fair |
Nilsagård et al. (2013) [58] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 7 | Good |
Prosperini et al. (2013) [59] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 6 | Good |
Robinson et al. (2015) [60] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 5 | Fair |
Thomas et al. (2017) [61] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 | Good |
Yazgan et al. (2020) [62] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5 | Fair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba-Rueda, A.; De Miguel-Rubio, A.; Lucena-Anton, D. Effectiveness of Nintendo Wii Fit© for Physical Therapy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2024, 14, 896. https://doi.org/10.3390/jpm14090896
Alba-Rueda A, De Miguel-Rubio A, Lucena-Anton D. Effectiveness of Nintendo Wii Fit© for Physical Therapy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Personalized Medicine. 2024; 14(9):896. https://doi.org/10.3390/jpm14090896
Chicago/Turabian StyleAlba-Rueda, Alvaro, Amaranta De Miguel-Rubio, and David Lucena-Anton. 2024. "Effectiveness of Nintendo Wii Fit© for Physical Therapy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Journal of Personalized Medicine 14, no. 9: 896. https://doi.org/10.3390/jpm14090896
APA StyleAlba-Rueda, A., De Miguel-Rubio, A., & Lucena-Anton, D. (2024). Effectiveness of Nintendo Wii Fit© for Physical Therapy in Patients with Multiple Sclerosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Personalized Medicine, 14(9), 896. https://doi.org/10.3390/jpm14090896