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Abstract: Multiple sclerosis (MS) is a chronic, inflammatory, and autoimmune disease that mainly
affects the central nervous system and currently has no cure. Exergaming is considered a non-
immersive approach to improving functional and motor skills in the treatment of MS. The aim of
this systematic review was to evaluate the effectiveness of the Nintendo Wii Fit© (NWF) on physical
outcomes compared with control regimes in patients with MS. The search was performed in seven
databases including articles published up to June 2024. The PICOS model was used to establish the
study eligibility criteria. The Cochrane Collaboration tool and the PEDro scale were used to assess
the risk of bias and evaluate the methodological quality of the studies, respectively. A meta-analysis
using the standardized mean difference (SMD) and confidence interval (95% CI) was developed
using the Review Manager 5.4 software. Seven articles were included in the systematic review. The
statistical analysis showed favorable overall results for the NWF on functional mobility (SMD = 0.25;
95% CI = 0.09, 0.41) and fatigue (SMD = 0.41; 95% CI = 0.00, 0.82). In conclusion, this systematic
review suggests that the NWF has shown favorable effects compared to control regimes on functional
mobility and fatigue outcomes in patients with MS.

Keywords: multiple sclerosis; exergaming; videogames; exercise; physical therapy; neurological
rehabilitation; systematic review; meta-analysis

1. Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, and autoimmune pathology that
mainly affects the central nervous system, causing lesions such as demyelinating plaques
and axonal damage that deteriorate neuronal conduction [1–3]. Genetics, environment, and
lifestyle are predisposing risk factors for the diagnosis of this disease [4,5], which has a
high prevalence worldwide (2.8 million people with MS (PwMS)) [6], especially in women
(2:1) [7]. The diagnosis of MS is based on the 2017 last updated McDonald criteria [8]. MS
usually appears in early adulthood (20–40 years), although it can present at any stage of
life, having a great impact on the quality of life of PwMS due to a progressive increase in
their disability [3,9].

The different forms of MS presentation are determined by the clinical course of the dis-
ease, ranging from relapsing-remitting MS (85% of diagnoses in PwMS), clinically isolated
syndrome, radiologically isolated syndrome, and primary progressive MS to secondary
progressive MS [10,11]. The clinical manifestations of the pathology are heterogeneous,
depending on the affected area, and also follow a progressive evolution or take the form
of exacerbation episodes [12]. MS signs and symptoms may be physical (fatigue, spas-
ticity, strength deficit, pain, ataxia, proprioception impairment, or visual and balance
problems) [13,14] or cognitive-emotional (depression or cognitive deficit) [15] and/or
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functional (gait deterioration, reduced manual dexterity, or sexual and urinary-rectal dys-
function) [13,16–19]. The treatment of MS must be considered from a multidisciplinary
standpoint, with a combination of medical, pharmacological, physiotherapeutic, and occu-
pational therapy care. Currently, it is a pathology with no cure, so treatment focuses on
ameliorating symptoms and possible exacerbations to stabilize disease progression [20].

Regardless of disease severity, regular physical activity by PwMS has beneficial effects
on functionality and overall health through neuroplastic changes in the brain [21,22]. The
prescription of a combined training regime (resistance, endurance, aerobic, and functional
and flexibility exercises) [21] is recommended for PwMS according to the Expanded Dis-
ability Status Scale score [23] and the individualized characteristics of each person [22,24].
An alternative tool for physical therapy treatment that has increased substantially in use
over the last decade is virtual reality (VR) [25]. VR provides continuous visual and auditory
feedback through a screen about the performance of the player, whose actions are collected
by motion sensors and then simulated with an embodiment avatar created in a digital
environment [26,27].

According to the level of immersion in this virtual world, exergames can correspond
to non-immersive VR [28]. Exergames are an excellent way to encourage physical exercise
at varying intensities in a playful way in populations with neurological diseases, both in
the clinical setting and at home [26]. This approach also creates a safe, stimulating, and
learning context in which to develop and repeat functional tasks similar to routine daily
activities [29]. Moreover, the competitive and motivational aspects of this intervention
improve adherence to treatment [30]. The Nintendo Wii© has been one of the most widely
used devices in this research area since 2008 [31]. In this case, movements are detected in
the majority of games via the device’s remote control (Nintendo Wii Remote© or Nintendo
Wiimote©—Nintendo Co., Ltd., Kyoto, Japan), although some exergames need additional
motion sensors, such as the Nintendo Wii Nunchuk©, used for two-handed tasks, or the
Nintendo Wii Balance Board©, used as a force plate to monitor the center of gravity [32,33].

The existing literature provides evidence of the effectiveness of exergames in the
rehabilitation of neurological pathologies [34]. In fact, several systematic reviews have
demonstrated improvements in balance [35–37], physical functional capacity [36,37], and
fatigue [36,37] for PwMS following this type of therapy. Furthermore, some systematic
reviews with meta-analyses have considered Nintendo Wii© exergames as an effective
neurorehabilitation treatment to improve upper limb function in cerebral palsy [38], func-
tional mobility in Parkinson’s disease [39] and post-stroke patients [40], and balance in the
pathologies already mentioned [41–45].

The Nintendo Wii Fit© (NWF), which features in most of the previous articles on
the Nintendo Wii©, is a specific exergaming system complemented by the Nintendo Wii
Balance Board©, with potential application as a rehabilitation tool in various clinical con-
texts [46]. This intervention provides dual-task training involving both motor and cognitive
skills through minigames that enhance motor control, proprioception, and neuroplasticity,
thereby reorganizing connections of the nervous system after injuries [47]. Besides this, the
combination of moderate physical activity with interactive gaming offers positive effects
on cardiovascular health, muscle strength, and metabolism [48].

The NWF is a highly beneficial and cost-effective option for MS rehabilitation, offering
affordability, ease of use, motion-sensing technology, and interactive low-impact exercises
that have been shown to significantly improve balance and coordination, as supported by
high-quality research [39–46]. In addition, the use of a manual wireless controller and a
force platform to interact with the digital landscape, graphical environment, and visual
cue effects appears to offer greater benefits within the simpler and less distracting interface
of the NWF compared to other systems, such as the Xbox Kinect™ [39]. In view of this
information, we hypothesized that an intervention focused on the NWF could improve
the physical outcomes of PwMS as it involves the practice of functional tasks in a fun and
safe environment, and, consequently, helps the process of neuromotor rehabilitation in this
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disease. Therefore, the aim of this systematic review was to evaluate the effectiveness of
the NWF on physical outcomes compared with control regimes in PwMS.

2. Materials and Methods

This systematic review and a meta-analysis of randomized controlled trials (RCTs)
were carried out in line with the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) statement (Supplementary Materials, Figure S1) [49]. The review
protocol was registered and updated in the PROSPERO database (CRD42024531699).

2.1. Search Strategy

The literature search was conducted in PubMed, CENTRAL (Cochrane Central Reg-
ister of Controlled Trials), CINAHL (Cumulative Index to Nursing & Allied Health Lit-
erature), Scopus, WoS (Web of Science), Medline, and PEDro (Physiotherapy Evidence
Database) electronic databases, including articles published up to June 2024. Language or
date filters were not applied. The following descriptor terms were used to create the search
strategy: “Multiple sclerosis” [MeSH], “Disseminated sclerosis” [MeSH], “Nintendo Wii”,
“Wii”, “Wii Fit”, “Wii Balance Board” and “exergaming” [MeSH]. A detailed search strategy
with Boolean operators and the results for each database are presented in Supplementary
Materials, Table S1.

2.2. Eligibility Criteria

The inclusion criteria were defined by the PICOS model [50]: (1) population: adults
with diagnosis of any MS disease types based on the McDonald criteria [8]; (2) intervention:
experimental group (EG) using the NWF; (3) comparison: control group (CG) through
conventional physical therapy, no treatment or usual care; (4) outcomes: functional mobility,
fatigue and postural control; (5): study design: RCTs. Publications were excluded in the
case of: (1) conference/congress communications or abstracts; (2) samples with combined
neurological disorders (including PwMS) without separate results for outcomes in each
population; (3) a PEDro scale score for methodological quality of <5 points. Based on the
literature, only studies of high methodological quality, defined as a minimum PEDro score
of 5 out of 10, were included in this review to ensure the validity of the results [51].

2.3. Study Selection Process and Data Extraction

Duplicated articles were removed after applying the previously mentioned search
strategy in the scientific databases. Subsequently, the titles and abstracts were reviewed,
and those publications that were not in line with the established eligibility criteria were
excluded. The remaining articles were analyzed in depth, and the selected studies were
included in the systematic review. Two independent reviewers (A.A.-R. and D.L.-A.)
participated independently in the study selection process, analysis, data extraction, and risk
of bias assessment. In case of dispute, a third reviewer (A.D.M.-R.) took part in resolving
conflicts. The following data were extracted from each article: author/s, year, sample size,
age, sex, MS form, Expanded Disability Status Scale score and the time since diagnosis of
the participants, type of intervention, the frequency and duration of the intervention and
of each session, study outcomes, measurement instruments, and the main results after the
intervention (significant pre-post intragroup and intergroup differences).

2.4. Assessment of the Risk of Bias and Methodological Quality

The risk of bias in the studies was evaluated using version 2 of the Cochrane risk-
of-bias tool for randomized trials (RoB 2) [52] and the Review Manager 5.4 software. A
low, uncertain, or high risk was determined according to an evaluation of the different
individualized items for each publication. Additionally, an overall summary of the risk of
bias was determined, including the percentages of the previously assessed criteria.

The PEDro scale was used to assess the included RCTs as a valid measure of the
methodological quality of clinical trials for physical therapy [53]. This scale includes items
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to evaluate external validity (criterion 1, which is not included in the final score), internal
validity (criteria 2–9), and statistical information for interpreting the results (criteria 10 and
11) of clinical trials. According to the PEDro scale scores, studies were classified as being of
fair (4–5), good (6–8), or excellent (9–10) quality [54].

2.5. Data Analysis

The meta-analysis was conducted using the Review Manager 5.4 software. First, the
mean differences and standard deviations for each study group were calculated based on
the post-intervention and baseline values, without considering the follow-up periods. This
approach highlights the changes within each group without applying a specific cut-off
point for evaluating the trial outcomes. Changes in effect size were analyzed by calculating
the intergroup standardized mean difference (SMD) with a confidence interval (95% CI).
An inverse variance method with continuous variables was used. Depending on the level of
heterogeneity, either a fixed-effects (p > 0.05) or a random-effects (p < 0.05) model was used,
along with the I2 statistic and the chi-squared test. I2 values between 0% and 40% indicate
low heterogeneity; between 30% and 60% represent moderate heterogeneity; between 50%
and 90% define substantial heterogeneity; and between 75% and 100% describe considerable
heterogeneity [55]. The RCTs were grouped into different categories, based on the outcome
measured, obtaining the overall results for the entire meta-analysis as well as the potential
subtests within it.

3. Results
3.1. Study Selection

A total of 376 articles were initially identified during the study selection process. Out
of these, 233 duplicate articles were removed. This left 143 articles, from which those not
relevant to our search objectives, based on their titles and abstracts, were excluded. This
resulted in 86 articles. After thoroughly applying the eligibility criteria, seven RCTs [56–62]
were ultimately included in this systematic review and meta-analysis, as illustrated in
Figure 1.

3.2. Description of the Studies

Regarding the articles included in the qualitative synthesis, a total of 288 participants
(EG: n = 136, CG: n = 152; 76 men (26.4%) and 212 women (73.6%)) with MS were recruited.
The sample size of the studies ranged from 16 [57] to 84 [58] participants. The mean age of
the participants was 45.37 ± 6.02 years [56–62]. Relapsing-remitting was the most frequent
form of MS [57,58,61,62]. The Expanded Disability Status Scale score of the participants
was lower than 6.0 points [56,57,59–62], whereas the time since diagnosis varied between
the onset of the disease and after more than 16 years [56–59,61,62].

In the experimental groups, the following NWF minigames were played:

− Soccer Heading: The player must tilt on the balance board in the path of a soccer ball,
dodging other flying objects [56–60,62].

− Ski Slalom: The player must lean their body left or right to move the ski down a slalom
course. In this activity, the Nintendo Wii Balance Board© is placed horizontally on the
floor [56–60,62].

− Table Tilt: The player must lean their body left, right, forward, and backward on the
balance board to drop the balls into the holes [56–60,62].

− Snowboard Slalom: The player must lean their body left or right to move the snow-
board down a slalom course. In this activity, the Nintendo Wii Balance Board© is
placed vertically on the floor [56–58].

− Tightrope Walk: The player must walk on the balance board across the tightrope,
bending their body and straightening their knees to jump when a black robotic jaw
obstructs their path [56–60].
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− Zazen: The player must stay still on the balance board and concentrate on the candle
until it completely burns down [56,59].

− Penguin Slide: The player must tilt their body to left and right on the balance board to
tip the iceberg and catch fish [57–59,62].

− Ski Jump: The player must squat with their knees bent and push forward on the
Nintendo Wii Balance Board© to gain speed. At the end of the ramp, the player must
extend their knees and then keep their balance when landing [57].

− Perfect 10: The player must sway their hips left, right, up, and down on the balance
board for a score adding up to the total shown on the upper left of the screen [58].

− Balance Bubble: The player must guide the avatar safely down a river, avoiding obstacles
by leaning to the left, right, forward, and backward on the balance board [58,59,62].

− Skateboard Arena: The player must propel a skateboard by removing one foot from the
balance board and then placing it back, as on a real skateboard, while simultaneously
leaning to the left and right to turn [58].

− Rhythm Boxing: The player must punch the dartboards on the right or left (via the
Nintendo Wiimote© and Nintendo Wii Nunchuk©), moving their feet at the same
time on the balance board and following a rhythmic sequence [60].

− Basic Step: The player must step on and off the Nintendo Wii Balance Board© in time
with the on-screen steps [60].

− Hula Hoop: The player must achieve as many spins of the hula hoop as possible in
70 s while on the balance board [60].

− Torso Twist: The player must twist their body diagonally to both sides on the balance
board, avoiding bending forward, to train their abdominal muscles [60].

− Rowing Squat: The player must squat down on the Nintendo Wii Balance Board©
while performing a rowing motion to train their thighs and back muscles [60].

The study by Thomas et al. [61] did not detail the NWF minigames used and included
both Nintendo Wii Sports© and Nintendo Wii Sports Resorts© (both using software sup-
plemented by Nintendo Wiimote© and Nintendo Wii Nunchuk© to develop different
sport activities such as bowling, golf, baseball, or tennis) as alternative videogames in
the Mii-vitaliSe program. In contrast, participants in the control groups did not receive
any treatment [57–60,62] or continued to carry out their usual care [61]. The rest of the
studies concerned conventional physical therapy (traditional balance training and strength
exercises) [56,60].

The total duration of the interventions ranged from 4 weeks [56,60] to 6 months [61].
The frequency and the session time varied between a minimum of 1 session [61] to
4–5 sessions/week [59] and 30 min [58,59] to 60 min/session [56,60,62].

Multiple assessment tools were employed to evaluate the different outcomes of the
participants. Functional mobility was assessed using the Berg balance scale [56,62], timed
up-and-go test [58,61,62], timed 25-foot walk test [58,59], dynamic gait index [58], 12-item
multiple sclerosis walking scale [58,60], timed chair stands test [58], activities-specific
balance confidence scale [58], four-square step test [58,59], 2-min walk test [61], step test [61],
6-min walk test [62], and GAITRite [60]. Fatigue was evaluated using the modified fatigue
impact scale [56], fatigue symptom inventory [61], and fatigue severity scale [62]. Postural
control was measured by a force platform, which calculated the area [56] or the anterior-
posterior and medial-lateral ranges [59,60] through eyes-open [56,59,60] or eyes-closed
testing [56]; finally, the equilibrium quotient percentage score was determined using the
sensory organization test [57] and the Equitest sensory organization test [61].

The results either showed significant differences within the same group before and
after treatment [56,57,60,62], or between EG and CG [58,59]. Thomas et al. [61], representing
the exception, used the mean differences adjusted for baseline. The level of significance
was set at p ≤ 0.05.

The detailed characteristics of the articles included in this systematic review and
meta-analysis are presented in Table 1.
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Table 1. Main characteristics of the randomized controlled trials included in the systematic review and meta-analysis [53–59].

Participants Intervention

Author/s
(Year)

Sample Size
(Male/

Female)

MS Form
EDSS (Points)

Time since
Diagnosis (Years)

EG/CG:
n (Age ± SD) EG CG Duration and

Frequency Outcome Measuring
Instrument Results

Brichetto
et al. (2013)

[56]
36 (14/22)

EG: ND MS form
3.9 ± 1.6 points
11.2 ± 6.4 years

CG: ND MS form
4.3 ± 1.6 points
12.3 ± 7.2 years

EG: 18 (40.7 ±
11.5 y)
CG: 18

(43.2 ± 10.6 y)

NWF: Soccer Heading, Ski
Slalom, Table Tilt, Snowboard
Slalom, Tightrope Walk, and

Zazen

CPT: Static and
dynamic ex (single or

double leg) +
equilibrium board +

half-kneeling ex.

4 weeks
3 sessions

/week
60 min

/session

(1) Functional
mobility

(2) Postural control
(3) Fatigue

(1) BBS
(2) Force Platform

(3) MFIS

SID:
(1) EG: p < 0.05;

CG: p < 0.05
(2) Eyes-Open FP → EG:

p < 0.05; CG: p < 0.05
Eyes-Closed FP → EG:
p < 0.05; CG: p < 0.05

(3) EG: p < 0.05

Lee
(2015) [57] 16 (6/10)

EG: 2 PP 5 RR 1 SP
3.0–5.0 points

9.52 ± 5.2 years
CG: 1 PP 5 RR 2 SP

3.0–5.0 points
10.12 ± 5.7 years

EG: 8 (39.2 ±
7.2 y)
CG: 8

(41.5 ±
8.3 y)

NWF: Soccer Heading, Table Tilt,
Penguin Slide, Ski Slalom,

Snowboard Slalom, Tightrope
Walk, and Ski Jump

No
treatment

8 weeks
3 sessions

/week
40 min

/session

(1) Postural control (1) SOT (Force
Platform)

SID:
(1) SOT-5 → EG: p < 0.05

SOT-6 → EG: p < 0.05
VES → EG: p < 0.05

Nilsagård
et al. (2013)

[58]
84 (20/64)

EG: 3 PP 26 RR 13 SP
ND EDSS score
12.5 ± 8.0 years

CG: 1 PP 28 RR 13 SP
ND EDSS score
12.2 ± 9.2 years

EG: 42 (50.0 ±
11.5 y)

CG: 42 (49.4 ±
11.1 y)

NWF: Penguin Slide, Ski Slalom,
Snowboard Slalom, Perfect 10,

Soccer Heading, Table Tilt,
Tightrope Walk, Balance Bubble,

and Skateboard Arena

No
treatment

6–7 weeks
2 sessions

/week
30 min

/session

(1) Functional
mobility

(1) TUG, T25-FW,
DGI, MSWS-12, TCS,

ABC, FSST
No SDBG (EG/CG):

p > 0.05

Thomas
et al. (2017)

[61]
30 (3/27)

EG: 12 RR 3 SP
1.0–6.0 points
<1–>16 years

CG: 1 PP 9 RR 2 SP 3
O

1.0–6.0 points
<1–>16 years

EG: 15 (50.9 ±
8.08 y)
CG: 15
(47.6 ±
9.26 y)

Mii-vitaliSe program:
NWF (ND Minigames)

+ Wii Sports
+ Wii Sports Resort

Usual care:
Multidisciplinary

support

6 months
≥1 session

/week
ND minutes

/session

(1) Fatigue
(2) Functional

mobility
(3) Postural control

(1) FSI
(2) 2-MWT, TUG, ST

(3) ESOT (Force
Platform)

MDAB (95% CI):
(1) 0.06 (−1.26, 1.38)
(2) 2-MWT → 1.13

(−19.61, 21.86)
TUG → −1.06
(−2.70, 0.58)

ST → 2.61
(0.03, 5.18)

(3) ESOT-1 → 2.00 (−2.96,
6.97); ESOT-2 → 5.62

(−3.79, 15.04); ESOT-3 →
4.41 (−3.87, 12.69);

ESOT-4 → 7.91 (0.57,
15.24); ESOT-5 → 0.41

(−14.25, 15.07)

Yazgan
et al. (2020)

[62]
30 (4/26)

EG:1 PP 11 RR 1 SP 2
O

4.16 ± 1.37 points
12.06 ± 6.56 years

CG: 14 RR 1 O
4.06 ± 1.26 points
11.06 ± 5.70 years

EG: 15 (47.46 ± 10.53 y)
CG: 15 (40.66 ± 8.82 y)

NWF: Penguin Slide, Table Tilt,
Ski Slalom, Soccer Heading, and

Balance Bubble

No
treatment

8 weeks
2 sessions

/week
60 min

/session

(1) Functional
mobility

(2) Fatigue

(1) BBS, TUG,
6-MWT
(2) FSS

SID:
(1) EG: p = 0.001;

CG: p = 0.028
TUG → EG: p = 0.003

6-MWT → EG: p = 0.001
(2) EG: p = 0.002
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Table 1. Cont.

Participants Intervention

Author/s
(Year)

Sample Size
(Male/

Female)

MS Form
EDSS (Points)

Time since
Diagnosis (Years)

EG/CG:
n (Age ± SD) EG CG Duration and

Frequency Outcome Measuring
Instrument Results

Prosperini
et al. (2013)

[59]
36 (11/25)

EG: RR and SP (ND)
1.5–5.0 points

12.2 ± 6.0 years
CG: RR and SP (ND)

1.5–5.0 points
9.3 ± 5.3 years

EG: 18 (35.3 ±
8.6 y)

CG: 18 (37.1 ±
8.8 y)

NWF: Zazen, Table Tilt, Ski
Slalom, Penguin Slide, Tightrope

Walk, Soccer Heading, and
Balance Bubble

No
treatment

12 weeks
4–5 sessions

/week
30 min

/session

(1) Postural control
(2) Functional

mobility

(1) Force
Platform
(2) FSST,
T25-FW

SDBG (EG/CG):
(1) Eyes-Open FP →

p = 0.016
(2) FSST → p = 0.034,
25-FWT → p = 0.048

Robinson
et al. (2015)

[60]
56

(18/38)

EG: ND MS form
<6.0 points
ND years

CG1: ND MS form
<6.0 points
ND years

CG2: ND MS form
<6.0 points
ND years

EG: 20 (52.6 ±
6.1 y)

CG1: 19 (53.9 ±
6.5 y)

CG2: 17 (51.9 ±
4.7 y)

NWF: Soccer Heading, Ski
Slalom, Table Tilt, Tightrope

Walk, Rhythm Boxing, Basic Step,
Hula Hoop, Torso Twist, and

Rowing Squat

CG1: CPT:
Traditional balance

training
CG2: No
treatment

4 weeks
2 sessions

/week
40–60 min
/session

(1) Postural control
(2) Functional

mobility

(1) Force
Platform

(2) MSWS-12,
GAITRite

SID:
(1) Eyes-open AP Range
→ EG: p = 0.04; CG1:

p = 0.04
Eyes- open ML Range →
EG: p = 0.04; CG1: p = 0.01
Eyes-open CoP Velocity

→ EG: p = 0.01
(2) MSWS-12 → CG1:

p = 0.03

2-MWT: 2-min walk test; 6-MWT: 6-min walk test; 9-HPT: 9-hole peg test; ABC: activities-specific balance confidence scale; AP: anterior-posterior; BBS: Berg balance scale; CG: control
group; CI: confidence interval; CoP: center of pressure; CPT: conventional physical therapy; DGI: dynamic gait index; EDSS: expanded disability status scale; EG: experimental group;
ESOT: Equitest sensory organization test; FSI: fatigue symptom inventory; FSS: fatigue severity scale; FSST: four-square step test; MDAB: mean differences adjusted for baseline; MFIS:
modified fatigue impact scale; ML: medial–lateral; MS: multiple sclerosis; MSWS-12: 12-item multiple sclerosis walking scale; ND: not described; NWF: Nintendo Wii Fit; O: others; PP:
primary progressive; RR: relapsing–remitting; SD: standard deviation; SDBG: significant differences between groups; SID: significant intragroup differences; SOT: sensory organization
test; SP: secondary progressive; ST: step test; T25-FW: timed 25-foot walk test; TCS: timed chair stands test; TUG: timed up-and-go test; VES: vestibular ratio 3.3. Risk of bias and
methodological quality.
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The RCTs analyzed in this systematic review were of generally fair methodological
quality (mean of the PEDro scale scores: 5.7 ± 0.95; range: 5–7). Conversely, 43% (3 out
of 7) of the RCTs [58,59,61] demonstrated good methodological quality, with a score of
≥6 points. None of the RCTs met the criteria for the blinding of participants (C5) and for
the blinded therapists administering the treatment (C6), as detailed in Table 2.

Table 2. Methodological quality results of the randomized controlled trials included in the systematic
review and meta-analysis, judged according to the PEDro scale [56–62].

Author/s
(Year) C1* C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 Total Score

(out of 10)
Methodological

Quality

Brichetto et al.
(2013)
[56]

1 1 0 1 0 0 1 0 0 1 1 5 Fair

Lee
(2015) [57] 1 1 0 1 0 0 1 1 0 0 1 5 Fair

Nilsagård et al.
(2013)
[58]

1 1 1 1 0 0 1 1 0 1 1 7 Good

Prosperini et al.
(2013)
[59]

1 1 1 1 0 0 0 1 0 1 1 6 Good

Robinson et al.
(2015) [60] 1 1 0 1 0 0 0 0 1 1 1 5 Fair

Thomas et al.
(2017) [61] 1 1 1 1 0 0 0 1 1 1 1 7 Good

Yazgan et al.
(2020) [62] 1 1 0 1 0 0 0 1 0 1 1 5 Fair

Range: 0–10. C1* is not used to calculate the PEDro score. Note: “1” indicates that a study meets that crite-
rion, and “0” means that the study does not meet the criterion or does not provide sufficient information to
ensure it. C1* = the choice criteria have been specified. C2 = participants were randomly assigned to groups.
C3 = treatment assignment was performed in a concealed manner. C4 = groups had similar characteristics at
baseline. C5 = blinding of participants. C6 = blinded therapists administered the treatment. C7 = blindness
of assessors collecting measurements. C8 = measures of at least one of the key outcomes were obtained from
>85% of the subjects initially assigned to the groups. C9 = results were presented for all subjects who received
treatment or were assigned to the control group; when this could not be achieved, data for at least one key
outcome were analyzed on an “intention-to-treat” basis. C10 = results of statistical comparisons between groups
were reported for at least one key outcome. C11 = the study provides point and variability measures for at least
one key outcome.

The assessment of the risk of bias of each RCT indicated that the study by Nilsagård
et al. [58] showed the lowest risk (14%), whereas that by Robinson et al. [60] showed the
highest risk (57%) (Figure 2).

Additionally, the overall summary of the risk of bias demonstrated that the lowest
risk (0%) was found in the random sequence generation and selective reporting criteria,
while the highest risk (100%) was presented by the blinding of participants and personnel
(Figure 3).
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3.3. Synthesis of Meta-Analysis Results between Experimental and Control Groups

A total of 86% (6 out of 7) of the RCTs [56,58–62] were included in the quantitative
synthesis. The mean, standard deviation, and sample sizes of both the experimental and
control group of each RCT, in addition to the meta-analysis results with the SMD (95% CI),
are presented according to the outcome analyzed.

3.3.1. Functional Mobility

A meta-analysis was performed for the functional mobility outcome, including 86% (6
out of 7) of the RCTs [56,58–62]. The functional mobility results showed a low degree of
heterogeneity (p = 0.48; I2 = 0%). This outcome was divided into different subtests. The
overall results of the subtests’ meta-analyses were favorable for the experimental group
for the Berg balance scale (SMD = 0.83; 95% CI = 0.32, 1.33) and the timed up-and-go test
(SMD = 0.37; 95% CI = 0.04, 0.70). The four-square step test (SMD = 0.02; 95% CI = −0.34,
0.38), timed 25-foot walk (SMD = 0.15; 95% CI = −0.20, 0.51), and 12-item multiple sclerosis
walking scale (SMD = 0.17; 95% CI = −0.15, 0.48) did not report significant results. The
overall result of the entire meta-analysis was conclusively in favor of the experimental
group (SMD = 0.25; 95% CI = 0.09, 0.41). The forest plots are shown in Figure 4.
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3.3.2. Fatigue

A meta-analysis was performed for the fatigue outcome, including 43% (3 out of 7) of
the RCTs [56,61,62]. A low degree of heterogeneity (p = 0.29; I2 = 19%) for this outcome was
found. The overall result of the entire meta-analysis was favorable for the experimental
group (SMD = 0.41; 95% CI = 0.00, 0.82). The forest plots are shown in Figure 5.
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4. Discussion

This study aimed to evaluate the effectiveness of the NWF on physical outcomes in
PwMS. A total of seven articles, involving 288 participants, were included in this systematic
review and meta-analysis. To the best of our knowledge, this is the first meta-analysis of
RCTs on this topic. The meta-analysis revealed significant improvements in functional
mobility and fatigue, concluding that NWF usage is more effective than the control regimes
for enhancing physical outcomes in PwMS.

In this sense, our results are consistent with the existing literature. In relation to
functional mobility, previous meta-analyses on exergaming have shown significant im-
provements in scores for the Berg balance scale [35,36] and 6-min walk test [36], and
shown favorable effects on the timed up-and-go test [36] and the 10-m walking test [36]
for PwMS compared to conventional rehabilitation. Studies on NWF usage also indicate
benefits for other conditions when compared to exercise interventions [40,43–45,63] or no
treatment [64], including improvements on the Berg balance scale [40,43–45,63,64], timed
up-and-go test [40,43,44,63,64], functional reach test [43,44], 30-s chair stand test [64], and
functional independence measure [40] for populations such as Parkinson’s patients, stroke
victims, and older adults [40,43,44,63,64]. However, a study by Marotta et al. [39] reported
non-significant effects on functional locomotion when comparing the NWF with the Kinect
Xbox system. Additionally, increasing the number of RCTs comparing the efficacy of two
specific exergaming systems across various variables, as demonstrated by Yazgan et al. [62],
would enhance the quality of systematic reviews in this field. This approach would pro-
vide valuable information on the optimal exergaming intervention, based on the primary
symptoms and characteristics of each specific pathology.

This meta-analysis also reported improvements in fatigue. Nevertheless, because
of the lack of meta-analyses analyzing the effects of NWF intervention on this outcome,
the published literature has not involved any modality of exergame training. A previous
meta-analysis by Elhusein et al. [36] showed conclusive favorable results for an exergaming
intervention compared to conventional physical therapy on the modified fatigue impact
scale for PwMS. Under different conditions, the study by Wu et al. [65] reported significant
differences in fatigue severity between exergames compared with non-exercise in female
patients with fibromyalgia. As illustrated in Figure 5, the diversity of measurement instru-
ments used to assess fatigue prevented the formation of subgroups in the meta-analysis.
Subgroup analyses are a crucial element of meta-analyses, as their absence implies a barrier
to determining whether the pooled effect sizes in these subgroups differ significantly [66].
Consequently, a larger number of RCTs evaluating fatigue is needed to achieve significant
results for each scale used to measure this outcome.

Although a meta-analysis on postural control was not feasible due to the heteroge-
neous presentation of data, significant intragroup differences were observed following
NWF intervention in conditions, regarding performance in eyes-open tests [56,60], eyes-
closed tests [56], and in certain subtests of the sensory organization test [57] and the Equitest
sensory organization test [61]. Additionally, Prosperini et al. [59] demonstrated the positive
effects of NWF usage on eyes-open postural control compared to no treatment. Further-
more, integrating a visual feedback component into balance training may support central
nervous system vestibular compensation following peripheral labyrinthine disorders that
impair postural control [67].
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Beyond such physical improvements, the potential benefits related to quality of life, as
identified in the selected RCTs, are also worth discussing. The NWF intervention revealed
significant differences between groups, compared to no treatment, in reducing the impact
of MS on quality of life, as assessed by the 29-item MS impact scale (p = 0.023) [59]. Addi-
tionally, significant differences within the NWF group were observed using the multiple
sclerosis international quality of life questionnaire (p = 0.001) [62]. These findings suggest
that integrating the NWF into MS treatment can enhance patients’ quality of life by improv-
ing physical outcomes, reducing stress, and providing an accessible and enjoyable form of
exercise that benefits both physical and mental well-being [68].

In terms of the characteristics of the included studies, the predominance of relapsing-
remitting MS and female sex aligns with the typical clinical presentation of MS disease [7].
Notwithstanding, variations in participant age, time since diagnosis, and expanded dis-
ability status scale scores suggest differing functional levels and treatment objectives [69],
highlighting the potential benefits of stratifying samples in future RCTs. On the other hand,
the diversity in intervention duration, frequency, and session duration could complicate
the detection of changes within or between groups if NWF intervention does not adhere to
combined-training recommendations for PwMS [24]. Moreover, the sample sizes ranged
from 30 to 84 participants (with the exception of the study by Lee [57]); despite not being
pilot trials, the results require cautious interpretation due to possible convenience sampling,
meaning that the results may not accurately represent the general MS population [70]. We
would also like to point out that the functional mobility outcome includes both static and
dynamic balance assessments, as these aspects play a crucial role in the performance of
lower-limb functional movements [71].

Due to the significant findings related to functional mobility and fatigue, we support
integrating the NWF system into therapy centers and telerehabilitation as a practical,
feasible, well-received, and enjoyable intervention [26]. Clinicians can incorporate the
NWF into regular therapy sessions by providing tailored and supervised fall prevention
training [46]. In addition, educating patients on the safe use of the program at home
promotes independent rehabilitation, with remote support enhancing their autonomy
and emphasizing the intervention’s flexibility to ensure continuous care and long-term
commitment [72]. Furthermore, incorporating the NWF into rehabilitation programs
could significantly reduce healthcare expenses. Its cost-effectiveness relative to traditional
rehabilitation tools, along with its capability for efficient remote therapy, has the potential
to decrease overall spending on physical therapy services [73].

Specifically, for PwMS, the NWF could be integrated into physical therapy protocols
as a valuable complement to traditional training, particularly during relapses [36]. En-
gaging in home-based exercise with 10–40 min of NWF training two or more days per
week, depending on the disability level, may provide a practical, effective, and safe method
for managing MS symptoms [24,74]. Additionally, there is a need to create user-centered
exergames that feature tailored audio-visual designs, varying difficulty levels, and adap-
tations for physical and cognitive impairments [75]. Consequently, physical therapists
should consider each patient’s background, health profile, and preferences when designing
personalized exercise programs using the NWF software for this population [76].

While this systematic review and the meta-analysis provide insights into the potential
benefits of exergaming for improving physical outcomes in PwMS, several limitations need
to be considered. First, the use of SMD instead of mean differences, due to heterogeneity in
measurement instruments, reduced the statistical power of the meta-analyses, warranting
careful interpretation of the findings. Second, the included RCTs reported a high risk
of performance and detection bias because of the lack of blinding among participants,
therapists, and, sometimes, assessors. Moreover, larger sample sizes, long-term follow-up
assessments to evaluate the sustained effects of NWF interventions and more homogeneous
participant characteristics are needed to establish robust conclusions and generalize the
results. Finally, the RCTs did not include objective outcomes based on the International
Classification of Functioning, Disability, and Health for MS conditions [77].
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However, despite these restrictions, this article provides preliminary evidence re-
garding the effect of the NWF system on physical outcomes for PwMS. Therefore, further
well-designed RCTs using rigorous methodologies are essential to guide future research
focused on developing and integrating exergaming programs in healthcare.

5. Conclusions

In view of these potential findings, this systematic review and meta-analysis suggest
that NWF intervention is more effective than control regimes (usual care, no intervention,
or conventional physical therapy) in PwMS. In particular, NWF usage showed significant
improvements in functional mobility and fatigue outcomes in this population. Due to its
accessible nature and the ability to customize routine activities in a safe virtual environment,
the NWF could serve as a valuable therapeutic alternative for physical therapy, enhancing
the motivation and engagement of PwMS in both clinical settings and home-based neurore-
habilitation. Nevertheless, further research based on this specific approach is required to
establish solid conclusions.
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