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Abstract: Increased activity of transforming growth factor-beta (TGF-β) is a key factor mediating
kidney impairment in diabetes. Glomerular podocytes, the crucial component of the renal filter, are
a direct target of TGF-β action, resulting in irreversible cell loss and progression of chronic kidney
disease (CKD). Urolithin A (UA) is a member of the family of polyphenol metabolites produced
by gut microbiota from ellagitannins and ellagic acid-rich foods. The broad spectrum of biological
activities of UA makes it a promising candidate for the treatment of podocyte disorders. In this
in vitro study, we investigated whether UA influences the changes exerted in podocytes by TGF-β
and high glucose. Following a 7-day incubation in normal (NG, 5.5 mM) or high (HG, 25 mM) glucose,
the cells were treated with UA and/or TGF-β1 for 24 h. HG and TGF-β1, each independent and in
concert reduced expression of nephrin, increased podocyte motility, and up-regulated expression
of b3 integrin and fibronectin. These typical-for-epithelial-to-mesenchymal transition (EMT) effects
were inhibited by UA in both HG and NG conditions. UA also reduced the typically elevated HG
expression of TGF-β receptors and activation of the TGF-β signal transducer Smad2. Our results
indicate that in podocytes cultured in conditions mimicking the diabetic milieu, UA inhibits and
reverses changes underlying podocytopenia in diabetic kidneys. Hence, UA should be considered as
a potential therapeutic agent in podocytopathies.

Keywords: podocytes; podocyte migration; urolithin A; TGF-β1; high glucose; EMT; diabetic nephropathy

1. Introduction

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and
accumulating data show that damage of the glomerular filter resulting in proteinuria is
one of the major mechanisms of renal impairment [1,2]. It is now widely acknowledged
that within the glomerular filtration barrier, podocytes play a pivotal role in controlling the
passage of proteins into the urinary space [3,4], and the onset of albuminuria in DN reflects
diabetic podocytopathy [5,6].

Podocytes are unique, highly specialized terminally differentiated cells of epithelial
origin found in the kidney glomeruli. Diverse biological as well as structural properties of
podocytes make them a crucial component of the renal filter [7]. Apart from mechanically
supporting the integrity of the glomerular tuft, podocytes are involved in the synthesis
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and repair of all components of the glomerular filter [7,8]. The cells are anchored to the
glomerular basement membrane (GBM) by interdigitating foot processes. The gaps between
the neighboring protrusions are bridged by slit diaphragms (SD) that constitute the final
barrier for protein loss during filtration through the capillary wall. Podocyte structure,
function, and intercellular contact, as well as control of proteinuria, are strictly associated
with SD integrity [9]. Despite their critical role in maintaining normal renal function,
mature kidney podocytes have a limited ability to regenerate in response to injury, which
results in permanent alterations in glomerular structure. This is why podocyte damage,
detachment, and loss are considered to be pivotal steps toward progressive chronic kidney
disease [10,11].

The transforming growth factor-beta (TGF-β) family of pleiotropic cytokines con-
sists of three (TGF-β1, TGF-β2, and TGF-β3) isoforms, of which TGF-β1 has been
established as the predominant isoform expressed in the kidney [12,13]. In physiolog-
ical conditions, TGF-β1 maintains tissue homeostasis by regulating a broad range of
cellular processes and interactions of the cells with the extracellular environment [14,15].
However, excessive TGF-β activity is implicated in the pathogenesis of various diseases
by contributing to changes in tissue structure, immunity, redox balance, motility of the
cells, and many other features [16,17]. Nearly all kidney diseases are associated with
TGF-β1 upregulation, and, in DN, it plays a key role in the development of pathogenic
changes in renal tissues [18]. Moreover, many lines of evidence have shown that TGF-
β1 is a central mediator of podocyte injury [19–21]. In the diabetic kidney, various
stimuli such as hyperglycemia, reactive oxygen species (ROS), angiotensin II (Ang II),
thrombospondin-1 (TSP-1), and advanced glycation end products (AGEs) induce TGF-β1
synthesis and activate TGF-β1-dependent signaling, which results in diverse injurious
changes underlying DN. Also, podocytes, the most vulnerable renal cells, become targets
for the overactive TGF-β1 system. This results in a series of functional, morphological,
and phenotypic changes, leading to irreversible podocyte impairment and loss [22]. To
date, there is no cure for diabetic podocytopathy.

Urolithins, the dibenzo[b,d]pyran-6-one derivatives, are polyphenol metabolites
that are produced by the human gut microbiota from ellagitannins and ellagic acid-
rich food products such as nuts, pomegranate, and berries (Figure 1). The family
consists of several isoforms, of which urolithin A (UA) is the most abundant form
in humans [23]. Studies have shown that urolithins, and particularly UA, exhibit various
biological activities including antioxidant, anticancer, anti-inflammatory, and antiglyca-
tive properties [24,25]. The wide range of these beneficial effects is mediated by diverse
urolithin-mediated intracellular mechanisms, such as modulation of apoptosis, signal
transduction, cell cycle, gene expression, and others [26]. However, detailed knowledge
of the interactions between urolithins and systems regulating cell functions in different
organs still remains incomplete. The presence of urolithins in urine indicates their direct
contact with renal tissue. Nevertheless, only a few studies on the effects of urolithins
in the kidney have been published so far. We have shown recently that UA improved
the viability of podocytes exposed to high glucose, and, additionally, the expression and
cellular localization of nephrin, the central component of SD, was modulated by this
compound [27].

In the present study, we aimed to investigate whether UA can ameliorate injury of
podocytes under conditions mimicking diabetes by influencing the activity of TGF-β1.
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Figure 1. Ellagitannins (ETs) and ellagic acid (EA) are naturally occurring polyphenolic bioactive 
compounds found in fruits and seeds of various food plants. ETs are hydrolyzed to EA in the upper 
part of the gastrointestinal tract and further converted by microbiota in the large intestine into uro-
lithins. Depending on individual microbiota composition, various urolithin isoforms are produced, 
of which urolithin A is the most common form [28]. In contrast to ETs and EA, urolithins are easily 
absorbed in the gut. 

2. Materials and Methods 
2.1. Podocyte Culture and Treatment 

Conditionally immortalized mouse podocytes (SVI clone, Cell Line Services, Eppe-
lheim, Germany) were cultured as described previously [29], with minor modifications. 
Briefly, the cells were propagated at 33 °C in RPMI 1640 medium (PAN-Biotech, Aiden-
bach, Germany) containing 11 mM glucose and supplemented with 10% heat-inactivated 
fetal bovine serum (FBS, EURx, Gdansk, Poland), 100 U/mL penicillin, 100 µg/mL strep-
tomycin (PAN-Biotech, Aidenbach, Germany), and 10 U/mL recombinant mouse inter-
feron-γ (IFN-γ, PeproTech EC, London, UK). Differentiation was induced by shifting the 
temperature to 37 °C, removing IFN-γ, and changing the medium to DMEM containing 
5.5 mM glucose (PAN-Biotech, Aidenbach, Germany) and 5% FBS. After 7–10 days of cul-
ture, the cells were divided into two groups. One group remained in DMEM with normal 
glucose (5.5 mM, NG), while the other group was switched to high glucose (25 mM, HG), 
and the culture was continued for the next 7 days. Experimental NG or HG media con-
taining 0.5% FBS, 10 mM urolithin A, and 5 ng/mL TGF-β1 were added for the last 24 h. 
Cells between 18 and 29 passages were used in all experiments. The final concentration of 
DMSO (dimethyl sulfoxide, solvent for UA) was 0.01% (v/v) (Merck, Darmstadt, Ger-
many). The effect of the vehiculum was tested in all experiments and no significant 
changes were observed. 

2.2. Urolithin A 
Urolithin A (UA, 3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one) was synthesized in the 

Department of Organic Chemistry of the Medical University of Gdansk, based on litera-
ture data [30], and was kindly provided by the Department of Pharmacognosy and 

Figure 1. Ellagitannins (ETs) and ellagic acid (EA) are naturally occurring polyphenolic bioactive
compounds found in fruits and seeds of various food plants. ETs are hydrolyzed to EA in the
upper part of the gastrointestinal tract and further converted by microbiota in the large intestine
into urolithins. Depending on individual microbiota composition, various urolithin isoforms are
produced, of which urolithin A is the most common form [28]. In contrast to ETs and EA, urolithins
are easily absorbed in the gut.

2. Materials and Methods
2.1. Podocyte Culture and Treatment

Conditionally immortalized mouse podocytes (SVI clone, Cell Line Services, Eppel-
heim, Germany) were cultured as described previously [29], with minor modifications.
Briefly, the cells were propagated at 33 ◦C in RPMI 1640 medium (PAN-Biotech, Aidenbach,
Germany) containing 11 mM glucose and supplemented with 10% heat-inactivated fetal
bovine serum (FBS, EURx, Gdansk, Poland), 100 U/mL penicillin, 100 µg/mL streptomycin
(PAN-Biotech, Aidenbach, Germany), and 10 U/mL recombinant mouse interferon-γ (IFN-
γ, PeproTech EC, London, UK). Differentiation was induced by shifting the temperature to
37 ◦C, removing IFN-γ, and changing the medium to DMEM containing 5.5 mM glucose
(PAN-Biotech, Aidenbach, Germany) and 5% FBS. After 7–10 days of culture, the cells were
divided into two groups. One group remained in DMEM with normal glucose (5.5 mM,
NG), while the other group was switched to high glucose (25 mM, HG), and the culture
was continued for the next 7 days. Experimental NG or HG media containing 0.5% FBS,
10 mM urolithin A, and 5 ng/mL TGF-β1 were added for the last 24 h. Cells between 18
and 29 passages were used in all experiments. The final concentration of DMSO (dimethyl
sulfoxide, solvent for UA) was 0.01% (v/v) (Merck, Darmstadt, Germany). The effect of the
vehiculum was tested in all experiments and no significant changes were observed.

2.2. Urolithin A

Urolithin A (UA, 3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one) was synthesized in the
Department of Organic Chemistry of the Medical University of Gdansk, based on literature
data [30], and was kindly provided by the Department of Pharmacognosy and Department
of Organic Chemistry, Medical University of Gdansk, Poland. UA (228.2 g/mol) was
dissolved in sterile dimethyl sulfoxide and 10 mM stock solution was stored at −80 ◦C.
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2.3. Podocyte Migration Assay

Differentiated podocytes were cultured in 12-well culture plates. Immediately af-
ter adding experimental media containing tested compounds, the cell monolayers were
scratched with a 10 mL pipette tip and incubations were held for the next 24 h. Fixed with
buffered 2% paraformaldehyde (Sigma Aldrich/Merck, Darmstadt, Germany), podocytes
were then stained with crystal violet (POCh, Gliwice, Poland), and images of the wounded
area were taken on an inverted microscope and were analyzed using Image J with Wound
Healing Tool plugin, version 1.53r. (NIH, Bethesda, MD, USA) [31]. Control cells repre-
senting initial wound size (0 h) were fixed directly after scratching. The percentage of
cell migration area was calculated as area 24 h (or 0 h)/total area of each image. The
experiments were performed in triplicate.

2.4. Immunofluorescence Staining and Confocal Microscopy

Immunofluorescence studies were performed as described previously [32]. Briefly,
podocytes seeded on round glass coverslips (Bionovo, Legnica, Poland) were cultured
in NG and HG media as indicated. Following exposure to various treatments, the cells
were fixed with 4% paraformaldehyde for 8 min at room temperature, permeabilized
(0.3% Triton X-100 in PBS, Thermo Fisher Scientific, Waltham, MA, USA) for 3 min and
blocked with blocking solution (2% fetal bovine serum albumin, 0.2% fish gelatine, PBS,
Sigma-Aldrich/Merck, Darmstadt, Germany) for 45 min. The permeabilization step was
omitted to visualize the surface-bound antibodies. The 60 min incubation with primary
antibodies (Table S1) was followed by the subsequent 30 min incubation with secondary
antibodies (Table S2). All antibodies were diluted in the blocking solution. Non-specific
staining was controlled by replacing the primary antibody with the blocking solution alone.
The coverslips were mounted on microscope slides using Fluoroshield TM with DAPI
(4′,6-diamidino-2-phenylindole, Sigma-Aldrich/Merck, Darmstadt, Germany). Images
were captured with The Opera Phenix® Plus High-Content Screening System (Perkin Elmer,
Waltham, MA, USA) and analyzed with Harmony High-Content Imaging and Analysis
Software 4.8 (Perkin Elmer, Waltham, MA, USA). The images were merged using the ImageJ
software (Version 1.53r, National Institutes of Health, University of Wisconsin, Madison,
WI, USA). Scoring for immunofluorescence analysis is presented in Table S3.

2.5. RNA Isolation and Reverse Transcription–Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA from treated podocytes was extracted and purified with PureLinkTM RNA
Mini Kit according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA).
The purity and integrity of the extracted RNA were checked with Cytation 3 multimode
microplate reader (BioTek, Santa Clara, CA, USA) and analyzed by Gen5 Software (Version
2.04). Quantitative PCR was performed using TaqMan RNA-to-CTTM 1-step KIT (Applied
Biosystems, Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s
protocol. Briefly, the RT-PCR reaction mix (TaqMan RT-PCR Mix, TaqMan RT Enzyme
Mix, water) was combined with TaqManTM Gene Expression Assay for Fn1 gene-encoding
fibronectin, (Assay ID: Mm01256744_m1), TbRI gene-encoding TGF-β receptor1 (Assay ID:
Mm00436964_m1), TbRII gene-encoding TGF-β receptor2 (Assay ID: Mm03024091_m1),
Actb gene-encoding β-actin (Assay ID: Mm04394036_g1). Then, 50 ng total RNA from each
experimental group was added to 7.5 µL of Master Mix (10 µL total volume). PCR reac-
tions were carried out using QuantStudio 3 Real-Time PCR System (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA) and involved the following steps: (1) reverse
transcription at 48 ◦C for 20 min; (2) polymerase activation at 95 ◦C for 10 min; (3) 40 cycles
denaturation (15 s at 95 ◦C) followed by annealing/extending at 60 ◦C for 1 min). Relative
levels of target gene mRNA expression were normalized to β-actin, and the relative level
of mRNA was calculated with the ∆∆ comparative threshold (Ct) method.
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2.6. Protein Extraction and Western Blot Analysis

The procedure was carried out as previously described [27]. In brief, podocytes were
lysed using Pierce TM RIPA Buffer (Thermo Fisher Scientific, Rockford, IL, USA), containing
HaltTM Protease & Phosphatase Single-Use Inhibitor Cocktail (Thermo Fisher Scientific, Rock-
ford, IL, USA) and proteins were extracted from the cells according to the manufacturer’s
protocol. Total protein concentration was determined by DC Protein Assay (Bio-Rad Laborato-
ries, Hercules, CA, USA). Proteins (30 µg) were separated by CriterionTM TGX Stain-FreeTM
Precast Gel electrophoresis and transferred to PVDF membrane (Trans-Blot Turbo, Midi For-
mat, 0.2 µm PVDF) using Trans-Blot Turbo Transfer system (Bio-Rad Laboratories, Hercules,
CA, USA). β-actin expression was analyzed to ensure equal protein loading. The membranes
were blocked with 5% BSA in TBST buffer (Sigma-Aldrich/Merck, Darmstadt, Germany)
for 30 min and incubated overnight with primary antibodies (Table S1). The membranes
were washed in TBST and incubated with horseradish peroxidase (HRP)-linked secondary
antibody (Table S2). The proteins were then visualized by VisiGloTM Select HRP Substrate Kit
(VWR Chemicals, Solon, OH, USA) and imaged using a ChemiDoc MP (Bio-Rad Laboratories,
Hercules, CA, USA). Densitometry was performed using ImageLab v2.0 analysis software
(Bio-Rad Laboratories, Hercules, CA, USA).

2.7. Flow Cytometry Analysis

Podocytes cultured in 6-well plates (90,000 cells/well) were rinsed with PBS, detached by
Accutase (Sigma-Aldrich/Merck, Darmstadt, Germany) and centrifuged for 7 min at 400× g.
Subsequently, the cells were fixed with 4% paraformaldehyde at room temperature for 8 min and
blocked with blocking solution (2% FBS, 2% bovine serum albumin, 0.2% fish gelatin, in PBS) for
60 min at room temperature. Finally, the cells were resuspended in cold FACS buffer (2% FBS in
PBS) and aliquots of 3× 103 cells/tube were incubated with a phycoerythrin-conjugated antibody
directed against extracellular nephrin epitopes (sc-376522 PE, Santa Cruz, Dallas, TX, USA) for
30 min at 4 ◦C. To detect total nephrin content, the podocytes were permeabilized with 0.3%
Triton X-100 in PBS prior to incubation with primary and secondary antibodies (Tables S1 and S2).
To omit debris and cell clumps, gating was performed. Cell fluorescence was analyzed using
BD FACSVerse™ Flow Cytometer (BD Biosciences, San Jose, CA, USA) and FlowJoTM Software
v10.8.0 (BD Bioscience, San Jose, CA, USA). Background fluorescence, assessed with IgG isotype
control, was subtracted from the corresponding samples during analysis.

2.8. Statistical Analyses

Statistical tests were performed by using SigmaPlot 11.0 (Systat Software Inc., San
Jose, CA, USA) or Statistica 13.3 (TIBCO Software Inc., Santa Clara, CA, USA). All data are
shown as means ± SEM and were compared by two-way ANOVA, Mann–Whitney’s U test
for nonparametric data, or Student’s t-tests for paired parametric data.

3. Results
3.1. Urolithin A Inhibits the TGF-β1-Induced Downregulation of Nephrin

Expression of nephrin, the principal transmembrane component of SD, is suppressed in
the hyperglycemic milieu [33]. It has been well documented that, in diabetes, observed over-
activity of the TGF-β–dependent system contributes to reducing nephrin expression, which
has also been confirmed in the in vitro experiments [34–36]. We have shown recently that in
podocytes exposed to HG, nephrin expression was restored upon treatment with UA. We also
demonstrated that UA modulates endosomal trafficking of nephrin, which could contribute
to the mechanisms involved in restoring nephrin by UA [27]. In this study, we investigated
whether UA could also modulate the TGF-β1-mediated effects on nephrin expression.

Results of flow cytometry analysis revealed that in HG conditions, incubation of podocytes
with TGF-β1 decreased the surface expression of nephrin, which was reversed by co-incubation
with UA (Figure 2A). Also, in the NG group, the addition of UA to the TGF-β1-treated cells
significantly elevated the surface nephrin, while TGF-β1 alone had no effect. This observation
suggests that UA per se could increase the membrane-bound nephrin, which is consistent
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with our previous findings [27]. On the other hand, total nephrin expression was reduced by
TGF-β1 not only in HG, but also in NG cells (Figure 2C–F), while UA reversed the effect.
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Figure 2. The effect of UA on the TGF-β1 and HG-induced downregulation of nephrin: (A,C) Quan-
titative flow cytometry analysis of UA effect on nephrin expression at the podocyte surface (A) and
total nephrin (C). Podocytes cultured for 7 d in normal (5.5 mM, NG) or high (25 mM, HG) glucose
were incubated for 24 h with 5 ng/mL TGF-β1 and 10 µM UA, stained with phycoerythrin-conjugated
antibody against the extracellular nephrin domain (A) or total nephrin (C) and analyzed by flow cytom-
etry. (B,D) Representative histograms showing the effect of UA on surface (B) and total (D) nephrin
expression. (E) Quantitative confocal microscopy analysis of total nephrin expression. (F) Representative
confocal microscopy images of immunofluorescent staining against nephrin. Results show mean ± SEM.
Student’s t-test and ANOVA test were used to calculate p-values. For (A,C) * p < 0.05 vs. NG Control,
** p < 0.05 vs. respective TGF-β1 and Control, *** p < 0.001 vs. NG Control, # p < 0.01 vs. respective
TGF-β1, and $ p < 0.05 vs. HG Control, @ p < 0.05 vs. NG TGF-β1 (n = 3–5). For (E) * p < 0.001 vs. NG
Control, ** p < 0.001 vs. HG Control, and & p < 0.001 vs. respective TGF-β1, # p < 0.05 vs. HG Control.
553 cells were analyzed in two independent experiments. MFI: mean fluorescence intensity.
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3.2. Urolithin A Inhibits Induced by High Glucose and TGF-β1 Migration of Podocytes

Nephrin is involved not only in the maintenance of SD architecture but also in the
regulation of foot process structure and focal adhesion (FA) dynamics [9]. The rate of FA
turnover in turn is a determinant of podocyte motility and contact with the glomerular
basement membrane. On the other hand, both TGF-β and high glucose are known to
induce podocyte migration [37,38]. We presumed, therefore, that modulation by UA of
TGF-β-dependent and -independent nephrin expression could influence the ability of
podocytes to migrate. As shown in Figure 3A,B, the wound healing tests revealed that
high glucose alone triggered podocyte migration, while TGF-β1 potentiated motility of
podocytes exposed to both NG and HG conditions. UA apparently reduced the ability to
migrate of high glucose-stimulated podocytes, as well as podocytes treated with TGF-β1.
However, no effect of UA alone was observed in the NG group.
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were incubated for 24 h with 5 ng/mL TGF-β1 and/or 10 µM UA: (A) Representative image of
the wound healing test. After making a scratch in the cell monolayer (time 0), the podocytes
were incubated in indicated media for 24 h. (B) Quantification of wound healing assay (n = 4).
(C) Representative immunoblot for integrin β3 expression; 30 µg protein samples from total cell
lysates were subjected to Western blot analysis followed by quantitative densitometric analysis.
(D) Quantification of Western blot analyses of β3 integrin expression (n = 3). (E) Representative
confocal microscopy images of immunofluorescent staining against β3 integrin. (F) Quantitative
confocal microscopy analysis of β3 integrin expression; 754 cells were analyzed in two independent
experiments. Results show mean ± SEM. Student’s t-test, Mann–Whitney U test, and ANOVA were
used to calculate p-values. * p < 0.001 vs. NG Control, ** p < 0.001 vs. HG Control, # p < 0.001 vs.
respective TGF-β1, @ p < 0.001 vs. NG TGF-β1.

3.3. Integrin β3 Expression Is Modulated by Urolithin A

Based on the above-mentioned results, it seemed likely that the suppression of the
migratory capacity of podocytes by UA was mediated by affecting a common factor
triggered by high glucose, as well as by TGF-β1. It has been well documented that increased
podocyte motility occurs following integrin β3 activation [39–41]. Moreover, integrin β3
in podocytes is upregulated by both, the hyperglycemic milieu [42,43] and by TGF-β [38].
Thus, our next aim was to check if the observed-by-us UA-mediated-reduced migratory
capability of podocytes was due to the modulation of integrin β3 expression. The results
of Western blot (Figure 3C,D) and quantitative confocal image analyses (Figure 3E,F)
consistently demonstrate that induction by TGF-β1 and by a high-glucose increase in
migration was paralleled by respective upregulation of integrin β3 expression. Likewise,
inhibition by UA of podocyte motility was accompanied by the downregulation of integrin
β3 protein.

3.4. Urolithin A Modulates Fibronectin Expression

The loss of expression of typical epithelial markers such as nephrin, along with in-
creased podocyte migratory potential, is typical for the epithelial-to-mesenchymal transition
(EMT) that occurs under conditions of hyperglycemia and upon TGF-β activation [44–46].
Additionally, a switch in the cell phenotype is also characterized by the upregulation
of mesenchymal state markers, such as fibronectin [45,47]. Thus, to assess whether the
observed-by-us changes in podocytes were associated with EMT, we examined the ex-
pression of fibronectin and investigated whether it was modulated in the presence of UA.
High glucose significantly elevated fibronectin mRNA (Figure 4A), which was paralleled
by respective increases in protein levels (Figure 4B,E). Upon treatment with TGF-β1, fi-
bronectin mRNA, as well as protein levels, was increased in both the NG and HG groups.
Interestingly, in the NG conditions, exposure of podocytes to UA increased fibronectin
mRNA expression (Figure 4A). Yet, the high glucose-induced elevation of fibronectin
mRNA and protein expression was significantly reduced by UA, reaching the level of the
NG control. Upon the addition of UA to the TGF-β1-treated cells, the elevated-by-TGF-β1
level of fibronectin protein apparently decreased (Figure 4B,E), whereas the simultaneous
prominent increase in respective mRNA expression was observed (Figure 4A).
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Figure 4. Modulation by UA of fibronectin expression in podocytes exposed to TGF-β1 and HG.
Podocytes cultured for 7 d in normal (5.5 mM, NG) or high (25 mM, HG) glucose were incubated for 24 h
with 5 ng/mL TGF-β1 and/or 10 µM UA: (A) Results of quantitative RT-PCR analysis for fibronectin.
Relative levels of mRNA were normalized to β-actin (n = 4). (B) Quantification of Western blot analyses
of fibronectin expression (n = 3–4). (C) Representative immunoblot for fibronectin expression; 30-µg
protein samples from total cell lysates were subjected to Western blot analysis followed by quantitative
densitometric analysis. (D) Representative confocal microscopy images of immunofluorescent staining
showing fibronectin (red), F-actin (green), and counterstained with DAPI (blue). (E) Quantitative
confocal microscopy analysis of fibronectin expression; 758 cells were analyzed in two independent
experiments. Results show mean ± SEM. Student’s t-test, Mann–Whitney U test, and ANOVA test
were used to calculate p-values. For (A) * p < 0.001 vs. NG Control, ** p < 0.01 vs. respective Control,
@ p < 0.01 vs. NG TGF-β1. For (B) * p < 0.01 vs. NG Control, ** p < 0.02 vs. respective TGF-β1, # p < 0.02
vs. HG Control. For (E) * p < 0.001 vs. respective Control and TGF-β1, ** p < 0.001 vs. HG Control.

3.5. Urolithin A Affects the Expression of TGF-β Receptors

The TGF-β signaling pathway is initiated by the sequential binding of TGF-β to its
type II (TβRII) and type I (TβRI) receptors on the cell membrane. To find out the mecha-
nisms by which UA modulated the TGF-β1-dependent effects, we next checked whether
the expression of TGF-β receptors TβRI and TβRII was modulated in our experimental
conditions and whether it was affected by urolithin A. Results showed that high glucose
upregulated TβRI and TβRII protein expression (Figure 5B,E), with a significant increase
in TβRI mRNA (Figure 5A,D). In the NG, as well as in the HG conditions, treatment of
podocytes with TGF-β1 resulted in marked downregulation of mRNA for both receptors,
which, except for TβRII in NG, was accompanied by reduced protein level, as compared to
the respective control. To our surprise, UA elevated the TβRI and TβRII mRNA in both NG
and HG groups. Yet, respective proteins’ expressions were downregulated, except for TβRI
in the NG cells. Despite the apparent stimulatory effect of UA on TβR mRNA expression,
the TGF-β1-induced reduction in the TβRI mRNA level was unaffected upon the addition
of UA, whereas, in the case of TβRII, the decline was even potentiated. This was reflected
by respective changes in protein expression, both in NG and in HG groups.
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Figure 5. Effects of UA on the expression of TGF-β1 receptors TβRI and TβRII. Podocytes cultured for
7 d in normal (5.5 mM, NG) or high (25 mM, HG) glucose were incubated for 24 h with 5 ng/mL TGF-β1
and/or 10 µM UA: (A) Results of quantitative RT-PCR analysis for TβRI. Relative levels of mRNA were
normalized to β-actin (n = 3). (B) Quantitative confocal microscopy analysis of TβRI expression; 810 cells
were analyzed in two independent experiments. (C) Representative confocal microscopy images of
immunofluorescent staining against TβRI. (D) Results of quantitative RT-PCR analysis for f TβRII.
Relative levels of mRNA were normalized to β-actin (n = 3). (E) Quantitative confocal microscopy
analysis of TβRII expression; 840 cells were analyzed in two independent experiments. (F) Representative
confocal microscopy images of immunofluorescent staining against TβRII. Results show mean ± SEM.
Student’s t-test and ANOVA test were used to calculate p values. For (A) * p < 0.05 vs. respective Control,
** p < 0.001 vs. respective Control, *** p < 0.005 vs. NG Control. For (B) * p < 0.001 vs. respective Control,
** p < 0.001 vs. NG Control, # p < 0.001 vs. TGF-β1, @ p < 0.001 vs. NG TGF-β1. For (D) * p < 0.05 vs.
respective Control, # p < 0.01 vs. UA. For (E) * p < 0.001 vs. NG Control, ** p < 0.001 vs. HG Control,
# p < 0.001 vs. respective TGF-β1 and UA, @ p < 0.001 vs. NG TGF-β1.



J. Pers. Med. 2024, 14, 914 11 of 18

3.6. Urolithin A Reduces the TGF-β1-Dependent Smad2 Activation

The binding of the TGF-β ligand to its receptors activates downstream signal trans-
duction, which is predominantly mediated by the Smad family of proteins. Consequently,
cytoplasmic Smad2 and Smad3 are phosphorylated, which is the crucial intermediate step
to inducing the biological response [48]. Since phosphorylation by TGF-β1 of Smad2 in
podocytes has been demonstrated to be involved in various intracellular changes [19,49,50],
we examined whether UA could modulate the TGF-β1-dependent effects by affecting
Smad2 signaling. In both, NG and HG conditions, treatment of podocytes with TGF-β1 in-
creased the level of Smad2 phosphorylation (Figure 6B,D). Additionally, high glucose alone
elevated not only pSmad2 but also Smad 2 expression (Figure 6C,D). In both cases, upon
the addition of UA, we observed a significant drop in the expression of phosphorylated
Smad2, which indicates that UA inhibited activation of the signal transducer.
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and/or 10 µM UA: (A) Representative immunoblots for expression of Smad2 and phospho-Smad2 (pS-
mad2); 30-µg protein samples from total cell lysates were subjected to Western blot analysis followed
by quantitative densitometric analysis. (B) Quantification of Western blot analyses of pSmad2/Smad2
expression ratio (n = 3). (C) Quantitative confocal microscopy analysis of Smad2 expression; 550 cells
were analyzed in two independent experiments. (D) Quantitative confocal microscopy analysis of
pSmad2 expression; 550 cells were analyzed in two independent experiments. (E) Representative
confocal microscopy images of immunofluorescent staining against Smad2. (F) Representative confo-
cal microscopy images of immunofluorescent staining against pSmad2. Results show mean ± SEM.
Student’s t-test and ANOVA test were used to calculate p-values. For (B) * p < 0.001 vs. NG Control,
** p < 0.03 vs. HG Control, *** p < 0.01 vs. NG TGF-b1, # p < 0.03 vs. HG TGF-b1. For (C) * p < 0.001
vs. NG Control, ** p < 0.01 vs. HG Control, *** p < 0.001 vs. Control and TGF-b1. For (D) * p < 0.001
vs. NG Control, ** p < 0.001 vs. respective Control, # p < 0.01 vs. respective TGF-b1.

4. Discussion

Presented in this study results demonstrate that urolithin A counteracts the phenotypic
changes induced in podocytes by TGF-β1 and high glucose. We show that under conditions
mimicking the diabetic milieu, UA suppresses podocyte motility, inhibits the Smad2-
dependent TGF-β1 signaling, and opposes the epithelial-to-mesenchymal transition.

Podocyte injury and loss lead to irreversible changes in the glomerular filtration barrier
(GFB), making these cells crucial in the progression of diabetic kidney disease (DKD) [51,52].
Typically, podocyte impairment is manifested by effacement of foot processes, which is
associated with loss of SD components, dedifferentiation, EMT, and finally, detachment
and loss of viable, apoptotic, or necrotic cells [53–56].

EMT is a complex process mediating podocyte dysfunction in diabetes as well as in
non-diabetic chronic kidney diseases such as renal fibrosis or focal segmental glomeru-
losclerosis (FSGS) [57,58]. During EMT, epithelial features of podocytes, including nephrin
expression, are lost and the cells acquire mesenchymal features that are manifested by
increased migratory properties and expression of proteins such as fibronectin, α-smooth
muscle actin, and others [59,60]. The in vivo and in vitro studies show that among different
microenvironmental stimuli, TGF-β is a potent inducer of EMT in podocytes under nor-
mal [20,45,61], as well as under high glucose conditions [62,63]. High glucose concentration
induces EMT in podocytes not only through the activation of TGF-β signaling but also
through several other molecular mechanisms [44,64,65]. EMT is considered to be the major
pathomechanism underlying podocytopenia in diabetic kidney [59].

Our results indicate that TGF-β1 and HG, separately and in concert, induced, in
podocytes, changes typical for EMT, which was abolished upon treatment with UA. Both
these factors independently increased the ability of podocytes to migrate (Figure 3A,B),
which is consistent with previous reports [38,66]. Similarly, the expression of nephrin, the
key component of SD and marker protein of podocytes, was separately downregulated by
both these factors. However, the effect induced by TGF-β1 was significantly augmented
in HG conditions (Figure 2). On the other hand, expression of fibronectin was strongly
increased by TGF-β1, as well as by high glucose (Figure 4), and the effect was enhanced
when podocytes were exposed to both factors simultaneously (Figure 4A). In the presence
of UA, the impact of TGF-β1 was apparently suppressed, while the changes elicited by
prolonged exposure of the cells to HG were reversed.

In diabetic kidneys, the hyperglycemic milieu and TGF-β act on podocytes simultane-
ously [67]. Under HG conditions, increased interaction of podocytes with TGF-β results
from overproduction and secretion by glomerular endothelial and mesangial cells of TGF-β
and TGF-β mRNA-containing exosomes [68]. Moreover, podocytes can also produce TGF-β
acting in an autocrine manner, and this phenomenon occurs also in the normoglycemic
milieu [69–71]. In our in vitro experiments, most of the features investigated here were
modified by TGF-β1 not only in HG, but also in NG conditions, while high glucose concen-
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tration was an independent factor affecting the cells. However, UA hindered the activity
of TGF-β1 and reversed the changes induced by prolonged preincubation of podocytes
in HG.

In physiological conditions, podocytes display a limited ability to migrate, which al-
lows them to withstand injurious stimuli such as inflammatory or mechanical stress [7,72,73].
However, excessive stress leads to dysregulated cell motility, which is tightly associated
with disruption of SD, proteinuria, and podocyte detachment [73,74]. We show here that in
HG conditions and upon stimulation with TGF-β1, increased podocyte motility (Figure 3B)
was associated with the elevation of β3 integrin, whereas abolishment by UA of cell mi-
gration was paralleled by downregulation of β3 integrin (Figure 3D,F). These results are
consistent with previously published reports revealing that there is an inverse relationship
between the expression of β3 integrin and the capability of podocytes to migrate [38].

We demonstrate here that typical for EMT responses of podocytes to TGF-β1, such
as the decrease in nephrin and the increase in integrin β3 or fibronectin were enhanced
in the hyperglycemic milieu. In both NG and HG conditions, UA significantly opposed
the detrimental effects of the cytokine, which was at least partly mediated by interrupt-
ing the TGF-β1 signal transduction. As shown in Figure 5, high glucose concentration
increased the expression of TβRI and TβRII receptors, which is consistent with previous
reports [75–77]. However, in the presence of UA, we noted the rise in TβRI mRNA with a
concomitant drop in protein expression. In our recent study, we noted a similar discrepancy
between mRNA and protein during the quantification of the UA-dependent modulation of
nephrin expression [27]. Such inconsistency is a frequent phenomenon [78] and suggests
that urolithin A could induce post-transcriptional changes in the expression of proteins.
Upon treatment with TGF-β1, both TβRI and TβRII receptors were downregulated. Re-
ports regarding the influence of TGF-β on its own receptors are conflicting and reveal up-
as well as downregulation of TβRI and TβRII [79,80]. However, it has also been found
that the final effect depends on the duration of exposure of the cells to TGF-β [81]. Brief
administration of TGF-β resulted in upregulation of its own receptors, whereas prolonged
incubation reduced expression of TβRI and TβRII. In our experiments, the podocytes were
exposed to TGF-β1 for 24 h, corresponding to the prolonged incubation, which resulted
in a decrease in the expression of receptors. Co-incubation of HG-treated podocytes with
TGF-β1 along with UA further reduced the TβRI expression (Figure 5B), which, most likely,
contributed to diminished responsiveness of the TGF-β receptor system to stimulation by
the ligand. Moreover, we show here that UA also interrupts the TGF-β1 signal transduction
downstream to the receptors. The TGF-β/Smad signaling pathway is one of the most
important signal pathways mediating EMT and apoptosis in podocytes [65,82]. Forma-
tion of the TGF-β/TβRII/TβRI complex triggers the downstream phosphorylation and
activation of Smad2/3 proteins, which is crucial for further transduction of the signal to
the nucleus [48]. We have proven that UA reduces the mediation by HG and the TGF-β1
increase in the pSmad2/Smad2 ratio (Figure 6B). In the presence of HG and TGF-β1, the
expression of not only the phosphorylated form (pSmad2) but also of the unphosphorylated
Smad2 was elevated (Figure 6C,D). Yet, in HG conditions, UA stimulated an even bigger
increase in Smad2, which was accompanied by strong suppression of pSmad2 expression.
The proposed mechanisms of UA inhibition of HG-dependent and -independent EMT in
podocytes are presented in Figure 7.

Detailed mechanisms by which UA opposes the effects of high glucose and TGF-β
remain to be established. It is known so far that UA is capable of regulating the expression of
various proteins by modulating transcription and post-transcriptional processes [28,83,84].
The broad range of beneficial biological activities exerted by urolithins, first of all by UA,
has been listed lately in the comprehensive review by Hasheminezhad et al. [26]. Recently,
inhibition by UA of EMT in cancer cells [84,85] and inhibition of TGF-β signaling in renal
epithelial cells [86] were reported. However, relatively few research results refer to the
influence of UA on renal disorders, with only a few publications discussing its impact on
podocytes. Our results reveal that in conditions mimicking diabetes, UA inhibits the EMT-



J. Pers. Med. 2024, 14, 914 14 of 18

associated changes in podocytes. Moreover, we show here that also in the normoglycemic
milieu, UA opposes the effects of TGF-β1, the principal mediator in the development of
kidney fibrosis, glomerulosclerosis, and CKD [12,87,88].
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