Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience
Abstract
:1. Introduction
1.1. Ketogenic Diet
1.2. Metabolic Changes of Neoplastic Cells
1.3. Theories Regarding Carcinogenesis: A Focus on Mitochondria and Relation to KD
1.4. Mechanism
1.5. Ketogenic Diet and Epigenetic Targets
1.6. Preclinical Studies
2. Materials and Methods
- Preclinical studies done on animals
- Letters or responses to the editor
- Review articles
- Studies not reporting feasibility and survival
- Original articles;
- Studies with KD as an intervention alone or in combination with other conventional and nonconventional treatments for malignant glioma;
- All published articles to date regardless of age, gender, ethnicity, and country study conducted.
3. Results
3.1. Published Materials
3.2. Ongoing Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diwanji, T.P.; Engelman, A.; Snider, J.W.; Mohindra, P. Epidemiology, diagnosis, and optimal management of glioma in adolescents and young adults. Adolesc. Health Med. Ther. 2017, 8, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Lim-Fat, M.J.; Das, S. Unique molecular, clinical, and treatment aspects of gliomas in adolescents and young adults: A review. J. Neurosurg. 2023, 139, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Eisenstat, D.D.; Pollack, I.F.; Demers, A.; Sapp, M.V.; Lambert, P.; Weisfeld-Adams, J.D.; Burger, P.C.; Gilles, F.; Davis, R.L.; Packer, R.; et al. Impact of tumor location and pathological discordance on survival of children with midline high-grade gliomas treated on Children’s Cancer Group high-grade glioma study CCG-945. J. Neurooncol. 2015, 121, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Bavle, A.; Chintagumpala, M. Pediatric high-grade glioma: A review of biology, prognosis, and treatment. J. Radiat. Oncol. 2018, 7, 7–15. [Google Scholar] [CrossRef]
- Sievert, A.J.; Fisher, M.J. Pediatric low-grade gliomas. J. Child. Neurol. 2009, 24, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Youland, R.S.; Khwaja, S.S.; Schomas, D.A.; Keating, G.F.; Wetjen, N.M.; Laack, N.N. Prognostic factors and survival patterns in pediatric low-grade gliomas over 4 decades. J. Pediatr. Hematol. Oncol. 2013, 35, 197–205. [Google Scholar] [CrossRef]
- Ris, M.D.; Beebe, D.W. Neurodevelopmental outcomes of children with low-grade gliomas. Dev. Disabil. Res. Rev. 2008, 14, 196–202. [Google Scholar] [CrossRef]
- Rees, J.H. Low-grade gliomas in adults. Curr. Opin. Neurol. 2002, 15, 657–661. [Google Scholar] [CrossRef]
- Grier, J.T.; Batchelor, T. Low-grade gliomas in adults. Oncologist 2006, 11, 681–693. [Google Scholar] [CrossRef]
- Artzi, M.; Liberman, G.; Vaisman, N.; Bokstein, F.; Vitinshtein, F.; Aizenstein, O.; Ben Bashat, D. Changes in cerebral metabolism during ketogenic diet in patients with primary brain tumors: (1)H-MRS study. J. Neurooncol. 2017, 132, 267–275. [Google Scholar] [CrossRef]
- Foppiani, A.; De Amicis, R.; Lessa, C.; Leone, A.; Ravella, S.; Ciusani, E.; Silvani, A.; Zuccoli, G.; Battezzati, A.; Lamperti, E.; et al. Isocaloric Ketogenic Diet in Adults with High-Grade Gliomas: A Prospective Metabolic Study. Nutr. Cancer 2021, 73, 1004–1014. [Google Scholar] [CrossRef]
- Sargaco, B.; Oliveira, P.A.; Antunes, M.L.; Moreira, A.C. Effects of the Ketogenic Diet in the Treatment of Gliomas: A Systematic Review. Nutrients 2022, 14, 1007. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, A.; Armeno, M.; Berk, K.A.; Guglielmetti, M.; Ferraris, C.; Olieman, J.; van der Louw, E. Ketogenic diet for epilepsy and obesity: Is it the same? Nutr. Metab. Cardiovasc. Dis. 2024, 34, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.F.; Loebel, F.; Dietrich, J. Role of ketogenic metabolic therapy in malignant glioma: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 112, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Poff, A.M.; Ari, C.; Seyfried, T.N.; D’Agostino, D.P. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE 2013, 8, e65522. [Google Scholar]
- Strowd, R.E., 3rd; Grossman, S.A. The Role of Glucose Modulation and Dietary Supplementation in Patients With Central Nervous System Tumors. Curr. Treat. Options Oncol. 2015, 16, 36. [Google Scholar] [CrossRef]
- Poff, A.; Koutnik, A.P.; Egan, K.M.; Sahebjam, S.; D’Agostino, D.; Kumar, N.B. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin. Cancer Biol. 2019, 56, 135–148. [Google Scholar] [CrossRef]
- Valerio, J.E.; Wolf, A.; Wu, X.; Santiago Rea, N.; Fernandez Gomez, M.; Borro, M.; Alvarez-Pinzon, A.M. Assessment of Gamma Knife Stereotactic Radiosurgery as an Adjuvant Therapy in First-Line Management of Newly Diagnosed Glioblastoma: Insights from Ten Years at a Neuroscience Center. Int. J. Transl. Med. 2024, 4, 298–308. [Google Scholar] [CrossRef]
- Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017, 12, 833–842. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, C.; Yin, H.; Yu, J.; Chen, S.; Fang, J.; Guo, F. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2016, 7, 63679–63689. [Google Scholar] [CrossRef]
- Chinopoulos, C.; Seyfried, T.N. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis. ASN Neuro 2018, 10, 1759091418818261. [Google Scholar] [CrossRef]
- Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 2008, 121 (Suppl. S1), 1–84. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; Flores, R.E.; Poff, A.M.; D’Agostino, D.P. Cancer as a metabolic disease: Implications for novel therapeutics. Carcinogenesis 2014, 35, 515–527. [Google Scholar] [CrossRef]
- Cairns, J. The origin of human cancers. Nature 1981, 289, 353–357. [Google Scholar] [CrossRef]
- Szent-Gyorgyi, A. The living state and cancer. Proc. Natl. Acad. Sci. USA 1977, 74, 2844–2847. [Google Scholar] [CrossRef]
- Mukherjee, S. The Emperor of All Maladies: A Biography of Cancer; Simon and Schuster: New York, NY, USA, 2010; 579p. [Google Scholar]
- Seyfried, T.N.; Chinopoulos, C. Can the Mitochondrial Metabolic Theory Explain Better the Origin and Management of Cancer than Can the Somatic Mutation Theory? Metabolites 2021, 11, 572. [Google Scholar] [CrossRef]
- Mukherjee, P.; Augur, Z.M.; Li, M.; Hill, C.; Greenwood, B.; Domin, M.A.; Kondakci, G.; Narain, N.R.; Kiebish, M.A.; Bronson, R.T.; et al. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun. Biol. 2019, 2, 200. [Google Scholar] [CrossRef]
- Dal Bello, S.; Valdemarin, F.; Martinuzzi, D.; Filippi, F.; Gigli, G.L.; Valente, M. Ketogenic Diet in the Treatment of Gliomas and Glioblastomas. Nutrients 2022, 14, 3851. [Google Scholar] [CrossRef]
- Ji, C.C.; Hu, Y.Y.; Cheng, G.; Liang, L.; Gao, B.; Ren, Y.P.; Liu, J.T.; Cao, X.L.; Zheng, M.H.; Li, S.Z.; et al. A ketogenic diet attenuates proliferation and stemness of glioma stem-like cells by altering metabolism resulting in increased ROS production. Int. J. Oncol. 2020, 56, 606–617. [Google Scholar] [CrossRef]
- Bowers, L.W.; Rossi, E.L.; O’Flanagan, C.H.; deGraffenried, L.A.; Hursting, S.D. The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front. Endocrinol. 2015, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.; Ung, C.Y.; Da Rocha, E.L.; Zhang, C.; Correia, C.; Weinshilboum, R.; Wang, L.; Li, H. A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes. Sci. Rep. 2016, 6, 37003. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Mulrooney, T.J.; Marsh, J.; Blair, D.; Chiles, T.C.; Seyfried, T.N. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol. Cancer 2008, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Simone, B.A.; Champ, C.E.; Rosenberg, A.L.; Berger, A.C.; Monti, D.A.; Dicker, A.P.; Simone, N.L. Selectively starving cancer cells through dietary manipulation: Methods and clinical implications. Future Oncol. 2013, 9, 959–976. [Google Scholar] [CrossRef]
- Pazmandi, J.; O’Neill, K.S.; Scheck, A.C.; Szlosarek, P.W.; Woolf, E.C.; Brooks, K.S.; Syed, N. Abstract 240: The ketogenic diet alters the expression of microRNAs that play key roles in tumor development. Cancer Res. 2015, 75 (Suppl. S15), 240. [Google Scholar] [CrossRef]
- Poff, A.M.; Ari, C.; Arnold, P.; Seyfried, T.N.; D’Agostino, D.P. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer. Int. J. Cancer 2014, 135, 1711–1720. [Google Scholar] [CrossRef]
- Christofk, H.R.; Vander Heiden, M.G.; Harris, M.H.; Ramanathan, A.; Gerszten, R.E.; Wei, R.; Fleming, M.D.; Schreiber, S.L.; Cantley, L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452, 230–233. [Google Scholar] [CrossRef]
- Hitosugi, T.; Kang, S.; Vander Heiden, M.G.; Chung, T.W.; Elf, S.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G.Z.; et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal 2009, 2, ra73. [Google Scholar] [CrossRef]
- Luo, W.; Hu, H.; Chang, R.; Zhong, J.; Knabel, M.; O’Meally, R.; Cole, R.N.; Pandey, A.; Semenza, G.L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011, 145, 732–744. [Google Scholar] [CrossRef]
- Fu, X.; Chin, R.M.; Vergnes, L.; Hwang, H.; Deng, G.; Xing, Y.; Pai, M.Y.; Li, S.; Ta, L.; Fazlollahi, F.; et al. 2-Hydroxyglutarate Inhibits ATP Synthase and mTOR Signaling. Cell Metab. 2015, 22, 508–515. [Google Scholar] [CrossRef]
- Woolf, E.C.; Curley, K.L.; Liu, Q.; Turner, G.H.; Charlton, J.A.; Preul, M.C.; Scheck, A.C. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model. PLoS ONE 2015, 10, e0130357. [Google Scholar] [CrossRef] [PubMed]
- Lussier, D.M.; Woolf, E.C.; Johnson, J.L.; Brooks, K.S.; Blattman, J.N.; Scheck, A.C. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 2016, 16, 310. [Google Scholar] [CrossRef] [PubMed]
- Boison, D. New insights into the mechanisms of the ketogenic diet. Curr. Opin. Neurol. 2017, 30, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Shinde, S.; Paul, S.; Thakur, S.; Velu, G.S.; Tiwari, A.K.; Dixit, V.; Amit, A.; Vishvakarma, N.K.; Shukla, D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front. Oncol. 2023, 13, 1230273. [Google Scholar] [CrossRef]
- Shea, A.; Harish, V.; Afzal, Z.; Chijioke, J.; Kedir, H.; Dusmatova, S.; Roy, A.; Ramalinga, M.; Harris, B.; Blancato, J.; et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016, 5, 1917–1946. [Google Scholar] [CrossRef]
- Zeng, Q.; Stylianou, T.; Preston, J.; Glover, S.; O’Neill, K.; Woolf, E.C.; Scheck, A.C.; Syed, N. The ketogenic diet alters the epigenetic landscape of GBM to potentiate the effects of chemotherapy and radiotherapy. Neuro-Oncology 2019, 21 (Suppl. S4), iv8. [Google Scholar] [CrossRef]
- Lv, M.; Zhu, X.; Wang, H.; Wang, F.; Guan, W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: A systematic review and meta-analysis. PLoS ONE 2014, 9, e115147. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Sanderson, T.M.; El-Abbadi, M.M.; McGowan, R.; Mukherjee, P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 2003, 89, 1375–1382. [Google Scholar] [CrossRef]
- Maurer, G.D.; Brucker, D.P.; Bähr, O.; Harter, P.N.; Hattingen, E.; Walenta, S.; Mueller-Klieser, W.; Steinbach, J.P.; Rieger, J. Differential utilization of ketone bodies by neurons and glioma cell lines: A rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011, 11, 315. [Google Scholar] [CrossRef]
- Rieger, J.; Bähr, O.; Maurer, G.D.; Hattingen, E.; Franz, K.; Brucker, D.; Walenta, S.; Kämmerer, U.; Coy, J.F.; Weller, M.; et al. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma. Int. J. Oncol. 2014, 44, 1843–1852. [Google Scholar] [CrossRef]
- Abdelwahab, M.G.; Fenton, K.E.; Preul, M.C.; Rho, J.M.; Lynch, A.; Stafford, P.; Scheck, A.C. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE 2012, 7, e36197. [Google Scholar] [CrossRef]
- Zhou, W.; Mukherjee, P.; Kiebish, M.A.; Markis, W.T.; Mantis, J.G.; Seyfried, T.N. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr. Metab. 2007, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Ciusani, E.; Vasco, C.; Rizzo, A.; Girgenti, V.; Padelli, F.; Pellegatta, S.; Fariselli, L.; Bruzzone, M.G.; Salmaggi, A. MR-Spectroscopy and Survival in Mice with High Grade Glioma Undergoing Unrestricted Ketogenic Diet. Nutr. Cancer 2021, 73, 2315–2322. [Google Scholar] [CrossRef]
- De Feyter, H.M.; Behar, K.L.; Rao, J.U.; Madden-Hennessey, K.; Ip, K.L.; Hyder, F.; Drewes, L.R.; Geschwind, J.F.; De Graaf, R.A.; Rothman, D.L. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth. Neuro Oncol. 2016, 18, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Nebeling, L.C.; Miraldi, F.; Shurin, S.B.; Lerner, E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: Two case reports. J. Am. Coll. Nutr. 1995, 14, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zuccoli, G.; Marcello, N.; Pisanello, A.; Servadei, F.; Vaccaro, S.; Mukherjee, P.; Seyfried, T.N. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr. Metab. 2010, 7, 33. [Google Scholar] [CrossRef]
- Han, L.; Zhang, J.; Zhang, P.; Han, X.; Bi, Z.; Li, J.; Wang, L.; Xue, F.; Fan, Y. Perspective research of the influence of caloric restriction combined with psychotherapy and chemotherapy associated by hybaroxia on the prognosis of patients suffered by glioblastoma multiforme. Zhonghua Yi Xue Za Zhi 2014, 94, 2129–2131. [Google Scholar] [PubMed]
- Schwartz, K.; Chang, H.T.; Nikolai, M.; Pernicone, J.; Rhee, S.; Olson, K.; Kurniali, P.C.; Hord, N.G.; Noel, M. Treatment of glioma patients with ketogenic diets: Report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab. 2015, 3, 3. [Google Scholar] [CrossRef]
- Champ, C.E.; Palmer, J.D.; Volek, J.S.; Werner-Wasik, M.; Andrews, D.W.; Evans, J.J.; Glass, J.; Kim, L.; Shi, W. Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. J. Neurooncol. 2014, 117, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.G.; Da Cruz, W.M.; Schönthal, A.H.; Salazar, M.D.; Fontes, C.A.; Quirico-Santos, T.; Da Fonseca, C.O. Efficacy of a ketogenic diet with concomitant intranasal perillyl alcohol as a novel strategy for the therapy of recurrent glioblastoma. Oncol. Lett. 2018, 15, 1263–1270. [Google Scholar] [CrossRef]
- Van der Louw, E.; Reddingius, R.E.; Olieman, J.F.; Neuteboom, R.F.; Catsman-Berrevoets, C.E. Ketogenic diet treatment in recurrent diffuse intrinsic pontine glioma in children: A safety and feasibility study. Pediatr. Blood Cancer 2019, 66, e27561. [Google Scholar] [CrossRef] [PubMed]
- Martin-McGill, K.J.; Marson, A.G.; Tudur Smith, C.; Jenkinson, M.D. The Modified Ketogenic Diet in Adults with Glioblastoma: An Evaluation of Feasibility and Deliverability within the National Health Service. Nutr. Cancer 2018, 70, 643–649. [Google Scholar] [CrossRef] [PubMed]
- van der Louw, E.J.; Olieman, J.F.; van den Bemt, P.M.; Bromberg, J.E.; Oomen-de Hoop, E.; Neuteboom, R.F.; Catsman-Berrevoets, C.E.; Vincent, A.J. Ketogenic diet treatment as adjuvant to standard treatment of glioblastoma multiforme: A feasibility and safety study. Ther. Adv. Med. Oncol. 2019, 11, 1758835919853958. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, C.; Ward, T.; Gaskill-Shipley, M.; Chaudhary, R. Feasibility of a modified Atkins diet in glioma patients during radiation and its effect on radiation sensitization. Curr. Oncol. 2019, 26, e433–e438. [Google Scholar] [CrossRef] [PubMed]
- Martin-McGill, K.J.; Marson, A.G.; Tudur Smith, C.; Young, B.; Mills, S.J.; Cherry, M.G.; Jenkinson, M.D. Ketogenic diets as an adjuvant therapy for glioblastoma (KEATING): A randomized, mixed methods, feasibility study. J. Neurooncol. 2020, 147, 213–227. [Google Scholar] [CrossRef]
- Klein, P.; Tyrlikova, I.; Zuccoli, G.; Tyrlik, A.; Maroon, J.C. Treatment of glioblastoma multiforme with “classic” 4:1 ketogenic diet total meal replacement. Cancer Metab. 2020, 8, 24. [Google Scholar] [CrossRef]
- Panhans, C.M.; Gresham, G.; Amaral, L.J.; Hu, J. Exploring the Feasibility and Effects of a Ketogenic Diet in Patients With CNS Malignancies: A Retrospective Case Series. Front. Neurosci. 2020, 14, 390. [Google Scholar]
- Voss, M.; Wagner, M.; von Mettenheim, N.; Harter, P.N.; Wenger, K.J.; Franz, K.; Bojunga, J.; Vetter, M.; Gerlach, R.; Glatzel, M.; et al. ERGO2: A Prospective, Randomized Trial of Calorie-Restricted Ketogenic Diet and Fasting in Addition to Reirradiation for Malignant Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 987–995. [Google Scholar] [CrossRef]
- Schreck, K.C.; Hsu, F.C.; Berrington, A.; Henry-Barron, B.; Vizthum, D.; Blair, L.; Kossoff, E.H.; Easter, L.; Whitlow, C.T.; Barker, P.B.; et al. Feasibility and Biological Activity of a Ketogenic/Intermittent-Fasting Diet in Patients With Glioma. Neurology 2021, 97, e953–e963. [Google Scholar] [CrossRef]
- Perez, A.; van der Louw, E.; Nathan, J.; El-Ayadi, M.; Golay, H.; Korff, C.; Ansari, M.; Catsman-Berrevoets, C.; von Bueren, A.O. Ketogenic diet treatment in diffuse intrinsic pontine glioma in children: Retrospective analysis of feasibility, safety, and survival data. Cancer Rep. 2021, 4, e1383. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; Shivane, A.G.; Kalamian, M.; Maroon, J.C.; Mukherjee, P.; Zuccoli, G. Ketogenic Metabolic Therapy, Without Chemo or Radiation, for the Long-Term Management of IDH1-Mutant Glioblastoma: An 80-Month Follow-Up Case Report. Front. Nutr. 2021, 8, 682243. [Google Scholar] [CrossRef]
- Porper, K.; Shpatz, Y.; Plotkin, L.; Pechthold, R.G.; Talianski, A.; Champ, C.E.; Furman, O.; Shimoni-Sebag, A.; Symon, Z.; Amit, U.; et al. A Phase I clinical trial of dose-escalated metabolic therapy combined with concomitant radiation therapy in high-grade glioma. J. Neurooncol. 2021, 153, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.; Wenger, K.J.; von Mettenheim, N.; Bojunga, J.; Vetter, M.; Diehl, B.; Franz, K.; Gerlach, R.; Ronellenfitsch, M.W.; Harter, P.N.; et al. Short-term fasting in glioma patients: Analysis of diet diaries and metabolic parameters of the ERGO2 trial. Eur. J. Nutr. 2022, 61, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.C.; Leyden, J.; McManus, E.J.; Lowyim, D.G.; Ziad, F.; Moon, B.G.; Haji Mohd Yasin, N.A.; Tan, A.; Thotathil, Z.; Jameson, M.B. Feasibility and Safety of a Combined Metabolic Strategy in Glioblastoma Multiforme: A Prospective Case Series. J. Oncol. 2022, 2022, 4496734. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, K.A.; Noel, M.; Nikolai, M.; Olson, L.K.; Hord, N.G.; Zakem, M.; Clark, J.; Elnabtity, M.; Figueroa, B.; Chang, H.T. Long Term Survivals in Aggressive Primary Brain Malignancies Treated With an Adjuvant Ketogenic Diet. Front. Nutr. 2022, 9, 770796. [Google Scholar] [CrossRef]
- Phillips, M.C.L.; Thotathil, Z.; Dass, P.H.; Ziad, F.; Moon, B.G. Ketogenic metabolic therapy in conjunction with standard treatment for glioblastoma: A case report. Oncol. Lett. 2024, 27, 230. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Pfetzer, N.; Schwab, M.; Strauss, I.; Kammerer, U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutr. Metab. 2011, 8, 54. [Google Scholar] [CrossRef]
- Feasibility Study of Modified Atkins Ketogenic Diet in the Treatment of Newly Diagnosed Malignant Glioma. 2017. Available online: https://clinicaltrials.gov/study/NCT03278249 (accessed on 1 June 2024).
- Ketogenic Diet Adjunctive to Salvage Chemotherapy for Recurrent Glioblastoma: A Pilot Study. 2016. Available online: https://clinicaltrials.gov/study/NCT02939378 (accessed on 1 June 2024).
- A Pilot Study of Ketogenic Diet and Metformin in Glioblastoma: Feasibility and Metabolic Imaging. 2020. Available online: https://clinicaltrials.gov/study/NCT04691960 (accessed on 1 June 2024).
- Pilot Study of a Metabolic Nutritional Therapy for the Management of Primary Brain Tumors. 2012. Available online: https://clinicaltrials.gov/study/NCT01535911 (accessed on 1 June 2024).
- A Randomized Controlled Phase 2 Study of the Ketogenic Diet Versus Standard Dietary Guidance for Patients With Newly Diagnosed Glioblastoma in Combination with Standard-Of-Care Treatment. 2023. Available online: https://clinicaltrials.gov/study/NCT05708352 (accessed on 1 June 2024).
- A Phase 2 Trial of Paxalisib Combined with a Ketogenic Diet and Metformin for Newly Diagnosed and Recurrent Glioblastoma. 2021. Available online: https://clinicaltrials.gov/study/NCT05183204 (accessed on 1 June 2024).
- A “Classic” Ketogenic Diet as a Complementary Therapeutic Management on Patients with High-Grade Gliomas and Brain Metastases. 2022. Available online: https://clinicaltrials.gov/study/NCT05564949 (accessed on 1 June 2024).
- IIT2016-17-HU-KETORADTMZ: A Phase 1 Study of a 4-Month Ketogenic Diet in Combination with Standard-Of-Care Radiation and Temozolomide for Patients With Newly/Recently Diagnosed Glioblastoma. 2018. Available online: https://clinicaltrials.gov/study/NCT03451799 (accessed on 1 June 2024).
- Feasibility, Safety, and Efficacy of a Metabolic Therapy Program in Conjunction with Standard Treatment for Glioblastoma. 2020. Available online: https://clinicaltrials.gov/study/NCT04730869 (accessed on 1 June 2024).
- Clontz, A.D. Ketogenic therapies for glioblastoma: Understanding the limitations in transitioning from mice to patients. Front. Nutr. 2023, 10, 1110291. [Google Scholar] [CrossRef]
- Ebrahimpour-Koujan, S.; Shayanfar, M.; Benisi-Kohansal, S.; Mohammad-Shirazi, M.; Sharifi, G.; Esmaillzadeh, A. Adherence to low carbohydrate diet in relation to glioma: A case-control study. Clin. Nutr. 2019, 38, 2690–2695. [Google Scholar] [CrossRef]
- Noorlag, L.; De Vos, F.Y.; Kok, A.; Broekman, M.L.; Seute, T.; Robe, P.A.; Snijders, T.J. Treatment of malignant gliomas with ketogenic or caloric restricted diets: A systematic review of preclinical and early clinical studies. Clin. Nutr. 2019, 38, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, S.C.; Apetroaei, M.M.; Nedea, M.I.; Arsene, A.L.; Velescu, B.Ș.; Hîncu, S.; Stancu, E.; Pop, A.L.; Drăgănescu, D.; Udeanu, D.I. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024, 16, 1213. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, M.X.; Jiang, L.; Jia, Y.F.; Ying, E.; Cao, H.; Guo, X.Y.; Sun, T. Does a ketogenic diet as an adjuvant therapy for drug treatment enhance chemotherapy sensitivity and reduce target lesions in patients with locally recurrent or metastatic Her-2-negative breast cancer? Study protocol for a randomized controlled trial. Trials 2020, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Iyikesici, M.S. Survival outcomes of metabolically supported chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy in advanced gastric cancer. Niger. J. Clin. Pract. 2020, 23, 734–740. [Google Scholar] [CrossRef]
- Yang, L.; TeSlaa, T.; Ng, S.; Nofal, M.; Wang, L.; Lan, T.; Zeng, X.; Cowan, A.; McBride, M.; Lu, W.; et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 2022, 3, 119–136. [Google Scholar] [CrossRef]
- Klement, R.J.; Schafer, G.; Sweeney, R.A. A ketogenic diet exerts beneficial effects on body composition of cancer patients during radiotherapy: An interim analysis of the KETOCOMP study. J. Tradit. Complement. Med. 2020, 10, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020, 583, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Meidenbauer, J.J.; Mukherjee, P.; Seyfried, T.N. The glucose ketone index calculator: A simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr. Metab. 2015, 12, 12. [Google Scholar] [CrossRef]
- De Groot, S.; Pijl, H.; van der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res. 2019, 38, 209. [Google Scholar] [CrossRef]
- Klement, R.J. Fasting, Fats, and Physics: Combining Ketogenic and Radiation Therapy against Cancer. Complement. Med. Res. 2018, 25, 102–113. [Google Scholar] [CrossRef]
- Demirel, A.; Li, J.; Morrow, C.; Barnes, S.; Jansen, J.; Gower, B.; Kirksey, K.; Redden, D.; Yarar-Fisher, C. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: Study protocol for a randomized controlled trial. Trials 2020, 21, 372. [Google Scholar] [CrossRef]
- Bough, K.J.; Yao, S.G.; Eagles, D.A. Higher ketogenic diet ratios confer protection from seizures without neurotoxicity. Epilepsy Res. 2000, 38, 15–25. [Google Scholar] [CrossRef]
- Titcomb, T.J.; Liu, B.; Wahls, T.L.; Snetselaar, L.G.; Shadyab, A.H.; Tabung, F.K.; Saquib, N.; Arcan, C.; Tinker, L.F.; Wallace, R.B.; et al. Comparison of the Ketogenic Ratio of Macronutrients With the Low-Carbohydrate Diet Score and Their Association With Risk of Type 2 Diabetes in Postmenopausal Women: A Secondary Analysis of the Women’s Health Initiative. J. Acad. Nutr. Diet. 2023, 123, 1152–1161.e4. [Google Scholar] [CrossRef]
- Wirrell, E.C. Ketogenic ratio, calories, and fluids: Do they matter? Epilepsia 2008, 49 (Suppl. S8), 17–19. [Google Scholar] [CrossRef] [PubMed]
- Zilberter, T.; Zilberter, Y. Ketogenic Ratio Determines Metabolic Effects of Macronutrients and Prevents Interpretive Bias. Front. Nutr. 2018, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Du, Y.; Meireles, C.; Sharma, K.; Qi, L.; Castillo, A.; Wang, J. Adherence to ketogenic diet in lifestyle interventions in adults with overweight or obesity and type 2 diabetes: A scoping review. Nutr. Diabetes 2023, 13, 16. [Google Scholar] [CrossRef]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Anghel, L.A.; Farcas, A.M.; Oprean, R.N. An overview of the common methods used to measure treatment adherence. Med. Pharm. Rep. 2019, 92, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Iwendi, C.; Khan, S.; Anajemba, J.H.; Bashir, A.K.; Noor, F.J.I.A. Realizing an Efficient IoMT-Assisted Patient Diet Recommendation System Through Machine Learning Model. IEEE Access 2020, 8, 28462–28474. [Google Scholar] [CrossRef]
Study | Type of Study | Number of Participants | Overall Survival |
---|---|---|---|
Nebeling et al., 1995 [57] | Case Report | 2 | 60 months and 48 months |
Zuccoli et al., 2010 [58] | Case Report | 1 | NA |
Han et al., 2014 [59] | Prospective Study | 11 | Mean Survival: 38 +/− 13 months |
Schwartz et al., 2015 [60] | Case Report | 2 | NA |
Rieger et al., 2014 [51] | Prospective Study | 20 | Median: 32 weeks |
Champ et al., 2014 [61] | Retrospective Analysis | 134 | Median: 14 months |
Santos et al., 2017 [62] | Prospective Randomized Study | 37 | NA |
Van der Louw et al., 2018 [63] | Prospective Study | 3 | 16.5, 6.4 and 18.7 months |
Martin-McGill et al., 2018 [64] | Prospective Study | 6 | NA |
Van der Louw et al., 2019 [65] | Prospective Study | 11 | 9.8 and 19.0 months |
Woodhouse et al., 2019 [66] | Retrospective Study | 29 | Not evaluated |
Martin-McGill et al., 2020 [67] | Prospective Study | 12 | Median: 67.3 weeks |
Klein et al., 2020 [68] | Prospective Randomized Study | 8 | Group 1: 20 months (9.5–27) Group 2: 12.8 months (6.3–19.9) |
Panhans et al., 2020 [69] | Retrospective Case Series | 12 | 90.8–19.0 Months |
Voss et al., 2020 [70] | Prospective Randomized Study | 50 | KD: 331 days SD: 291 days Low glucose KD: 348 days |
Schreck et al., 2021 [71] | Prospective Study | 25 | NA |
Perez et al., 2021 [72] | Retrospective Study | 5 | Median: 18.7 Months |
Seyfried et al., 2021 [73] | Case Report | 1 | 80 Months |
Porper et al., 2021 [74] | Prospective Randomized Study | 13 | 21 Months in patients with newly diagnosed disease 8 Months in patients with recurrent disease |
Voss et al., 2022 [75] | Prospective Randomized Study | 50 | 250–485 days |
Phillips et al., 2022 [76] | Prospective Case Series | 10 | Median: 13 Months |
Schwartz et al., 2022 [77] | Prostective Study | 12 | Not Reported |
Philli s et al., 2024 [78] | Case Report | 1 | 36 Months |
Study | Adverse Events Related to KD |
---|---|
Nebelin et al., 1995 [57] | No reported symptoms |
Zuccoli et al., 2010 [58] | hyperuricemia |
Han et al., 2014 [59] | N/A |
Schwartz et al., 2015 [60] | No significant adverse events |
Rieger et al., 2014 [51] | Weight loss, diarrhea, constipation, hunger |
Champ et al., 2014 [61] | Constipation, asthenia, weight loss, nephrolithiasis, hypoglycemia |
Santos et al., 2017 [62] | Not reported |
Van der Louw et al., 2018 [63] | Hypoglycemia, hyperkeratosis, vomiting, refusal to eat, asthenia, constipation |
Martin-McGill et al., 2018 [64] | Constipation |
van der Louw et al., 2019 [65] | Constipation, nausea/vomiting, hypercholesterolemia, hypoglycemia, diarrhea, low carnitine concentration |
Woodhouse et al., 2019 [66] | Grade 2 constipation occurred in 1 patient. Grade 1 fatigue and nausea probably due to standard therapy |
Martin-McGill et al., 2020 [67] | Hypokalemia, hypocalcemia, hypernatremia, hyperkalemia, constipation |
Klein et al., 2020 [68] | Weight loss, hunger, nausea, dizziness, asthenia, constipation |
Panhans et al., 2020 [69] | Asthenia, weight loss, nausea, vomiting, headache, decreased appetite |
Voss et al., 2020 [70] | Epileptic seizures, headache, nausea |
Schreck et al., 2021 [71] | Grade 2 adverse events: Leukopenia, nausea, diarrhea, fatigue, or seizure. Grade 3: neutropenia (possibly related) |
Perez et al., 2021 [72] | Hypoglycemia, constipation, hyperkeratosis, vomiting asthenia, hyperuricemia |
Seyfried et al., 2021 [73] | Not reported |
Porper et al., 2021 [74] | Nausea, asymptomatic hyperuricemia, anorexia |
Voss et al., 2022 [75] | Gastrointestinal symptoms, headache, muscle cramps |
Phillips et al., 2022 [76] | Fatigue, irritability, and feeling lightheaded. No grade 3 or higher adverse events. |
Schwartz et al., 2022 [77] | Not reported. |
Phillips et al., 2024 [78] | Prolonged fasts caused mild fatigue, diarrhea, and cold intolerance. No adverse events for KD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, J.; Borro, M.; Proietti, E.; Pisciotta, L.; Olarinde, I.O.; Fernandez Gomez, M.; Alvarez Pinzon, A.M. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J. Pers. Med. 2024, 14, 929. https://doi.org/10.3390/jpm14090929
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. Journal of Personalized Medicine. 2024; 14(9):929. https://doi.org/10.3390/jpm14090929
Chicago/Turabian StyleValerio, Jose, Matteo Borro, Elisa Proietti, Livia Pisciotta, Immanuel O. Olarinde, Maria Fernandez Gomez, and Andres Mauricio Alvarez Pinzon. 2024. "Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience" Journal of Personalized Medicine 14, no. 9: 929. https://doi.org/10.3390/jpm14090929
APA StyleValerio, J., Borro, M., Proietti, E., Pisciotta, L., Olarinde, I. O., Fernandez Gomez, M., & Alvarez Pinzon, A. M. (2024). Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. Journal of Personalized Medicine, 14(9), 929. https://doi.org/10.3390/jpm14090929