Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine
Abstract
:1. Introduction
1.1. Background on Aging and Its Medical Significance
1.2. Overview of Multi-Omics Data
1.3. Importance of Machine Learning in Modern Biomedical Research
1.4. Objectives
2. Hallmarks of Aging and Multi-Omics Data Integration
2.1. Genomic Instability
2.1.1. Role of Genetic Variations and Mutations in Aging
2.1.2. Machine Learning Models to Predict Genomic Instability and Its Effects
2.2. Telomere Attrition
2.2.1. Mechanisms of Telomere Shortening and Its Impact on Cellular Aging
2.2.2. Integrative Approaches to Study Telomere Dynamics Using Multi-Omics Data
2.3. Epigenetic Alterations
2.3.1. Age-Associated Changes in Epigenetic Markers
2.3.2. Machine Learning Techniques to Identify and Predict Epigenetic Alterations
2.4. Loss of Proteostasis
2.4.1. Disruption in Protein Homeostasis and Its Implications
2.4.2. Omics Data to Study Proteostasis and Machine Learning Models to Predict Proteostasis-Related Disorders
2.5. Disabled Macroautophagy
2.5.1. Importance of Autophagy in Aging and Age-Related Diseases
2.5.2. Combining Multi-Omics Data to Understand and Enhance Autophagy Processes
2.6. Deregulated Nutrient Sensing
2.6.1. Impact of Nutrient Sensing Pathways on Aging
2.6.2. Integrative Models to Study the Regulation and Deregulation of These Pathways
2.7. Mitochondrial Dysfunction
2.7.1. Role of Mitochondrial Function and Dysfunction in Aging
2.7.2. Multi-Omics Approaches to Study Mitochondrial Health and Predictive Models
2.8. Cellular Senescence
2.8.1. Mechanisms and Consequences of Cellular Senescence
2.8.2. Using Omics Data and Machine Learning to Identify Senescent Cells and Develop Interventions
2.9. Stem Cell Exhaustion
2.9.1. Decline in Stem Cell Function with Age
2.9.2. Integrative Approaches to Study Stem Cell Biology and Predictive Models
2.10. Altered Intercellular Communication
2.10.1. Changes in Cell Signaling and Communication in Aging
2.10.2. Omics Data to Study Intercellular Communication and Machine Learning Models to Predict Alterations
2.11. Chronic Inflammation
2.11.1. Role of Chronic Inflammation in Aging and Age-Related Diseases
2.11.2. Combining Multi-Omics Data to Study Inflammation and Predictive Models
2.12. Dysbiosis
2.12.1. Age-Related Changes in the Microbiome
2.12.2. Integrative Approaches to Study the Microbiome and Machine Learning Models to Predict Dysbiosis
3. Machine Learning Techniques in Medicine
3.1. Overview of Machine Learning Algorithms
3.2. Challenges in Handling Biomedical Data
3.3. Advances in Machine Learning for Multi-Omics Data Integration
3.4. Practical Guidance on Selecting Machine Learning Methods for Multi-Omics Research in Geroscience
- Genomic, epigenomic, and proteomic data analysis.
- -
- Random forests: ideal for telomere length analysis.
- -
- Support vector machines (SVMs): Suitable for distinguishing between benign and pathogenic mutations in genomic instability studies. Also ideal for identification of proteins with high aggregation potential.
- -
- Gradient boosting machines (GBMs): effective in identifying key epigenetic modifications that contribute to aging.
- -
- CNNs: best for analyzing proteomic data, particularly when dealing with structural data like protein imaging or spatial transcriptomics, where the spatial relationships between features are important.
- -
- Recurrent neural networks (RNNs) or long short-term memory (LSTM): Ideal for analyzing genomic sequences where the order of nucleotides (sequential data) is crucial. These models are particularly effective in understanding mutations that affect protein structure and function.
- -
- Fully connected neural networks (FCNNs): suitable for integrating multi-omics data (e.g., genomic, epigenomic, and proteomic) to classify complex age-related changes where high-dimensional data need to be processed.
- Longitudinal or dynamic data analysis.
- -
- RNNs or long short-term memory (LSTM): Particularly suited for analyzing changes in biomarkers over time. These networks are designed to handle sequential data, making them ideal for capturing temporal patterns in longitudinal data.
- Predictive models.
- -
- Ensemble methods: useful for robust predictive modeling by combining the strengths of multiple algorithms.
- -
- Multiple regression combined with ML techniques: offers a simpler interpretable approach to prediction when the focus is on a few key variables.
- Novel biomarker discovery.
- -
- CNNs: ideal when the biomarker discovery involves image data or spatially structured data, such as histopathological images or spatial transcriptomics data.
- -
- Autoencoders: A type of neural network ideal for unsupervised learning. Ideal when we have large complex multi-omics data and we want to find hidden patterns, making it easier to spot new biomarkers.
- Drug efficacy predictions and personalized medicine interventions.
- -
- GBMs.
- Modeling complex interactions among various age-related pathways (e.g., autophagy).
- -
- deep learning models, including GNNs for graph-based approaches.
- Explainable AI techniques: should be incorporated to ensure that the outcomes of ML models are interpretable and actionable, particularly in a clinical setting where the biological significance of the results must be clearly understood.
4. Case Studies and Applications
4.1. Predictive Modeling of Age-Related Diseases
4.2. Personalized Medicine Approaches for Aging Populations
4.2.1. Genomic Instability Interventions
4.2.2. Telomere Attrition Interventions
4.2.3. Epigenetic Alterations Interventions
4.2.4. Loss of Proteostasis Interventions
4.2.5. Disabled Macroautophagy Interventions
4.2.6. Deregulated Nutrient Sensing Interventions
4.2.7. Mitochondrial Dysfunction Interventions
4.2.8. Cellular Senescence Interventions
4.2.9. Stem Cell Exhaustion Interventions
4.2.10. Altered Intercellular Communication Interventions
4.2.11. Chronic Inflammation Interventions
4.2.12. Dysbiosis Interventions
4.3. Identification of Novel Biomarkers
4.3.1. Biomarker Discovery in Neurodegenerative Diseases
4.3.2. Biomarker Discovery in Inflammatory Diseases
4.3.3. Biomarker Discovery in Reproductive Aging
4.3.4. Biomarker Discovery in Cancer Research
4.4. Applications of Machine Learning Algorithms in Medical Diagnosis
5. Challenges and Limitations
5.1. Data Availability, Integration, and Computational Complexity
5.2. Data Heterogeneity
5.3. Data Quality
5.4. Ethical Considerations and Data Privacy
5.4.1. Informed Consent
5.4.2. Data Privacy and Security
5.4.3. Ethical Use of Data
5.4.4. Equity and Inclusion
5.5. Limitations of Current Studies
6. Future Directions
6.1. Advances in Omics Technologies
6.1.1. Single-Cell Omics
6.1.2. Spatial Omics
6.2. Development of Sophisticated Machine Learning Models
6.2.1. Deep Learning
6.2.2. Explainable AI
6.3. Implementation in Personalized Medicine
- Identify biomarkers (e.g., proteins, RNAs, and metabolites) and genetic risk factors that predict the onset of age-related diseases (e.g., Alzheimer’s or CVD) well before clinical symptoms manifest.
- Explore how changes in metabolites and gut microbiota influence aging and the risk of diseases, potentially leading to dietary recommendations, supplementation, or probiotic treatments to maintain health and longevity.
- Develop individualized treatment plans based on a person’s omics profile to maximize efficacy and minimize side effects, particularly for complex diseases like cancer or neurodegenerative diseases.
- Develop novel treatments that target the specific molecular mechanisms driving aging in each patient, promoting healthy aging and extending life expectancy. For example, a patient with significant telomere attrition might benefit from telomerase activators, telomere protective compounds, or editing of the genes affecting telomere length with CRISPR-CAS9. Another patient with mitochondrial dysfunction could receive mitochondrial-targeted antioxidants and PGC-1α activators.
6.4. Collaborative Efforts in Data Sharing and Open Science
6.4.1. Data Sharing Platforms
6.4.2. Open Science Initiatives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and Age-Related Diseases: From Mechanisms to Therapeutic Strategies. Biogerontology 2021, 22, 165–187. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of Aging: An Expanding Universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Jay, F.B. An Overview of Deep Generative Models in Functional and Evolutionary Genomics. Annu. Rev. Biomed. Data Sci. 2023, 6, 173–189. [Google Scholar]
- Evans, M.J.; Smith, R.L. Epigenetic Mechanisms in Aging. Trends Cell Biol. 2021, 31, 347–358. [Google Scholar]
- Chambers, D.C.; Carew, A.M.; Lukowski, S.W.; Powell, J.E. Transcriptomics and Single-Cell RNA-Sequencing. Respirology 2019, 24, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Moaddel, R.; Ubaida-Mohien, C.; Tanaka, T.; Lyashkov, A.; Basisty, N.; Schilling, B.; Semba, R.D.; Franceschi, C.; Gorospe, M.; Ferrucci, L. Proteomics in Aging Research: A Roadmap to Clinical, Translational Research. Aging Cell 2021, 20, e13325. [Google Scholar] [CrossRef]
- Fang, W.; Chen, S.; Jin, X.; Liu, S.; Cao, X.; Liu, B. Metabolomics in Aging Research: Aging Markers from Organs. Front. Cell Dev. Biol. 2023, 11, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Scott-Boyer, M.-P.; Bodein, A.; Périn, O.; Droit, A. Integration Strategies of Multi-Omics Data for Machine Learning Analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
- Odden, M.C.; Melzer, D. Machine Learning in Aging Research. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1901–1902. [Google Scholar] [CrossRef]
- Nelson, B.C.; Dizdaroglu, M. Implications of DNA Damage and DNA Repair on Human Diseases. Mutagenesis 2020, 35, 1–3. [Google Scholar] [CrossRef]
- Lima, T.; Li, T.Y.; Mottis, A.; Auwerx, J. Pleiotropic Effects of Mitochondria in Aging. Nat. Aging 2022, 2, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Nikfarjam, S.; Singh, K.K. DNA Damage Response Signaling: A Common Link Between Cancer and Cardiovascular Diseases. Cancer Med. 2023, 12, 4380–4404. [Google Scholar] [CrossRef]
- López-Gil, L.; Pascual-Ahuir, A.; Proft, M. Genomic Instability and Epigenetic Changes during Aging. Int. J. Mol. Sci. 2023, 24, 14279. [Google Scholar] [CrossRef]
- Xu, Z.; Verma, A.; Naveed, U.; Bakhoum, S.F.; Khosravi, P.; Elemento, O. Deep learning predicts chromosomal instability from histopathology images. iScience 2021, 24, 102394. [Google Scholar] [CrossRef] [PubMed]
- Armanios, M. The Role of Telomeres in Human Disease. Annu. Rev. Genom. Hum. Genet. 2022, 23, 363–381. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.J.; Goralsky, J.A.; Shay, J.W.; Min, J. The Molecular Mechanisms and Therapeutic Prospects of Alternative Lengthening of Telomeres (ALT). Cancers 2023, 15, 1945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kong, W.; Xie, Y.; Zhao, X.; Luo, D.; Chen, S.; Pan, Z. Telomere-related genes as potential biomarkers to predict endometriosis and immune response: Development of a machine learning-based risk model. Front. Med. 2023, 10, 1132676. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Liu, B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes 2023, 14, 329. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Q.; Braun, P.R.; Mandell, K.A.P.; Jaffe, A.E.; Tan, H.Y.; Hyde, T.M.; Kleinman, J.E.; Potash, J.B.; Shinozaki, G.; et al. Deep Learning Predicts DNA Methylation Regulatory Variants in the Human Brain and Elucidates the Genetics of Psychiatric Disorders. Proc. Natl. Acad. Sci. USA 2022, 119, e2206069119. [Google Scholar] [CrossRef]
- Higgins-Chen, A.T.; Thrush, K.L.; Wang, Y.; Minteer, C. A Computational Solution for Bolstering Reliability of Epigenetic Clocks: Implications for Clinical Trials and Longitudinal Tracking. Nat. Aging 2022, 2, 644–661. [Google Scholar] [CrossRef]
- Klaips, C.L.; Jayaraj, G.G.; Hartl, F.U. Pathways of Cellular Proteostasis in Aging and Disease. J. Cell Biol. 2018, 217, 51–63. [Google Scholar] [CrossRef]
- Chen, X.Q.; Shen, T.; Fang, S.J.; Sun, X.M.; Li, G.Y.; Li, Y.F. Protein Homeostasis in Aging and Cancer. Front. Cell Dev. Biol. 2023, 11, 1143532. [Google Scholar] [CrossRef]
- Thompson, M.A.; De-Souza, E.A. A Year at the Forefront of Proteostasis and Aging. Biol. Open 2023, 12, bio059750. [Google Scholar] [CrossRef]
- Eshari, F.; Momeni, F.; Faraj Nezhadi, A.; Shemehsavar, S.; Habibi-Rezaei, M. Prediction of protein aggregation propensity employing SqFt-based logistic regression model. Int. J. Biol. Macromol. 2023, 249, 126036. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Wang, Y.; Shi, Y.; Zhang, Z.; Huang, C.; He, W.; Wang, C.; Shen, H.-M. Autophagy in Health and Disease: From Molecular Mechanisms to Therapeutic Target. MedComm 2022, 3, e150. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Virgilio, L.; Silva-Lucero, M.-D.-C.; Flores-Morelos, D.-S.; Gallardo-Nieto, J.; Lopez-Toledo, G.; Abarca-Fernandez, A.-M.; Zacapala-Gómez, A.-E.; Luna-Muñoz, J.; Montiel-Sosa, F.; Soto-Rojas, L.O.; et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells 2022, 11, 2262. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Gao, H.; Chen, Y.; Yang, H. Machine learning and bioinformatics analysis to identify autophagy-related biomarkers in peripheral blood for rheumatoid arthritis. Front. Genet. 2023, 14, 1238407. [Google Scholar] [CrossRef]
- Johnson, S.C. Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. Subcell Biochem. 2018, 90, 49–97. [Google Scholar]
- Fu, W.; Wu, G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023, 28, 3157. [Google Scholar] [CrossRef]
- Drewe, J.; Küsters, E.; Hammann, F.; Kreuter, M.; Boss, P.; Schöning, V. Modeling Structure–Activity Relationship of AMPK Activation. Molecules 2021, 26, 6508. [Google Scholar] [CrossRef]
- Videla, L.A.; Marimán, A.; Ramos, B.; José Silva, M.; Del Campo, A. Standpoints in Mitochondrial Dysfunction: Underlying Mechanisms in Search of Therapeutic Strategies. Mitochondrion 2022, 63, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and Metabolic Dysfunction in Ageing and Age-Related Diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Abulaiti, A.; Maimaiti, A.; Abulaiti, Z.; Fan, G.; Aili, Y.; Ji, W.; Wang, Z.; Wang, Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J. Transl. Med. 2023, 21, 588. [Google Scholar] [CrossRef] [PubMed]
- Kuehnemann, C.; Wiley, C.D. Senescent Cells at the Crossroads of Aging, Disease, and Tissue Homeostasis. Aging Cell 2024, 23, e13988. [Google Scholar] [CrossRef] [PubMed]
- Cuollo, L.; Antonangeli, F.; Santoni, A.; Soriani, A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. Biology 2020, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.S.L.; Waaijer, M.E.C.; Slee-Valentijn, M.S.; Stijnen, T.; Westendorp, R.; Maier, A.B. Cellular Senescence and Chronological Age in Various Human Tissues: A Systematic Review and Meta-Analysis. Aging Cell 2021, 20, e13083. [Google Scholar] [CrossRef]
- Mi, L.; Hu, J.; Li, N.; Gao, J.; Huo, R.; Peng, X.; Zhang, N.; Liu, Y.; Zhao, H.; Liu, R.; et al. The Mechanism of Stem Cell Aging. Stem Cell Rev. Rep. 2022, 18, 1281–1293. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, Y.; Ouchi, T.; Liu, H.; Qiao, X.; Wu, C.; Zhao, Z.; Li, L.; Li, B. Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Transl. Med. 2022, 11, 356–371. [Google Scholar] [CrossRef]
- Barardo, D.G.; Newby, D.; Thornton, D.; Ghafourian, T.; de Magalhães, J.P.; Freitas, A.A. Machine Learning for Predicting Lifespan-Extending Chemical Compounds. Aging 2022, 14, 2163–2189. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular Mechanisms and Diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic Inflammation and the Hallmarks of Aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, R.; Zhang, S.; Song, S. iTALK: An R Package to Characterize and Illustrate Intercellular Communication. bioRxiv 2021, 507871. [Google Scholar] [CrossRef]
- Dugan, B.; Conway, J.; Duggal, N.A. Inflammaging as a Target for Healthy Ageing. Age Ageing 2023, 52, afac328. [Google Scholar] [CrossRef]
- Libby, P. Inflammatory Mechanisms: The Molecular Basis of Inflammation and Disease. Nature 2007, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Bobrov, E.; Georgievskaya, A.; Kiselev, K.; Sevastopolsky, A.; Zhavoronkov, A.; Gurov, S.; Rudakov, K.; Del Pilar Bonilla Tobar, M.; Jaspers, S.; Clemann, S. PhotoAgeClock: Deep Learning Algorithms for Development of Non-Invasive Visual Biomarkers of Aging. Aging 2022, 14, 1500–1519. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Durán, P.; Díaz, M.P.; Chacín, M.; Santeliz, R.; Mengual, E.; Gutiérrez, E.; León, X.; Díaz, A.; Bernal, M.; et al. Exploring the Relationship Between the Gut Microbiota and Ageing: A Possible Age Modulator. Int. J. Environ. Res. Public Health 2023, 20, 5845. [Google Scholar] [CrossRef]
- Wilmanski, T.; Diener, C.; Rappaport, N.; Patwardhan, S.; Wiedrick, J.; Lapidus, J.; Earls, J.C.; Zimmer, A.; Glusman, G.; Robinson, M.; et al. Gut Microbiome Pattern Reflects Healthy Ageing and Predicts Survival in Humans. Nat. Metab. 2021, 3, 274–286. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Huang, S.; Yin, L.; Wang, F.; Luo, P.; Huang, H. Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 200. [Google Scholar] [CrossRef]
- Bhole, R.P.; Chikhale, R.V.; Rathi, K.M. Current Biomarkers and Treatment Strategies in Alzheimer Disease: An Overview and Future Perspectives. IBRO Neurosci. Rep. 2023, 16, 8–42. [Google Scholar] [CrossRef]
- Veneziani, I.; Marra, A.; Formica, C.; Grimaldi, A.; Marino, S.; Quartarone, A.; Maresca, G. Applications of Artificial Intelligence in the Neuropsychological Assessment of Dementia: A Systematic Review. J. Pers. Med. 2024, 14, 113. [Google Scholar] [CrossRef]
- Formica, C.; Bonanno, L.; Giambò, F.M.; Maresca, G.; Latella, D.; Marra, A.; Cucinotta, F.; Bonanno, C.; Lombardo, M.; Tomarchio, O.; et al. Paving the Way for Predicting the Progression of Cognitive Decline: The Potential Role of Machine Learning Algorithms in the Clinical Management of Neurodegenerative Disorders. J. Pers. Med. 2023, 13, 1386. [Google Scholar] [CrossRef] [PubMed]
- Irtyuga, O.; Babakekhyan, M.; Kostareva, A.; Uspensky, V.; Gordeev, M.; Faggian, G.; Malashicheva, A.; Metsker, O.; Shlyakhto, E.; Kopanitsa, G. Analysis of Prevalence and Clinical Features of Aortic Stenosis in Patients with and Without Bicuspid Aortic Valve Using Machine Learning Methods. J. Pers. Med. 2023, 13, 1588. [Google Scholar] [CrossRef]
- Paluch-Shimon, S.; Cardoso, F. PARP Inhibitors Coming of Age. Nat. Rev. Clin. Oncol. 2021, 18, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Chabloz, S.; Lapides, R.A.; Roider, E.; Ewald, C.Y. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023, 15, 445. [Google Scholar] [CrossRef]
- Derevyanko, A.; Skowronska, A.; Skowronski, M.T.; Kordowitzki, P. The Interplay Between Telomeres, Mitochondria, and Chronic Stress Exposure in the Aging Egg. Cells 2022, 11, 2612. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Tian, Y.; Deng, Z.; Yang, F.; Chen, E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int. J. Mol. Sci. 2024, 25, 3358. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.-H. Epigenetic Regulation of Aging: Implications for Interventions of Aging and Diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef]
- Türker, F.; Cook, E.K.; Margolis, S.S. The Proteasome and Its Role in the Nervous System. Cell Chem. Biol. 2021, 28, 903–917. [Google Scholar] [CrossRef]
- Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A.M. Autophagy and the Hallmarks of Aging. Ageing Res. Rev. 2021, 72, 101468. [Google Scholar] [CrossRef]
- Sharp, Z.D.; Strong, R. Rapamycin, the Only Drug That Has Been Consistently Demonstrated to Increase Mammalian Longevity: An Update. Exp. Gerontol. 2023, 176, 112166. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, W.; Liu, Z.; Sheng, S.; Xiong, W.; He, R.; Zhang, X.; Ma, L.; Ju, Z. Effect of Metformin on Cardiac Metabolism and Longevity in Aged Female Mice. Front. Cell Dev. Biol. 2021, 8, 626011. [Google Scholar] [CrossRef] [PubMed]
- Iside, C.; Scafuro, M.; Nebbioso, A.; Altucci, L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front. Pharmacol. 2020, 11, 1225. [Google Scholar] [CrossRef] [PubMed]
- Norat, P.; Soldozy, S.; Sokolowski, J.D.; Gorick, C.M.; Kumar, J.S.; Chae, Y.; Yağmurlu, K.; Prada, F.; Walker, M.; Levitt, M.R.; et al. Mitochondrial Dysfunction in Neurological Disorders: Exploring Mitochondrial Transplantation. NPJ Regen. Med. 2020, 5, 22. [Google Scholar] [CrossRef]
- Lu, Y.; Fujioka, H.; Wang, W.; Zhu, X. Bezafibrate Confers Neuroprotection in the 5xFAD Mouse Model of Alzheimer’s Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166841. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, J.L.; Tchkonia, T. Senolytic Drugs: From Discovery to Translation. J. Intern. Med. 2020, 288, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Tchkonia, T.; Kirkland, J.L.; Nakahara, T. Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 2018, 21, 857–862. [Google Scholar] [CrossRef]
- O’Loghlen, A. The Potential of Aging Rejuvenation. Cell Cycle 2022, 21, 111–116. [Google Scholar] [CrossRef]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef]
- Eckhardt, C.M.; Madjarova, S.J.; Williams, R.J.; Ollivier, M.; Karlsson, J.; Pareek, A.; Nwachukwu, B.U. Unsupervised Machine Learning Methods and Emerging Applications in Healthcare. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 376–381. [Google Scholar] [CrossRef]
- Al-Hamadani, M.N.A.; Fadhel, M.A.; Alzubaidi, L.; Balazs, H. Reinforcement Learning Algorithms and Applications in Healthcare and Robotics: A Comprehensive and Systematic Review. Sensors 2024, 24, 2461. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef] [PubMed]
- Athieniti, E.; Spyrou, G.M. A Guide to Multi-Omics Data Collection and Integration for Translational Medicine. Comput. Struct. Biotechnol. J. 2022, 20, 134–149. [Google Scholar] [CrossRef]
- Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling Polypharmacy Side Effects with Graph Convolutional Networks. Bioinformatics 2018, 34, i457–i466. [Google Scholar] [CrossRef] [PubMed]
- Theodoris, C.V.; Xiao, L.; Chopra, A.; Chaffin, M.D.; Al Sayed, Z.R.; Hill, M.C.; Mantineo, H.; Brydon, E.M.; Zeng, Z.; Liu, X.S.; et al. Transfer Learning Enables Predictions in Network Biology. Nature 2023, 618, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-T.; Li, Y.-J.; Feng, A.-Z.; Li, L.; Huang, T.; Xu, A.-D.; Lyu, J. Data Mining in Clinical Big Data: The Frequently Used Databases, Steps, and Methodological Models. Mil. Med. Res. 2021, 8, 44. [Google Scholar] [CrossRef]
- Ketkar, Y.; Gawade, S. A Decision Support System for Selecting the Most Suitable Machine Learning in Healthcare Using User Parameters and Requirements. Healthc. Anal. 2022, 2, 100117. [Google Scholar] [CrossRef]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [Google Scholar]
- Quist, J.; Taylor, L.; Staaf, J.; Grigoriadis, A. Random Forest Modelling of High-Dimensional Mixed-Type Data for Breast Cancer Classification. Cancers 2021, 13, 991. [Google Scholar] [CrossRef]
- Navarro, S.; Ventura, S. Computational Methods to Predict Protein Aggregation. Curr. Opin. Struct. Biol. 2022, 73, 102343. [Google Scholar] [CrossRef]
- Whittemore, K.; Derevyanko, A.; Martinez, P.; Serrano, R.; Pumarola, M.; Bosch, F.; Blasco, M.A. Telomerase Gene Therapy Ameliorates the Effects of Neurodegeneration Associated with Short Telomeres in Mice. Aging 2019, 11, 2916–2948. [Google Scholar] [CrossRef] [PubMed]
- Squarzoni, S.; Schena, E.; Sabatelli, P.; Mattioli, E.; Capanni, C.; Cenni, V.; D’Apice, M.R.; Andrenacci, D.; Sarli, G.; Pellegrino, V.; et al. Interleukin-6 Neutralization Ameliorates Symptoms in Prematurely Aged Mice. Aging Cell 2021, 20, e13285. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.J. Rejuvenating the Immune System: Insights for Anti-Neurodegeneration Strategies. Neurosci. Bull. 2022, 38, 107–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, L.; Zhao, J.; Mu, X.; McGowan, S.J.; Angelini, L.; O’Kelly, R.D.; Yousefzadeh, M.J.; Sakamoto, A.; Aversa, Z.; LeBrasseur, N.K.; et al. Novel small molecule inhibition of IKK/NF-κB activation reduces markers of senescence and improves healthspan in mouse models of aging. Aging Cell 2021, 20, e13486. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, S.; Jung, D.Y.; Friedline, R.H.; Noh, H.L.; Kim, J.H.; Patel, P.R.; Tsitsilianos, N.; Inashima, K.; Tran, D.A.; Hu, X.; et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017, 31, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Romano, S.; Ansorge, R.; Aboelnour, A.; Le Gall, G.; Savva, G.M.; Pontifex, M.G.; Telatin, A.; Baker, D.; Jones, E.; et al. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. Microbiome 2022, 10, 68. [Google Scholar] [CrossRef]
- Shapiro, S.C. Biomarkers in Rheumatoid Arthritis. Cureus 2021, 13, e15063. [Google Scholar] [CrossRef]
- Hsu, L.-C.; Li, C.-J.; Lin, L.-T.; Pan, L.-F.; Wen, Z.-H.; Sheu, J.J.-C.; Tsui, K.-H. Multi-Omics Reveals the Role of Osteopontin/Secreted Phosphoprotein 1 in Regulating Ovarian Aging. J. Pers. Med. 2024, 14, 78. [Google Scholar] [CrossRef]
- Carrillo-Perez, F.; Morales, J.C.; Castillo-Secilla, D.; Gevaert, O.; Rojas, I.; Herrera, L.J. Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis. J. Pers. Med. 2022, 12, 601. [Google Scholar] [CrossRef]
- Sureshkumar, V.; Prasad, R.S.N.; Balasubramaniam, S.; Jagannathan, D.; Daniel, J.; Dhanasekaran, S. Breast Cancer Detection and Analytics Using Hybrid CNN and Extreme Learning Machine. J. Pers. Med. 2024, 14, 792. [Google Scholar] [CrossRef]
- Patrascanu, O.S.; Tutunaru, D.; Musat, C.L.; Dragostin, O.M.; Fulga, A.; Nechita, L.; Ciubara, A.B.; Piraianu, A.I.; Stamate, E.; Poalelungi, D.G.; et al. Future Horizons: The Potential Role of Artificial Intelligence in Cardiology. J. Pers. Med. 2024, 14, 656. [Google Scholar] [CrossRef] [PubMed]
- Ming, C.; Lee, G.J.W.; Teo, Y.H.; Teo, Y.N.; Toh, E.M.S.; Li, T.Y.W.; Guo, C.Y.; Ding, J.; Zhou, X.; Teoh, H.L.; et al. Machine Learning Modeling to Predict Atrial Fibrillation Detection in Embolic Stroke of Undetermined Source Patients. J. Pers. Med. 2024, 14, 534. [Google Scholar] [CrossRef]
- Elvas, L.B.; Nunes, M.; Ferreira, J.C.; Dias, M.S.; Rosário, L.B. AI-Driven Decision Support for Early Detection of Cardiac Events: Unveiling Patterns and Predicting Myocardial Ischemia. J. Pers. Med. 2023, 13, 1421. [Google Scholar] [CrossRef] [PubMed]
- Tapper, W.; Carneiro, G.; Mikropoulos, C.; Thomas, S.A.; Evans, P.M.; Boussios, S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J. Pers. Med. 2024, 14, 287. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front. Med. 2022, 8, 784455. [Google Scholar] [CrossRef]
- Bernardi, F.A.; Alves, D.; Crepaldi, N.; Yamada, D.B.; Lima, V.C.; Rijo, R. Data Quality in Health Research: Integrative Literature Review. J. Med. Internet Res. 2023, 25, e41446. [Google Scholar] [CrossRef]
- Vikas, H.; Kini, A.; Sharma, N.; Gowda, N.R.; Gupta, A. How informed is the informed consent? J. Fam. Med. Prim. Care 2021, 10, 2299–2303. [Google Scholar] [CrossRef]
- Yadav, N.; Pandey, S.; Gupta, A.; Dudani, P.; Gupta, S.; Rangarajan, K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian Dermatol. Online J. 2023, 14, 788–792. [Google Scholar] [CrossRef]
- Wiltshire, D.; Alvanides, S. Ensuring the Ethical Use of Big Data: Lessons from Secure Data Access. Heliyon 2022, 8, e08981. [Google Scholar] [CrossRef]
- Washington, V.; Franklin, J.B.; Huang, E.S.; Mega, J.L.; Abernethy, A.P. Diversity, Equity, and Inclusion in Clinical Research: A Path Toward Precision Health for Everyone. Clin. Pharmacol. Ther. 2023, 113, 575–584. [Google Scholar] [CrossRef]
- Stein, C.M.; Weiskirchen, R.; Damm, F.; Strzelecka, P.M. Single-Cell Omics: Overview, Analysis, and Application in Biomedical Science. J. Cell. Biochem. 2021, 122, 1571–1578. [Google Scholar] [CrossRef]
- Bressan, D.; Battistoni, G.; Hannon, G.J. The Dawn of Spatial Omics. Science 2023, 381, eabq4964. [Google Scholar] [CrossRef] [PubMed]
- Allen, B. The Promise of Explainable AI in Digital Health for Precision Medicine: A Systematic Review. J. Pers. Med. 2024, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Devriendt, T.; Borry, P.; Shabani, M. Factors That Influence Data Sharing Through Data Sharing Platforms: A Qualitative Study on the Views and Experiences of Cohort Holders and Platform Developers. PLoS ONE 2021, 16, e0254202. [Google Scholar] [CrossRef] [PubMed]
- Isaacowitz, D.M.; Lind, M. Open Science Is for Aging Research, Too. Innov. Aging 2019, 3, igz028. [Google Scholar] [CrossRef]
Aging Hallmark | Molecular Mechanisms | Examples of Interventions | References |
---|---|---|---|
Genomic Instability | Increased frequency of mutations and structural alterations in DNA. |
| [2,10,11,12,13,48,49] |
Telomere Attrition | Telomere shortening due to end-replication problem and limited telomerase expression. |
| [2,15,16,50,51] |
Epigenetic Alterations | Changes in DNA methylation, histone modifications, and chromatin remodeling. |
| [2,18,19,52,53] |
Loss of Proteostasis | Accumulation of misfolded and aggregated proteins. |
| [2,21,22,23,54] |
Disabled Macroautophagy | Impairment of autophagy leads to the accumulation of damaged cellular components. |
| [2,25,26,55,56] |
Deregulated Nutrient Sensing | Deregulation of insulin/IGF-1 signaling, mTOR, AMPK, and sirtuin pathways. |
| [2,28,29,57] |
Mitochondrial Dysfunction | Impaired energy production, increased ROS, and mtDNA mutations. |
| [2,31,32,58,59] |
Cellular Senescence | Permanent cell cycle arrest due to DNA damage, oxidative stress, etc. |
| [2,34,35,36,60,61] |
Stem Cell Exhaustion | Reduction in the number and function of stem cells. |
| [2,37,38,62] |
Altered Intercellular Communication | Changes in cell signaling and communication. |
| [2,40,41,63,64] |
Chronic Inflammation | Persistent low-grade inflammation is linked to various age-related diseases. |
| [2,43,44,65,66] |
Dysbiosis | Changes in the composition and function of the microbiome. |
| [2,46,47,67] |
ML Technique | Description | Applications |
---|---|---|
Supervised Learning | Algorithms that learn from labeled data to make predictions. |
|
Unsupervised Learning | Algorithms that identify patterns in unlabeled data. |
|
Reinforcement Learning | Algorithms that learn by interacting with an environment to maximize cumulative rewards. |
|
Deep Learning | Neural networks with multiple layers can model complex relationships in data. |
|
Graph Neural Networks | Models that capture relationships and interactions between entities in a graph structure. |
|
Convolutional Neural Networks | Deep learning models are particularly effective for analyzing spatial and visual data. |
|
Transfer Learning | Leveraging pretrained models to improve performance on new smaller datasets. |
|
Explainable Artificial Intelligence | Techniques to make artificial intelligence models’ decisions interpretable and transparent. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorakis, N.; Feretzakis, G.; Tzelves, L.; Paxinou, E.; Hitas, C.; Vamvakou, G.; Verykios, V.S.; Nikolaou, M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J. Pers. Med. 2024, 14, 931. https://doi.org/10.3390/jpm14090931
Theodorakis N, Feretzakis G, Tzelves L, Paxinou E, Hitas C, Vamvakou G, Verykios VS, Nikolaou M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. Journal of Personalized Medicine. 2024; 14(9):931. https://doi.org/10.3390/jpm14090931
Chicago/Turabian StyleTheodorakis, Nikolaos, Georgios Feretzakis, Lazaros Tzelves, Evgenia Paxinou, Christos Hitas, Georgia Vamvakou, Vassilios S. Verykios, and Maria Nikolaou. 2024. "Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine" Journal of Personalized Medicine 14, no. 9: 931. https://doi.org/10.3390/jpm14090931
APA StyleTheodorakis, N., Feretzakis, G., Tzelves, L., Paxinou, E., Hitas, C., Vamvakou, G., Verykios, V. S., & Nikolaou, M. (2024). Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. Journal of Personalized Medicine, 14(9), 931. https://doi.org/10.3390/jpm14090931