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Abstract: Functional neurological disorder, or FND, is widely misunderstood, particularly when
considering recent research indicating that the illness has numerous biological markers in addition to
its psychiatric disorder associations. Nonetheless, the long-held view that FND is a mental illness
without a biological basis, or even a contrived (malingered) illness, remains pervasive both in current
medical care and general society. This is because FND involves intermittent disability that rapidly
and involuntarily alternates with improved neurological control. This has in turn caused shaming,
perceived low self-efficacy, and social isolation for the patients. Until now, biomarker reviews for
FND tended not to examine the features that are shared with canonical neurological disorders. This
review, in contrast, examines current research on FND biomarkers, and in particular their overlap
with canonical neurological disorders, along with the encouraging outcomes for numerous physical
rehabilitation trials for FND. These findings support the perspective endorsed here that FND is
unquestionably a neurological disorder that is also associated with many biological markers that lie
outside of the central nervous system. These results suggest that FND entails multiple biological
abnormalities that are widely distributed in the body. General healthcare providers would benefit
their care for their patients through their improved understanding of the illness and recourses for
support and treatment that are provided in this review.

Keywords: functional neurological disorder; MRI; rehabilitation

1. Introduction

Functional neurological disorder (FND) involves involuntary, intermittent neurologi-
cal symptoms or signs that vary in relation to the patient’s self-attention to the symptoms
or emotional excitation. Although “FND” is the term that was most recently professionally
adopted for this illness, for centuries it was addressed by many other names (hysteria,
conversion disorder, and psychogenic disorder among them [1]). The recent name change
was recommended in 2014 by specialists who treat FND, to allay patients’ concerns for
their being inappropriately diagnosed with a mental disease [2]. (“Functional neurological
symptom disorder” is a widely used but much less common synonym).

This review is intended to examine whether FND can share biological characteristics
with canonical neurological disorders. Where possible, comparison is made to specific
canonical neurological disorders that share specific abnormalities that were uncovered
in this article’s systematic literature review on FND. As a result, FND itself should be
considered as a neurological disorder, as well that it is associated with multiple diverse
biological abnormalities that extend beyond the central nervous system. In addition,
although some reviews have concluded that FND has a poor prognosis, numerous recent
neurorehabilitation trials for FND that were developed to treat canonical neurological
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disorders have shown favorable outcomes, which will be reviewed here. This review draws
from systematic reviews of the published literature.

2. Clinical Characteristics of FND

Although FND has been noted to have a peak age of onset at about 40 years [3,4],
it can begin anytime from childhood all the way to geriatric age [5–9]. Any voluntary
activity can be affected by FND, including limb or facial movement, speech, cutaneous
or muscular perception, and vision. The patients’ self-attention to their symptoms or
emotional excitement can aggravate them, while distraction from them may reduce their
severity [10]. FND symptoms can be provoked by direct medical examination and subside
when the patient believes that he or she is not observed or undergoing formal evalua-
tion [11–13]. The intermittent dysfunction is not apparently caused by epileptic brain
discharges, transient cerebral ischemia, medication side effects, intoxication, metabolic or
endocrinological diseases, systemic infection, or fatigue. As many as 18% of patients who
are seen on neurological hospital wards can have FND [14].

FND has a high incidence of comorbid mood disorder, though this does not occur with
all patients [9,15–19]. The disturbances are frequently considered to “mimic” canonical
neurological disorders [20–23], which has often led practitioners to infer that the patients
contrive their symptoms and thus that the disturbances do not constitute a neurological
disorder [24]. FND lacks characteristic abnormalities on clinical structural brain or spinal
imaging [25–29], although structural abnormalities that are not specific to other illnesses
nonetheless can appear on clinical MRI [30,31]. Psychological care, particularly Cognitive
Behavioral Therapy (CBT), can attenuate the symptoms [32]. For these reasons, FND has
long been viewed by the public and clinicians as a mental illness in which the patients’
mood disorder is at the root of the disturbance [33], or that the symptoms are intention-
ally produced (malingering) for secondary gain [34]. In professional publications, FND
is often regarded to be unable to be explained by commonplace neurology or general
medicine concepts [35–39] and is widely considered to be distinct from “organic” dis-
ease [40–42]. Consequently, there is common stigmatization and social isolation for persons
with FND [43,44].

However, starting about 30 years ago, the findings of distinct regional cerebral
metabolic changes in physiological brain imaging studies in persons with FND, not found
in neurologically healthy individuals [45,46], invigorated neuroscientific investigations in
FND. These continue at an accelerating pace, as shown by the annual rate of publications
for FND that are listed in the public registry of medical research publications, PubMed
(https://pubmed.ncbi.nlm.gov, accessed 1 September 2024; Figure 1). Many of these
studies suggest, instead, that FND has a biological basis. As will be shown here, many
of these biomarkers occur also in canonical neurological disorders. Moreover, physical
rehabilitative techniques that are commonly practiced for canonical neurological disorders
(e.g., stroke, spinal cord injury, traumatic brain injury) have been shown similarly to benefit
FND and are detailed later.

To support reviewing FND as a neurological disorder, this overview is organized
into the following sections. Section 3. Biomarkers: The first subsection (Section 3.1) will
review objective findings obtained from FND patients either during clinical evaluations
while they were at rest or from tissue samples. The second subsection (Section 3.2) will
review biomarkers from task-based neurophysiological evaluations. The third subsection
(Section 3.3) will summarize behavioral findings in FND that are shared with canonical
neurological disorders. Section 4 will review physical rehabilitation outcomes for motor
FND, using methods that are extended from neurorehabilitation approaches that are widely
used for canonical neurological disorders. These studies collectively suggest that FND
is also a neurological disorder. This review will not address treatments for non-motor
forms of FND (for example, functional seizures, functional sensory disorders, or functional
cognitive disorders [38,47,48]), which rest mainly on psychological rather than physical
treatments. These latter kinds of FND would require extensive additional discussion as to
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whether they may involve primarily psychological processes and would best be reserved
for a separate report.
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Figure 1. Yearly total of publications appearing in PubMed that included the terms “functional
neurological disorder”, “functional neurological symptom disorder”, or “conversion disorder”. The
alternate terms “hysteria” and “psychogenic disorder” are not included in this graph because they
include other disorders that are not FND in addition to FND.

3. Biomarkers for FND

The systematic evaluation of published studies of biomarkers for FND in the present
report was guided by previous FND biomarker literature reviews [1,49–55]. From these, the
following Boolean search was run in PubMed: (functional neurological disorder OR func-
tional neurological symptom disorder OR psychogenic disorder OR conversion disorder
OR hysteria) AND (biomarker OR MRI OR positron OR single-photon OR diffusion tensor
imaging OR DTI OR somatosensory evoked potentials OR genetics OR autonomic OR
inflammation OR hypermobility syndrome OR accelerometry OR placebo OR endocrino-
logic disorder OR EMG OR electromyography). This yielded 3302 articles. These in turn
were inspected for whether they were primary data reports of patients with FND, and
excluded reviews, commentaries, and correspondence that referred to earlier articles. This
step resulted in 102 included studies.

3.1. Objective Clinical Studies of Patients at Rest or from Tissue Samples
3.1.1. Advanced Structural Brain Imaging Studies

Although distinctive findings do not occur in the individual clinical brain imaging
study for persons with FND [56], statistical analyses of group-level data have distinguished
persons with FND from neurologically healthy individuals. Structural brain MRI analysis,
primarily using voxel-based morphometry, has generally indicated significant structural
changes in brain gray areas. As of now, 21 studies have evaluated volumetric brain
abnormalities in persons with FND (Table 1). The preponderance of the studies found
reduced focal cortical or subcortical gray tissue areas when compared to individuals
without FND. There was no pattern of volume loss that characterized FND.

Table 1. Summary of volumetric gray area changes on structural brain imaging in FND.

Volume Findings Number of Studies References

Focal decrease 11 [57–67]
Focal decrease and increase in different areas 4 [68–71]
Focal increase 3 [72–74]
No difference compared to non-FND subjects 3 [75–77]
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For comparison, there has been no characteristic volume loss pattern in patients with
Parkinson disease, a common neurodegenerative disease [78], even though numerous
voxel-wise brain gray matter analyses consistently have shown cortical atrophy [79].

As shown by Table 1, alternative, less frequent patterns also occurred: (1) both volu-
metric focal decrease and increase in the same study group, (2) only focal volume increase,
and finally, (3) no difference in brain regional volume compared to non-FND participants.
Of note also is that for dystonia, for which there is evidence that it is a neurodegenerative
disease [80], and Alzheimer disease, a leading neurodegenerative disease [81], quantitative
brain morphological assessment has shown both focal decreased and increased volumes
in the same populations [82,83]. Thus, strictly focal brain regional volume decrease is not
characteristic of canonical neurodegenerative illness.

In addition, “histogram analysis” of the grayscale values in designated subcortical
regions of interest on structural brain MRI has shown significant differences between per-
sons with FND and neurologically healthy individuals [84,85]. This implies that significant
histological characteristics reside in the basal ganglia of persons with FND, though the
histological bases for these findings are thus far unknown.

Diffusion tensor imaging (DTI) is a complementary structural MRI assessment that
evaluates the tendency for water molecules to diffuse either randomly or directionally con-
strained in neurological tissue. Net water diffusion in neurologically healthy individuals
is less random compared to various neurological diseases [86]. Abnormal cerebral white
matter DTI measures have been identified in many FND studies compared to healthy indi-
viduals [64,87–89], though this was not found in other studies [90–92]. The abnormalities
generally involved reduced fractional anisotropy (representing more random diffusion)
and increased mean or radial diffusivity values in select subcortical regions of interest.
Similar abnormalities have been found in Parkinson disease, Alzheimer disease, essential
tremor, orthostatic tremor, multiple sclerosis, and acquired (but not inherited) pediatric
dystonia, among numerous other neurological disorders [93–97]. Caution with interpreting
DTI studies is needed owing to the technique’s being sensitive to inadvertent head motion
in the participants [98].

3.1.2. Resting Brain Physiological Patterns

To identify central nervous system resting physiological patterns that would appear to
distinguish FND from normal activity, the literature review found 12 such studies, which
used functional MRI (fMRI), positron emission tomography (PET), single-photon emission
computed tomography (SPECT), or somatosensory-evoked potentials.

Numerous brain imaging studies have identified in persons with FND the possibility
to have abnormal resting regional physiology [45,46,99–102], somatosensory stimulation
patterns [103–105], or intracerebral functional connectivity [106–114]. In many cases, re-
gional hypometabolism had improved or been resolved in parallel with clinical recovery.
Regional cerebral hypometabolism has also been identified in numerous canonical neu-
rological disorders, including stroke, Alzheimer disease, parkinsonism, and corticobasal
syndrome [115,116].

No somatosensory potentials could repeatedly be found at the scalps of two acute
FND patients but which were found following full recovery at the 6-month follow-up [117].

3.1.3. Genetic Analyses

Genetic bases for several neurodegenerative disorders have been identified, although
these diseases more often are sporadic than familial. In Parkinson disease, 90 genetic
risk factors have been identified [118]. Hereditability for multiple sclerosis has been well
described [119]; the HLA DRB1*1501 haplotype has been most significantly associated
with increased risk for the disease, among more than 200 other genes [120]. The finding
of numerous genetic mutations in forms of dystonia in the later 20th century changed
the neuroscientific view of dystonia from earlier decades, when it was thought to have a
psychiatric etiology, to being a neurological disorder [121,122].
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In contrast to this considerable body of study, research for specific genotypes in FND
has markedly lagged. A tryptophan hydroxylase 2 gene polymorphism—G703T—has been
shown to predict early-age onset of FND [123]. Functional seizures, also called paroxysmal
or psychogenic nonepileptic seizures, are generally considered to be a kind of FND. Such
seizures are associated with polymorphisms of the FKBP5 gene, but only when co-occurring
with depression [124].

3.1.4. Low-Grade Inflammatory Biomarkers

Inflammatory biomarkers have been identified in diverse neurodegenerative disor-
ders. Recurrent inflammation of the central nervous system is well known to be a major
determinant of disability in multiple sclerosis [120]. Chronic inflammation in the central
nervous system in this disease contributes to neurodegeneration through impairing re-
myelination [125]. Evidence of low-grade nervous system inflammation has been recently
found in other neurodegenerative diseases, including Parkinson disease, Huntington dis-
ease, and amyotrophic lateral sclerosis, based on either measuring serum pro-inflammatory
cytokines or identifying increased microglial activation in the brain on positron emission
tomography [126,127].

Recent research has identified elevated serum cytokines as well in persons with FND,
in particular, IL6, IL12, IL17A, IFNg, TNFa, and VEGF-a [128]. Elevated serum C-reactive
protein levels have been identified in children and adolescents with FND [129]. Cere-
brospinal fluid leukocytosis has been found in the majority of motor FND patients (n = 26)
in a single study [130]. These findings thus far have not led to successful pharmacological
trials of inflammatorily modifiable agents for FND.

3.1.5. Non-Inflammatory Markers in Serum Samples

Brain-derived neurotrophic factor (BDNF), a growth factor, is fundamentally involved
in neuronal recovery, neuroplastic reorganization, and brain development [131]. Reduced
serum BDNF levels have been found in FND as well as in epileptic patients [132,133], which
may be important for prognosis for clinical recovery. Low serum BDNF levels have also
been found in numerous other canonical neurological disorders, including acute stroke,
acute traumatic brain injury, Alzheimer disease, normal pressure hydrocephalus, Parkinson
disease, and secondary progressive multiple sclerosis [134–138]. Use-dependent increase in
BDNF levels, as can occur with physical rehabilitation [139], may be a potential biomarker
for efficacious rehabilitation for FND.

3.1.6. Autonomic Disturbance in Canonical Neurological Disease and FND

In some canonical neurological disorders, specific autonomic disturbances have been
found that are shared with FND, which are indicated here.

Increased Resting Cardiac Contraction Rate

Tachycardia has been rarely characteristic in specific canonical neurological disorders.
About 30% of patients with mitochondrial membrane-associated neurodegeneration have
sustained tachycardia [140]. Orthostatic tachycardia has been found in patients with
multiple system atrophy, another neurodegenerative disorder [141]. Some patients with
functional movement disorder are often found also to have elevated heart rate at rest,
including those with Postural Orthostatic Tachycardia Syndrome (POTS), compared to
neurologically healthy control subjects [142–145].

Electrodermal Characteristics

Electrodermal activity can be influenced by eccrine gland releases in the skin, which
are under autonomic nervous system control. When compared to epileptic patients, patients
with functional seizures can demonstrate reduced electrodermal responses following an
ictal event [146]. The findings preliminarily suggest that persons with functional seizures
have less sympathetic arousal relative to persons with epilepsy following seizures.
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3.1.7. Clinical Electromyography

In suspected functional tremor, the diagnosis may be supported by the marked vari-
ability of the limb or axial muscle contraction frequencies at rest, by at least 1.5 Hz [147,148].
The specificity of this observation for FND, however, has not been evaluated.

3.1.8. Gastrointestinal Motility Disturbances

Irritable bowel syndrome (IBS) refers to motility difficulties that can include irregular
defecation and abdominal pain, without finding structural tissue abnormalities on standard
imaging or scoping procedures after excluding inflammatory bowel disease [149]. Func-
tional gastrointestinal disturbances may occur in as much as 41% of children [150] and 35%
of adults with FND [151,152]. Similarly, various forms of functional (physiological) gas-
trointestinal motility impairments occur commonly in Parkinson disease, as much as 65% of
patients, and the symptoms often long precede the onset of limb motor disturbances [153].
A similar proportion occurs in multiple sclerosis [154].

3.1.9. Joint Hypermobility Disturbances

An unusually high prevalence (55%) of joint hypermobility has been reported in a
sample of 20 FND patients [155].

The association between joint hypermobility and other neurological disorders has
not been comprehensively examined, most likely in part because joint hypermobility is
given little attention in formal medical training, and the finding is widely regarded as
benign [156]. This latter view may overlook multiple organ dysfunctions that frequently
accompany joint hypermobility, including gastrointestinal motility and cardiovascular
autonomic disturbances.

Although general laxity of connective tissues could mechanically contribute to neuro-
logical disturbances due to compression of central nervous tissue, including from low-lying
cerebellar tonsils in the type I Chiari malformation [157] and spinal instability [158], other
neurological disturbances have no clear relationship to mechanical tissue disturbances. A
case report of Ehlers–Danlos syndrome (a hypermobility disorder) identified co-existing
limb myopathy on electromyography and ophthalmoplegia [159]. A sample of 90 indi-
viduals who scored abnormally high on a joint mobility assessment were found to have
significantly reduced visual-evoked potentials latencies and amplitudes compared to in-
dividuals without excess hypermobility [160]. Joint hypermobility, therefore, may be a
biomarker for extensive neurological dysfunction.

3.2. Task-Based Neurophysiological Studies

Because these studies require the patient’s careful following of instructions to perform
specific tasks during brain physiological evaluation, they must be regarded with caution.
Such studies have limited control over the patient’s understanding and compliance. In
addition, repeated measures effects during physiological brain imaging can depend on the
extent of patient stimulation [161,162], which can secondarily limit generalization of the
conclusions from the studies.

PET or fMRI studies during specific tasks have identified significant differences be-
tween persons with FND and neurologically healthy control subjects, or between different
tasks in the same FND individuals [163–172].

In patients who are considered to possibly have functional hemiparesis, transcra-
nial magnetic stimulation can demonstrate reduced corticospinal excitability (changed
latency and central motor conduction time in motor-evoked potentials) in the affected limb
when compared to the unaffected limb, when patients are asked to imagine movement in
the specific limb, as recorded by surface electromyography electrodes [173–175]. Conse-
quently, this examination can demonstrate the differential effect of self-attention on central
electrophysiological processes.
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3.3. Behavioral Biomarkers of FND Shared with Canonical Neurodegenerative Disorders
3.3.1. Clinical Blending between FND and Canonical Neurological Disease

Compelling research suggests that functional movement disorder can often evolve
to canonical neurodegenerative disease. In a medical chart review, 26% of patients who
were diagnosed with Parkinson disease (n = 53 total) had earlier developed FND [176].
An additional 8% of Parkinson disease patients had concurrent FND, and most of the
Parkinson disease patients (57%) later developed FND. Similarly, Onofrj et al. as well as
Pareés et al. in many instances observed FND to progress to either Parkinson disease or
dementia with Lewy bodies [177–179]. Elsewhere, three cases of Creutzfeldt–Jakob disease
were reported to have initially presented with functional movement disorder [180].

3.3.2. Emotional Upset Effects on Symptoms

Emotional upset often provokes symptoms in FND [181]. Similarly, motor symptoms
in Parkinson disease can be aggravated by anxiety or other emotional upset [182,183].
Anxiety and depression have been associated with worse performance on a standard test
of visual information processing speed among persons with multiple sclerosis [184–188].
Fear of falling can aggravate postural control and gait control among persons with multiple
sclerosis [189,190]. High anxiety is a risk factor for dystonic progression that starts with
blepharospasm (involuntary contraction of eyelids) and then extends to other parts of the
body [191].

3.3.3. Exaggeration of Symptoms

Pareés et al. observed that persons with FND (n = 8) self-reported limb tremor that
was more frequent than was captured by objective recordings of wrist-worn accelerometers
worn in the home [192]. This finding suggests that persons with FND are prone to accen-
tuated self-attention to their bodies, leading to their increased somatic complaints. This
mismatch was greater than in a group of patients with “organic” tremor (not otherwise
specified; n = 8) who wore the same instruments. Nonetheless, the latter group also exag-
gerated their amount of time with tremor when compared to the accelerometry data, thus
showing that there is not an absolute difference between persons with FND compared to
those with “organic” tremor with regard to symptom reporting.

A subsequent, slightly larger study by Kramer et al., using similar methods, found
that while persons with FND reported more tremor disturbance than did persons with
“organic” tremor, the self-reported “symptom burden” between persons with FND (n = 14)
and those specifically with Parkinson disease (n = 6) did not differ [193]. The persons with
“organic” tremor (including those with essential tremor, Parkinson disease, and other forms)
were objectively recorded to have spent more time in tremor than those with FND, but
the differences were slight. Though the findings did not support symptom exaggeration
differences between persons with FND and those with other forms of tremor, it should
be noted that the study was based on a small subject sample. These results, however,
suggest that the differences between persons with FND vs. those with Parkinson disease
are minimal with respect to subjective motor symptom impact.

3.3.4. Expectation Effects on Symptoms

The research literature on FND extensively suggests that it is sensitive to suggestibility,
i.e., placebo effects, though the studies appear to have had poor experimental design [194].
As far back as 1880, Charcot used hypnotic suggestion to modify symptoms in persons
with FND [195]. Nonetheless, such suggestibility effects are by no means restricted to
FND. Preliminary results suggest that hypnosis can improve motor symptoms in Parkinson
disease or tics, though improved experimental controls were needed for the studies [196].
Placebo effects (expectation to improve) and the obverse, nocebo effects (expectation
to worsen), are widely demonstrated in persons with Parkinson disease in reaction to
treatments [197]. Low expectation can deter persons with Parkinson disease from pursuing
physical exercise [198]. Similar effects are noted in many other involuntary movement
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disorders, including restless legs syndrome, Huntington disease, tics, amyotrophic lateral
sclerosis, and multiple system atrophy [199–201].

3.3.5. Context-Specific Changes on Locomotion

Patients with FND can improve their mobility during their formal rehabilitation by
changing the method of locomotion. For example, an FND patient with impaired walking
can improve by gliding the feet across the floor instead of lifting, as if moving across a
slippery surface [202]. Limb movement ability in persons with FND can vary depending on
whether muscle strength is formally tested vs. observing while the patient is walking [203].
Locomotion capability can vary depending on whether the patient walks across a level
surface, compared to jogging, running, or using stairs [204]. Starting with a more stable
form of locomotion, more complex activities can be gradually introduced as part of reha-
bilitation, which is described further below. Persons with Parkinson disease likewise can
change their ability of locomotion by adopting different movement approaches or patterns.
Walking backward or running can improve motor control in Parkinson disease, Hunting-
ton disease, or dystonia [205]. Freezing of gait in Parkinson disease can be improved by
wearing shoes that project laser points of light in front of the wearer or by crawling on all
four limbs [206,207]. Rhythmic auditory cues can improve voluntary movement in both
Parkinson disease and FND [208,209]. Parkinson disease patients with freezing of gait may
easily locomote by pedaling a bicycle on a street [210].

3.3.6. Competing Voluntary Activities That Can Reduce Symptoms

As noted above under Section 2, Clinical Characteristics of FND, redirecting attention
in persons with FND can ameliorate their symptoms [10]. Similar effects may occur with
canonical neurological disorders. Classically, dystonia includes brief amelioration of the
motor symptom through a self-initiated voluntary action by the patient, most often touching
a specific part of the body. This behavior is commonly referred to as a “sensory trick” or
“geste antagoniste” [211]. Although most often such gestes are simple, an inventory of such
gestes shows that they can involve a wide variety of actions, including bending forward,
yawning, wearing a scarf, cap, turban, or tight goggles, leaning on one’s elbows, picking at
one’s teeth, singing, humming, drinking, kissing, whistling, chewing gum, laughing, piano
playing, thinking about talking, running in a counterclockwise direction, listening to a loud
radio, mirror viewing, or voluntary eye closure [212]. Such diversity raises consideration
that these ameliorative actions may reflect the beneficial effect of redirecting attention
from the predominant symptom, as suggested in the overviews of FND and Parkinson
disease above.

3.3.7. Cognitive Impairments

Cognitive impairments are common following canonical brain disease, as can be
expected. These can also occur with FND. Among them are impaired memory [213],
reduced processing speed [214–217], abnormal executive function [217–221], and impaired
Theory of Mind (social cognition) [222,223]. In a single study, impaired executive function
and Theory of Mind were shown to differ minimally between persons with FND and
persons with Parkinson disease [223].

3.3.8. Positive Response to Psychotherapy on Motor Symptoms

CBT, a form of psychotherapy, is a leading treatment for FND [224]. The treatment
identifies events that trigger symptoms, diminishes attention to the impairment, redirects
attention to better retained voluntary activities, cultivates self-efficacy, reduces emotional
upset, and develops mindfulness (concentrating on current emotions and not focusing on
events in the past or the future) [181]. The approach can reduce tremor severity and other
motor symptoms in FND [225,226]. Although CBT is provided to persons with Parkinson
disease mainly to control their mood disorders, preliminary findings indicate that the
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approach can also improve their walking [227]. Successful motor outcome also has been
reported following CBT for cervical dystonia [228].

3.3.9. Lower Extremity Dysesthesia and Compulsion to Move the Limbs

Restless legs syndrome involves annoying leg sensations (pain, tightness), most often
while the patient is recumbent, and the compulsion to move the legs for relief. Increased
leg movements also can occur in restless legs syndrome without leg discomfort, particu-
larly during sleep. Restless legs syndrome considerably occurs in canonical neurological
movement disorders, including Parkinson disease, multiple system atrophy, and multiple
sclerosis [229,230].

Until the advent of advanced quantitative structural neuroimaging studies, restless
legs syndrome was regarded primarily to be a “functional” (that is, physiological) dis-
order [231]. In a recent study of 96 individuals with functional movement disorder, the
incidence of restless legs syndrome according to formal screening criteria was 44%, com-
pared to 8% in neurologically healthy controls [232].

4. Physical Rehabilitation for FND

Until recent years, the long-term prognosis for FND was thought to be dismal [233–235].
Although numerous biomarkers for FND have been identified, these findings have not thus
far indicated a consistently efficacious medical treatment for its impaired voluntary activities.

However, neurological rehabilitation has shown promise for controlling the symptoms
of FND. In recent years, there has been increasing interest in developing and testing
for neurological rehabilitation for FND, and transition from case series reports to larger
clinical trials.

The greatest advances have been in applying neurological rehabilitation based on con-
ventional methods toward controlling motor symptoms. Similar to the electronic literature
review above, PubMed was searched with the terms (functional neurological disorder OR
functional neurological symptom disorder OR hysteria OR psychogenic disorder OR con-
version disorder) AND (physical therapy OR rehabilitation). The 891 entries were reviewed
and excluded reviews, correspondence in response to other research, and studies that
included five or fewer participants. Tables 2 and 3 summarize the resulting trials (n = 35)
in chronological order up to the present that applied to functional movement disorders.
This summary encompasses more than 1500 individuals (mostly adults, but also children)
who were treated and followed for the durations of the trials.

Table 2. Summary of physical therapy for FND: diagnostic methods, interventions, doses, settings,
and targeted symptoms.

Study [Reference] n * Diagnostic
Method ** Intervention † Dose (Months) Setting †† Motor Symptoms Targeted ‡

Weiser, 1976 [236] 7 MD referral PT, counseling 0.25–2 Out paresis

Delargy, 1988 [237] 6 MD referral PT 0.36–2.5 In walking

Leslie, 1988 [238] 20 MD referral PT 1–3 In or Out walking, paresis

Speed, 1996 [239] 10 MD referral PT 0.14–0.8 In walking

Heruti, 2002 [26] 30 MD referral PT Not stated In paresis

Moene, 2002 [240] 45 DSM-III PT + hypnosis vs. PT 3 In dystonia, walking, tremor, paresis

Schrag, 2004 [235] 26 Fahn–Williams PT + CBT Not stated Not stated dystonia, tremor

Schwingenschuh,
2008 [241] 12 Fahn–Williams PT + CBT Not stated Out dystonia, walking, tremor

Dallochio, 2010 [242] 16 Fahn–Williams Walking therapy 3 Out dystonia, walking, tremor

Czarnecki, 2012 [243] 80 Fahn–Williams PT vs. TAU 0.25 Out walking, tremor, paresis

Saifee, 2012 [244] 26 MD referral PT + CBT 0.75 In dystonia, tremor, paresis

Kozlowska 2013 [245] 56 MD referral Multidisciplinary rehab 1 In and Out NA

Demartini, 2014 [246] 36 MD referral Multidisciplinary rehab 1 In dystonia, walking, tremor, paresis
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Table 2. Cont.

Study [Reference] n * Diagnostic
Method ** Intervention † Dose (Months) Setting †† Motor Symptoms Targeted ‡

Espay, 2014 [247] 10 MD referral Entrainment with
biofeedback device 0.03 Out tremor

Jordbru, 2014 [248] 40 MD referral PT + CBT vs. waitlist 0.75 In walking

McCormack, 2014 [249] 33 MD referral Multidisciplinary rehab 3.3 In dystonia, tremor, paresis

Nielsen, 2015 [250] 47 Gupta–Lang PT 0.25 Out dystonia, walking, tremor, paresis

Dallochio, 2016 [251] 29 Fahn–Williams CBT vs. CBT + PT vs.
TAU 3 Out dystonia, walking, tremor

Matthews, 2016 [252] 35 MD referral PT ≤2 In walking

Nielsen, 2017 [253] 57 Fahn–Williams PT vs. nonspecific PT 0.25 Out dystonia, walking, tremor

Jacob, 2018 [254] 32 Fahn–Williams PT 0.25 In dystonia, walking, tremor

Jimenez, 2019 [255] 49 DSM-5 Pain multidisciplinary
rehab 0.25 Out FMD

Bullock, 2020 [256] 12 DSM-5 VR motor rehab + mirror
feedback 2 Out FMD or sensory symptoms

Demartini, 2020 [257] 18 Gupta–Lang PT 5.25 Home dystonia, walking, tremor, paresis

Maggio, 2020 [258] 50 DSM-5 PT, CBT, goal setting 1.5–3 Out dystonia, walking, tremor, paresis

Petrochilos, 2020 [259] 78 MD referral PT, multidisciplinary
rehab, CBT 1.4 Out dystonia, walking, tremor, paresis

Gandolfi 2021 [260] 33 Gupta–Lang PT 0.25 Home dystonia, walking, tremor, paresis

Reid 2022 [261] 18 MD referral Multidisciplinary rehab 0.25 Out not specified

Hebert, 2021 [262] 13 Fahn–Williams PT 0.25–0.5 In dystonia, walking, tremor, paresis

Callister, 2023 [263] 201 Gupta–Lang PT 0.25 In walking, tremor, paresis

Guy, 2024 [264] 31 DSM-5 PT + CBT 2 Out dystonia, tremor, paresis

McCombs, 2024 [265] 77 MD referral Sensory-oriented OT 4 Out dystonia, walking, tremor, paresis

Nielsen, 2024 [266] 241 Gupta–Lang PT vs. TAU 0.75 Out dystonia, walking, tremor, paresis

Polich, 2024 [267] 22 MD referral PT 0.5 In walking, paresis

Macías-García,
in press [268] 38 Gupta–Lang PT + CBT vs. psychol

support 1.5 Out dystonia, walking, tremor

* n, number of patients who completed the study. ** Diagnostic method: DSM, Diagnostic and Statistical Manual
of Mental Disorders (various editions); Fahn–Williams [269]; Gupta–Lang [270]; MD referral, clinician referral.
† Intervention: CBT, Cognitive Behavioral Therapy; OT, occupational therapy; PT, physical therapy; TAU,
treatment as usual; VR, virtual reality. †† Setting: In, inpatient; Out, outpatient; Home, home-based therapy.
‡ Motor symptoms targeted: FMD, functional movement disorder not otherwise specified. NA, not reported.

Table 3. Summary of physical therapy for FND: outcome measures, immediate results, follow-up,
and follow-up results.

Study Outcome Measure ‡‡ Immediate Results Follow-Up (Months) ¶ Results ¶¶

Weiser, 1976 [236] Neurol exam 100% improved 1–96 86% retained gains

Delargy, 1988 [237] Neurol exam 100% improved 8–14 100% retained gains

Leslie, 1988 [238] Neurol exam 85% improved NA

Speed, 1996 [239] FIM 100% improved 7–36 78% retained gains

Heruti, 2002 [26] Neurol exam 55% improved NA

Moene, 2002 [240] Neurol exam 65% improved; no
difference between groups 6 84% retained gains; no

difference between groups

Schrag, 2004 [235] Neurol exam 33% improved NA

Schwingenschuh,
2008 [241] Neurol exam 80% improved NA

Dallochio, 2010 [242] PMDRS 70% improved NA

Czarnecki, 2012 [243] Neurol exam 73% improved 25–33
Experimental group 60%

self-rated improved vs. 22%
control treatment
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Table 3. Cont.

Study Outcome Measure ‡‡ Immediate Results Follow-Up (Months) ¶ Results ¶¶

Saifee, 2012 [244] Nonspecific
self-assessment 58% improved NA

Kozlowska 2013 [245] Neurol exam 63% improved NA

Demartini, 2014 [246] COPM, CGI 67% improved 12 COPM: 100% retained gains;
CGI: 33% retained gains

Espay, 2014 [247] PMDRS 100% improved 3–6 50% retained gains; the other
measures declined

Jordbru, 2014 [248] Functional Mobility Scale,
FIM

Experimental group
generally improved 12 100% gains retained

McCormack, 2014 [249] Mobility, MRS Generally improved NA

Nielsen, 2015 [250] CGI 96% improved 3 85% retained gains

Dallochio, 2016 [251] PMDRS Experimental groups
improved, unlike TAU NA

Matthews, 2016 [252] Modified Rivermead
Mobility Index Generally improved NA

Nielsen, 2017 [253] CGI Assessment delayed until
6 m 6 Experimental group >

control group gains

Jacob, 2018 [254] CGI, PMDRS 87% improved 6 67% retained (only CGI
assessed)

Jimenez, 2019 [255] In-lab movement
measures Generally improved NA

Bullock, 2020 [256] Oxford Handicap Scale Improved experimental
group only NA

Demartini, 2020 [257] PMDRS, CGI Improved (67%) 6 72% retained gains

Maggio, 2020 [258] Subjective change Improved (34%) NA

Petrochilos, 2020 [259] CGI, COPM Generally improved 6 100% retained gains

Gandolfi 2021 [260] S-FMDRS, other in-lab
measures Generally improved 3 Gains lost

Hebert, 2021 [262] CGI 93% improved 12 77% retained gains on CGI

Reid 2022 [261] COPM, lab assessments Generally improved NA

Callister, 2023 [263] COPM ability subscale 84% improved NA

Guy, 2024 [264] lab assessments Generally improved 3 100% retained gains

McCombs, 2024 [265] clinician judgment 62% improved NA

Nielsen, 2024 [266] SF-36; CGI Not reported 12

No difference between
groups on SF-36; results

favored CGI, but statistics
not stated

Polich, 2024 [267] PT, OT judgment (ordinal
scales), Berg Balance Scale 95% improved NA

Macías-García,
in press [268] SF-36; CGI; EQ-5D Greater improvement in

experimental vs. control 5 Partial regression

‡‡ Outcome measure: CGI, Clinical Global Impression self-rated scale; COPM, Canadian Occupational Per-
formance Measure; EQ-5D, quality of life at 5 months post-treatment; FIM, Functional Independence Measure;
Mobility, nonspecific assessment of walking; MRS, Modified Rankin Scale; Neurol exam, neurological examination;
PMDRS, Psychogenic Movement Disorder Rating Scale; S-FMDRS, Simplified Functional Movement Disorder
Rating Scale. ¶ Follow-up: NA, not reported. ¶¶ Results: SF-36, 36-item Short Form Health Survey.

The published studies generally had favorable outcomes and, in many cases, gains
retained over months or years. A considerable limitation among the studies has been the
common lack of comparing one treatment to another in groups that were matched for the
degree of disability. In addition, in most reports, patient groups had diverse symptoms
that were targeted for treatment, leaving unclear whether treatment outcomes depended
on the particular symptoms being treated.
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Although the approaches somewhat differed from each other, a common approach
was to start by having patients practice voluntary movements that entail little difficulty
and can be accomplished successfully, and then advance gradually through more compli-
cated movements, with praise at every stage of accomplishment [271]. This is subsumed
under the term “shaping” [243,263,272–274], which has also been used in specific forms of
physical rehabilitation (e.g., Constraint-Induced Movement Therapy) for canonical neu-
rological disorders, including stroke, cerebral palsy, traumatic brain injury, and multiple
sclerosis [275–278]. In addition, because FND symptoms are affected by self-attention to
the deficits, the rehabilitation techniques emphasized increasing general physical activity
without drawing attention to the particular part of the body or context, which could aggra-
vate the symptoms. An example for the effect of attention on an FND deficit is the Hoover
sign [279]. This involves the inability to extend a hemiparetic leg following direct command
while supine or seated, but can occur when the patient is asked to redirect self-attention
to the opposite leg and elevate it. In that case, the affected leg’s extension is necessary to
stabilize the pelvis during the maneuver. Such a demonstration of retained movement
capability when self-attention is redirected can serve as a basis for rehabilitation.

5. Other Treatments

To a lesser extent, other treatments for FND have been investigated. Because these
methods are early in their development, the treatment results are not provided here. The
methods have included CBT alone [225], hypnosis [280], Faradic stimulation to limb mus-
cles [281], and transcranial magnetic stimulation [282]. Although various psychotropic
medications have been tried for FND and can help to manage mood disorder, there is
thus far no leading efficacious pharmacological treatment for the FND symptoms them-
selves [283,284].

6. Discussion

Reviews of FND biomarkers until now have focused either on motor or ictal forms of FND
or subsets of evidence (neuroimaging, serum assays, behavioral measures) [1,49–55,285,286].
In contrast, the present review examines the biomarker evidence across diverse forms of
FND and from a wider array of assessments. Moreover, this review is distinguished by its
comparison to diverse canonical neurological disorders that share numerous clinical and
laboratory-based findings. This review amply demonstrates that FND, a much misunder-
stood illness, shares many objective laboratory and clinical characteristics with canonical
neurological diseases.

Limitations of this review are that a single reviewer conducted the literature search,
which was based only on PubMed. In general, comprehensive literature reviews currently
enlist multiple reviewers who compare their searches mutually and reach consensus for
which articles should be included and the conclusions drawn. Commonly, multiple medical
literature databases are searched in addition to PubMed (e.g., Embase, Web of Science,
Scopus). Nonetheless, the present search method led to identifying multiple categories of
FND biomarkers after consulting the several previously published FND biomarker reviews.
The resulting categories were then checked to determine whether any of those could be
shared with canonical neurological disorders; many were found. Consequently, this limited
search method succeeded in identifying substantial overlap between FND and canonical
neurological disorders. It is unlikely that a more extensive literature search method would
have substantially changed the outcomes.

The results suggest that FND is a neurological disorder, in view of its morphological
abnormalities demonstrated in numerous brain imaging studies and considerable behav-
ioral characteristics that are shared with canonical neurological disorders, including the
many instances of clinical transition between FND and other neurological disorders. More-
over, the results indicated many instances in which acute focal cerebral hypometabolism in
persons with FND receded in parallel with clinical improvement. These sources of evidence
imply that FND is a neurological disorder.
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In addition, this review identifies FND biomarkers that involve many biological
systems outside of the central nervous system, including cardiovascular, gastrointestinal,
autonomic, immunological, and orthopedic systems, along with distinct genotypes that
predict forms of FND. Thus, FND presents a complex medical illness that is associated
with extensive abnormalities in the body. In this diverse presentation of FND, similarities
can occur in other neurological disorders. One example is Parkinson disease, which has
been shown to have characteristic findings in immunological, gastrointestinal, and genetic
systems, as indicated above.

Furthermore, conventional physical neurorehabilitation techniques, which are used for
chronically disabling canonical neurological disorders, can also ameliorate FND symptoms.
This review thus may help to demystify the illness and encourage clinical practitioners
to approach FND patients empathetically and supportively. This evidentiary foundation
allows practitioners to indicate to their patients that (1) the illness is not fundamentally a
mental disorder, and (2) the illness can respond positively to rehabilitation techniques that
are similarly applied to other neurological disorders. In doing so, this review aims to assist
FND into mainstream neurological care, to regard it as a neurological disease, and not to
treat it as a fringe, exotic, or mysterious illness.

Even more importantly, the many biomarkers that FND shares with multiple other
neurological disorders should prompt clinicians who evaluate and treat FND to be aware of
and routinely evaluate for its multiple organ comorbidities. Of note, the constellation of au-
tonomic, cardiovascular, immunological, gastroenterological, and orthopedic disturbances
are not unique to FND. In recent research, this pattern also was found to be common in
patients who presented with gastrointestinal motility disturbances that lacked observable
tissue pathology, who were not considered to have FND but who were nonetheless found
to have immunological, autonomic, and orthopedic abnormalities [287]. Consequently,
treating an FND patient warrants investigating these possible other disturbances and
consulting specialists in these areas where needed. The diverse biomarkers suggest that
FND may not strictly be a neurological disorder. Although at present there are no clear
physiological or developmental biological processes that may underlie FND, these findings
may encourage further hypothesis development and clinical investigation to clarify the
pathological processes that are involved with FND.

Evaluating and directing treatment for FND requires the expertise of a neurologist,
owing to the complexity of the symptoms [288–292]. The optimal management of FND
would start with accurate diagnosis. However, there are many difficulties with doing so:

(1) There is no gold standard for diagnosing FND. In our review of studies of FND
biomarkers [51], we found that there are three main rival methods: the Fahn–Williams
method and its variants [269], the method outlined in the various editions of the Diagnostic
and Statistical Manual of Mental Disorders [293], and the referring physician’s personal
judgment. Without a consensus diagnostic method for FND, rapid progress in research for
treatment will likely be hindered.

(2) Seldom considered has been the extensive list of alternate paroxysmal neurological
disorders that are not known to be affected by self-attention or emotional excitation, and
which lack distinctive features on conventional clinical neuroimaging. These include frontal
lobe epilepsy, paroxysmal dyskinesia, and autoimmune encephalitis [294]. This list obliges
the involvement of a neurologist who is highly experienced with assessing FND vs. the
alternate neurological disorders, thus, to guide the patient to appropriate management.

(3) Even when a neurologist with expertise in FND may be involved, current clinical
practice often limits the time to evaluate new patients to 30 min, due to economic pressures
and meeting the demands of a large practice [294]. In contrast, as much as an hour is neces-
sary to conduct a thorough historical intake and comprehensive neurological evaluation,
and to provide empathetic patient and family education and care planning. Furthermore,
the patient’s concurrent cognitive limitations (described in Section 3.3.7) can limit or slow
these steps. As a result, the modern medical practice milieu may prolong evaluating and
ultimately arranging care for persons who may have FND or other paroxysmal disorders.
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(4) Appropriate care, including treatment by a neuropsychologist and rehabilitative
physical therapists, occupational therapists, or speech-language pathologists, can be lim-
ited because of the relatively few medical centers that can provide these services with
commensurate expertise with FND. Consequently, there can be a considerable waitlist for
patients to be seen, along with the hardship involved to arrange travel to such places.

To assist the management by the clinician who initially sees persons who may have
FND, the web site FND Hope–FND Hope International (https://fndhope.org, accessed on
1 September 2024) lists such centers that have the available expertise. In addition, referring
the patient and family to the web site https://neurosymptoms.org/en/ (accessed on 1
September 2024) can acquaint them with the diverse appearances and complexities of FND.
Doing so can equip them with the knowledge to better understand the illness, which in
turn could help to reduce the time for evaluation and allay concerns by confirming that the
illness is not a mental disorder or a different neurological disorder with episodic symptom
aggravation, such as multiple sclerosis [295,296].

7. Conclusions

This overview of the biomarkers and favorable responses to physical neurorehabilita-
tion for FND implies that it is a neurological disorder. Consequently, the patient should be
approached with this in mind, following appropriate diagnosis. Becoming familiar with the
content of this review can prepare the clinician to approach the patient with confidence that
FND is not an unknowable, enigmatic disorder. Optimism should be conveyed to guide
patients toward improved self-control of their symptoms with competent rehabilitation.
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