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Abstract: This study investigated whether the textural features of peritumoral adipose tissue
(AT) on [18F]fluoro-2-deoxy-2-D-glucose (FDG) positron emission tomography/computed tomog-
raphy (PET/CT) can predict the pathological response to neoadjuvant chemotherapy (NAC) and
progression-free survival (PFS) in breast cancer patients. We retrospectively enrolled 147 female breast
cancer patients who underwent staging FDG PET/CT and completed NAC and underwent curative
surgery. We extracted 10 first-order features, 6 gray-level co-occurrence matrix (GLCM) features, and
3 neighborhood gray-level difference matrix (NGLDM) features of peritumoral AT and evaluated
the predictive value of those imaging features for pathological complete response (pCR) and PFS.
The results of our study demonstrated that GLCM homogeneity showed the highest predictability
for pCR among the peritumoral AT imaging features in the receiver operating characteristic curve
analysis. In multivariate logistic regression analysis, the mean standardized uptake value (SUV), 50th
percentile SUV, 75th percentile SUV, SUV histogram entropy, GLCM entropy, and GLCM homogeneity
of the peritumoral AT were independent predictors for pCR. In multivariate survival analysis, SUV
histogram entropy and GLCM correlation of peritumoral AT were independent predictors of PFS.
Textural features of peritumoral AT on FDG PET/CT could be potential imaging biomarkers for
predicting the response to NAC and disease progression in breast cancer patients.

Keywords: adipose tissue; breast cancer; neoadjuvant chemotherapy; positron emission tomography;
texture analysis

1. Introduction

Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced
breast cancer, especially preferred for human epidermal growth factor receptor 2 (HER2)-
enriched or triple-negative breast cancer with a tumor size > 2 cm and/or axillary lymph
node metastasis [1]. Compared to conventional adjuvant chemotherapy, NAC does not
significantly improve survival outcomes [2]. However, NAC can reduce the size and extent
of breast cancer lesions, increasing the likelihood of tumor control and enabling more
patients to undergo conservative breast surgery [3,4]. Furthermore, NAC also provides an
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opportunity for the early assessment of chemotherapy efficacy [5]. Pathological complete
response after NAC is associated with better survival in several meta-analysis studies and
has been considered as a surrogate endpoint marker for predicting prognosis in patients
with breast cancer [3,6,7]. Therefore, several studies have attempted to predict pathological
responses before the completion of NAC or surgery using imaging examinations [8,9].
One of the imaging modalities used in previous studies is [18F]fluoro-2-deoxy-2-D-glucose
(FDG) positron emission tomography/computed tomography (PET/CT) which is useful in
detecting metastasis and predicting prognosis in patients with breast cancer [8,10,11]. In
addition to conventional PET/CT parameters such as the maximum standardized uptake
value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), the radiomic
features of PET images extracted from textural analysis, which can quantify the degree
of intratumoral metabolic heterogeneity, have recently been used to predict responses to
NAC [12,13]. However, the accuracy of PET/CT features of primary breast cancer lesions
in predicting pathological response to NAC is only moderate revealing inconsistent results
between previous studies [8,14].

Because the mammary gland is surrounded mainly by mammary adipose tissue (AT),
AT is a major component of the tumor microenvironment of breast cancer cells [15]. Recently,
breast cancer cells have been found to interact with diverse cells in peritumoral AT, such as
adipocytes and AT-derived mesenchymal stromal/stem cells, which contribute profoundly to
the proliferation, invasion, metastasis, and resistance to therapy of breast cancer cells [15–17].
Due to increased glycolysis of adipocytes and recruitment of immune cells in the peritumoral
AT, these interactions lead to metabolic alterations in the peritumoral AT [17,18]; therefore,
several studies have demonstrated that imaging features of peritumoral AT on FDG PET/CT
could reflect metabolic changes in the peritumoral AT and have a clinical significance [19–21].
Considering that cross-talk between breast cancer cells and peritumoral AT cells facilitates
tumor progression and chemotherapy resistance [15,16], the textural features of peritumoral
AT on FDG PET/CT could have a significant relationship with response to NAC. However,
the predictive value of peritumoral AT textural features on FDG PET/CT in patients with
breast cancer has not been reported yet.

Therefore, this study aimed to investigate the clinical value of peritumoral AT textural
features on FDG PET/CT in predicting the response to NAC and progression-free survival
(PFS) in patients with breast cancer.

2. Materials and Methods
2.1. Patients

We retrospectively reviewed the medical records of female patients with invasive
breast cancer at two medical centers (International St. Mary’s Hospital and Soonchunhyang
University Cheonan Hospital) between January 2013 and December 2020. The patients
(1) who underwent staging FDG PET/CT prior to NAC, (2) who received NAC and
subsequent surgical resection of breast cancer, and (3) whose imaging, histopathology, and
follow-up data were available were included in the study. The exclusion criteria were as
follows: (1) distant metastasis (stage M1) on staging work-up examinations, (2) no surgery
after NAC, (3) insufficient peritumoral breast AT volume for extraction of textural features,
(4) diffuse infiltrative type of breast cancer on imaging studies (diffuse, infiltrative, and
non-mass enhancement on magnetic resonance imaging [MRI] and diffusely increased FDG
uptake in PET/CT), (5) loss to follow-up within 1 year after the surgery, and (6) history of
previous malignant diseases. Based on the inclusion and exclusion criteria, 147 patients
were included in this study.

2.2. Treatment and Response Assessment

All the patients underwent blood tests, breast ultrasonography, bone scintigraphy,
contrast-enhanced chest CT, breast MRI, and FDG PET/CT for a staging workup. Af-
ter staging examinations, the patients were treated with one of the following five NAC
regimens: (1) doxorubicin and cyclophosphamide; (2) doxorubicin and docetaxel; (3) dox-
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orubicin, cyclophosphamide, and docetaxel; (4) docetaxel, carboplatin, trastuzumab, and
pertuzumab; and (5) doxorubicin, cyclophosphamide, paclitaxel, and trastuzumab. Fol-
lowing NAC, mastectomy or breast-conserving surgery with sentinel lymph node biopsy
and/or axillary lymph node dissection was performed. The pathological tumor response to
NAC was determined by histopathological evaluation of the surgical specimens. Patients
with the complete absence of both residual invasive cancer cells and cancer in situ cells in
the breast and lymph nodes (ypT0N0), were classified as having a pathological complete re-
sponse (pathological complete responders). Other patients who showed a partial response,
stable disease, or disease progression after NAC were classified as non-responders. All
patients received adjuvant chemotherapy, radiotherapy, and/or hormonal treatment after
surgery. After treatment, regular clinical follow-ups were conducted every 3–6 months with
blood and imaging examinations including breast ultrasonography and contrast-enhanced
chest CT.

2.3. FDG PET/CT and Textural Analysis

FDG PET/CT was performed using a Biograph mCT 20 scanner (Siemens Healthineers,
Knoxville, TN, USA) at International St. Mary’s Hospital and a Biograph mCT 128 scanner
(Siemens Healthineers) at Soonchunhyang University Cheonan Hospital. All the patients
were required to fast for at least 6 h before FDG injection. At the time of FDG injection,
blood glucose levels were below 150 mg/dL. FDG was injected intravenously 60 ± 3 min
before PET/CT scan at a dose of approximately 4.07 MBq/kg for both scanners. All PET/CT
scans were performed from the skull base to the proximal thigh in the supine position.
Initially, a non-contrast-enhanced CT scan was performed for attenuation correction at
80 mA and 100 kVp for the Biograph mCT 20 scanner and at 100 mA and 120 kVp for
the Biograph mCT 128 scanner. All CT scans were performed using an automated dose
modulation with a slice thickness of 5 mm. Subsequently, a PET scan was performed for
1.5 min per bed position in both PET/CT scanners. For both scanners, PET images were
reconstructed using the ordered-subset expectation maximization algorithm with the point
spread function, time-of-flight modeling, and attenuation correction on a 128 × 128 matrix
(2 iterations and 21 subsets, voxel size of 4.0 × 4.0 × 3.0 mm3).

Two nuclear medicine physicians who were blinded to the patient’s clinical, pathologi-
cal, and survival data measured the quantitative imaging parameters of the primary tumor
and performed textural analysis of the peritumoral AT on FDG PET/CT through consensus
(Figure 1). The open-source software LIFEx software version 7.0.0 (www.lifexsoft.org) was
used for PET/CT imaging analysis [22]. A volume of interest (VOI) was manually drawn
around the primary breast cancer lesion and the maximum standardized uptake value
(SUV) of the breast cancer was measured. Using a threshold SUV of 40% of the maximum
SUV, voxels with an SUV greater than the threshold SUV were automatically defined within
the VOI, and the MTV and mean SUV of the voxels were measured. Furthermore, TLG
was calculated as MTV × mean SUV. The peritumoral AT area was segmented using a
previously described method [19]. The VOI was drawn manually to include the primary
breast cancer and surrounding breast tissue within a 1.0 cm distance from the tumor margin.
Within the VOI, areas of the surrounding breast tissue with CT attenuation ranging between
−200 and −50 Hounsfield unit (HU) were automatically selected and defined as the peritu-
moral AT. Prior to extracting textural features, spillover FDG activity of the breast cancer
lesion in the peritumoral AT was removed manually. From the peritumoral AT, 19 textural
features of PET images were extracted, which comprised 10 first-order features, 6 gray-level
co-occurrence matrix (GLCM) features, and 3 neighborhood gray-level difference matrix
(NGLDM) features (Table S1). The 10 first-order features consisted of the maximum, mean,
standard deviation, 25th percentile, 50th percentile, and 75th percentile values of the SUV
and kurtosis, skewness, energy, and entropy calculated from the SUV histogram. The six
GLCM features were contrast, correlation, dissimilarity, energy, entropy, and homogeneity,
whereas the three NGLDM features were busyness, coarseness, and contrast [23,24]. For
computing textural features of the peritumoral AT, PET images were reconstructed into a
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voxel size of 4.07 × 4.07 × 2.5 mm3. Prior to extracting textural features from grey-level
analyses, intensity levels of FDG uptake of voxels were resampled into 64 relative gray
levels. GLCM features were computed using a distance of one voxel in 13 directions, and
NGLDM features were computed in three directions with 26 neighbor voxels.
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Figure 1. Imaging parameters of the primary tumor and textural features of peritumoral AT. Maxi-
mum intensity projection image (a) and transaxial fused PET/CT images (b–d) of FDG PET/CT are
shown to illustrate an example of VOI for measuring imaging parameters of primary breast cancer
lesions and textural features of peritumoral AT. A 63-year-old woman underwent FDG PET/CT
for staging of left breast cancer. The breast cancer lesion was histopathologically confirmed as in-
vasive ductal carcinoma, HER2-enriched subtype, demonstrating intensely increased FDG uptake
on PET/CT images with a maximum SUV of 19.2 (arrows on (a,b)). For the primary breast cancer
lesion, a VOI was drawn manually around the breast cancer lesion, and an area with an SUV higher
than 40% of the maximum SUV was automatically selected within the VOI (area in red in (c)). For
peritumoral AT, a VOI that covers the area within 1 cm from the margin of the primary breast cancer
was drawn manually, and the areas that had CT attenuation ranging between −200 and −50 HU
were automatically selected within the VOI (area in yellow in (d)).

2.4. Statistical Analysis

A schematic presentation of the workflow in the current study is depicted in Figure 2.
The Shapiro–Wilk test was used to assess the normality of the distribution. Because all FDG
PET/CT parameters of the primary breast cancer and peritumoral AT were abnormally
distributed, they were described as medians with interquartile ranges. The Kruskal–Wallis
test with post hoc Dunn’s test and the Mann–Whitney test were conducted to evaluate
differences in imaging parameters of the primary breast cancer and textural features of the
peritumoral AT according to molecular breast cancer subtypes and pathological response,
respectively. The receiver operating characteristic (ROC) curve analysis was performed to
calculate the area under the ROC curve (AUC) value and evaluated the ability of PET/CT
imaging features to predict pathological complete response. The optimal cut-off values
of the PET/CT parameters were determined using the Youden index. The sensitivity and
specificity of the parameters for predicting pathological complete response were identified
using the optimal cut-off values. Univariate and multivariate logistic regression analyses
were conducted to assess independent predictors of pathological response among the
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PET/CT parameters. PFS was defined as the period between the day of NAC initiation and
the day of detection of disease progression, death, or the last clinical follow-up. Univariate
and multivariate Cox proportional hazard regression analyses were performed to evaluate
the prognostic value of PET/CT parameters for predicting PFS. For both logistic regression
and survival analyses, only statistically significant PET/CT parameters in the univariate
analysis were included in the multivariate analysis. Age, clinical TNM stage, and molecular
subtype were added as covariates in the multivariate analysis. Considering the number
of events, each PET/CT parameter was assessed in a separate model. To estimate the
survival curves, the optimal cut-off values for the PET/CT parameters were selected using
ROC curve analysis. According to the cut-off values, PFS curves were calculated using
Kaplan–Meier analysis with a log-rank test. All statistical analyses were conducted using
MedCalc Statistical Software version 20.218 (MedCalc Software Ltd., Ostend, Belgium).
The level of statistical significance was set at p < 0.05.
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3. Results
3.1. Patient Characteristics and Pathological Outcomes

Baseline characteristics of the 147 enrolled female patients with invasive breast cancer
are summarized in Table 1. Of the 147 patients, 141 (95.9%) were diagnosed with invasive
ductal carcinoma and 2 patients (1.4%) were diagnosed with invasive lobular carcinoma,
mucinous carcinoma, and papillary carcinoma. Among the patients, 136 (92.5%) showed
lymph node metastasis on pretreatment examinations and 107 (72.8%) had clinical TNM
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stage III. In the evaluation of the pathological tumor response to NAC, 36 patients (24.5%)
and 111 patients (75.5%) were classified into the pathological complete responder and
non-responder groups, respectively.

Table 1. Patients’ clinicopathological characteristics.

Characteristics Number of Patients (Percentage)
n= 147

Median age, years (range) 47 (23–79)
Obesity

Underweight/normal 56 (38.1%)
Overweight/obesity 91 (61.9%)

Menopausal status
Premenopausal 80 (54.4%)
Postmenopausal 67 (45.6%)

Histopathology
Invasive ductal carcinoma 141 (95.9%)

Others 6 (4.1%)
Histologic grade

Grade 1 15 (10.2%)
Grade 2 79 (53.7%)
Grade 3 49 (33.3%)

Not specified 4 (2.7%)
Molecular subtypes

Luminal A 28 (19.0%)
Luminal B-like HER2-negative 19 (12.9%)
Luminal B-like HER2-positive 60 (40.8%)

HER2-enriched 21 (14.3%)
Triple-negative 19 (12.9%)

Clinical T stage
T1–T2 90 (61.2%)
T3–T4 57 (38.8%)

Clinical N stage
N0 11 (7.5%)
N1 63 (42.9%)

N2–N3 73 (49.7%)
Clinical TNM stage

Stage II 40 (27.2%)
Stage III 107 (72.8%)

Neoadjuvant chemotherapy regimen
Doxorubicin and docetaxel 52 (35.4%)

Doxorubicin, cyclophosphamide, and docetaxel 40 (27.2%)
Docetaxel, carboplatin, trastuzumab, and pertuzumab 25 (17.0%)

Doxorubicin and cyclophosphamide 22 (15.0%)
Doxorubicin, cyclophosphamide, paclitaxel, and trastuzumab 8 (5.4%)

HER2, human epidermal growth factor receptor 2.

3.2. PET/CT Textural Features and Molecular Subtypes

Results of the comparative analysis of the imaging parameters of primary breast cancer
and textural features of peritumoral AT according to the molecular subtypes of breast cancer
are shown in Table 2. Among the primary breast cancer imaging parameters, there were
significant differences in maximum SUV and TLG according to the molecular subtypes.
Among the textural features of peritumoral AT, NGLDM coarseness was significantly
correlated with molecular subtypes (p < 0.05). Post hoc analyses showed that HER-enriched
and triple-negative breast cancers had significantly higher maximum SUV values than all
other breast cancer types and higher TLG than luminal A breast cancer (p < 0.05). Both
subtypes had significantly lower NGLDM coarseness values than the luminal A type
(p < 0.05). Furthermore, SUV histogram kurtosis, SUV histogram entropy, GLCM entropy,



J. Pers. Med. 2024, 14, 952 7 of 17

and NGLDM busyness of peritumoral AT were correlated with molecular subtypes; the
statistical significance was borderline (p < 0.10).

In the ROC curve analysis, GLCM homogeneity revealed the highest predictability for
identifying pathological complete response among PET/CT parameters, with an AUC of
0.717 (95% confidence interval [CI], 0.600–0.811), followed by GLCM entropy (AUC, 0.697;
95% CI, 0.585–0.791) and 50th percentile SUV (AUC, 0.686; 95% CI, 0.583–0.768; Table 4;
Figure 3). Using an optimal cut-off value of 0.75, GLCM homogeneity showed a sensitivity
of 58.3% and a specificity of 85.6% for predicting pathological complete response, whereas
50th percentile SUV showed a sensitivity of 91.7% and a specificity of 38.7% using a cut-off
value of 0.78.

Table 2. Primary breast cancer imaging parameters and textural features of peritumoral AT according
to molecular subtypes.

Parameters Luminal A Luminal B-like
HER2 Negative

Luminal B-like
HER2 Positive

HER2-
Enriched Triple Negative p-Value

Primary tumor

Maximum SUV 7.79
(5.58–11.66)

8.17
(6.26–9.56)

10.04
(5.19–14.75)

14.02
(10.82–18.36)

13.01
(9.51–18.13) <0.001

MTV 6.76
(3.61–10.95)

10.47
(5.25–21.84)

8.45
(3.87–18.85)

9.06
(5.39–14.63)

8.79
(4.61–13.72) 0.633

TLG 27.64
(19.13–75.96)

68.48
(20.07–93.17)

39.46
(20.67–82.19)

75.82
(52.18–144.57)

79.93
(31.42–134.41) 0.039

Peritumoral AT
First-order features

Maximum SUV 2.44
(2.22–2.80)

2.43
(2.26–2.58)

2.53
(2.10–2.86)

2.47
(2.23–2.83)

2.52
(2.36–2.96) 0.440

Mean SUV 0.74
(0.66–0.89)

0.78
(0.64–0.86)

0.80
(0.69–0.90)

0.78
(0.69–0.87)

0.79
(0.70–0.97) 0.770

Standard deviation
SUV

0.35
(0.34–0.39)

0.38
(0.34–0.43)

0.37
(0.30–0.43)

0.35
(0.30–0.45)

0.37
(0.34–0.48) 0.366

25th percentile SUV 0.46
(0.43–0.58)

0.46
(0.38–0.58)

0.52
(0.43–0.62)

0.54
(0.44–0.63)

0.49
(0.44–0.70) 0.473

50th percentile SUV 0.66
(0.57–0.79)

0.62
(0.58–0.75)

0.70
(0.60–0.80)

0.71
(0.60–0.78)

0.81
(0.60–0.89) 0.368

75th percentile SUV 0.93
(0.82–1.09)

0.99
(0.78–1.09)

0.97
(0.83–1.12)

0.92
(0.82–1.07)

0.95
(0.83–1.23) 0.927

SUV histogram
kurtosis

4.32
(3.84–5.74)

4.10
(3.61–4.65)

4.93
(4.06–5.94)

5.27
(4.40–6.26)

5.59
(3.92–6.84) 0.071

SUV histogram
skewness

1.14
(0.92–1.30)

1.05
(0.91–1.18)

1.21
(0.96–1.47)

1.27
(0.94–1.47)

1.37
(0.98–1.67) 0.294

SUV histogram energy 0.29
(0.25–0.31)

0.27
(0.25–0.30)

0.29
(0.26–0.34)

0.29
(0.25–0.35)

0.28
(0.22–0.32) 0.629

SUV histogram
entropy

2.08
(2.03–2.22)

2.17
(2.05–2.31)

2.06
(1.88–2.25)

2.18
(1.84–2.33)

2.18
(2.09–2.60) 0.078

GLCM features

Contrast 1.15
(0.94–1.65)

1.25
(0.88–1.79)

1.17
(0.85–1.56)

1.22
(0.97–1.43)

1.33
(0.96–2.00) 0.808

Correlation 0.50
(0.42–0.57)

0.51
(0.45–0.56)

0.48
(0.35–0.57)

0.47
(0.37–0.58)

0.57
(0.43–0.63) 0.519

Dissimilarity 0.70
(0.63–0.89)

0.73
(0.57–0.94)

0.71
(0.57–0.81)

0.72
(0.60–0.82)

0.74
(0.57–0.98) 0.837

Energy 0.14
(0.11–0.16)

0.13
(0.09–0.16)

0.15
(0.12–0.18)

0.13
(0.11–0.17)

0.13
(0.09–0.19) 0.421

Entropy 3.55
(3.16–3.81)

3.59
(3.40–4.10)

3.34
(3.03–3.82)

3.61
(3.15–3.89)

3.94
(3.41–4.13) 0.057

Homogeneity 0.72
(0.67–0.75)

0.70
(0.65–0.73)

0.72
(0.69–0.76)

0.71
(0.67–0.75)

0.70
(0.63–0.76) 0.554
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Table 2. Cont.

Parameters Luminal A Luminal B-like
HER2 Negative

Luminal B-like
HER2 Positive

HER2-
Enriched Triple Negative p-Value

NGLDM features

Busyness 2.09
(1.39–3.89)

3.29
(2.72–4.81)

2.80
(1.68–4.12)

3.36
(2.44–4.29)

2.17
(1.48–3.00) 0.061

Coarseness 0.019
(0.011–0.039)

0.015
(0.009–0.019)

0.016
(0.009–0.029)

0.011
(0.008–0.014)

0.012
(0.009–0.015) 0.032

Contrast 0.028
(0.020–0.035)

0.027
(0.023–0.046)

0.027
(0.020–0.034)

0.023
(0.017–0.029)

0.029
(0.022–0.039) 0.215

All data are expressed as median (interquartile range). The p-values are the results of the Kruskal–Wallis test. AT,
adipose tissue; GLCM, gray-level co-occurrence matrix; HER2, Human epidermal growth factor receptor 2; MTV,
metabolic tumor volume; NGLDM, neighborhood gray-level difference matrix; SUV, standardized uptake value;
TLG, total lesion glycolysis.

3.3. PET/CT Textural Features and Pathological Response

Imaging parameters of primary breast cancer and textural features of peritumoral AT
were compared between pathological complete responders and non-responders (Table 3).
Among the textural features of peritumoral AT, responders showed significantly lower
values of the mean, 25th percentile, 50th percentile, and 75th percentile values of SUV,
SUV histogram entropy, GLCM dissimilarity, and GLCM entropy, and significantly higher
values of GLCM homogeneity than non-responders (p < 0.05). In contrast, there was no
significant difference in imaging parameters of primary breast cancer between both groups
(p > 0.05).

Table 3. Primary breast cancer imaging parameters and textural features of peritumoral AT according
to responses.

Parameter Responders
(n = 36)

Non-Responders
(n = 111) p-Value

Primary tumor
Maximum SUV 11.89 (7.57–15.68) 9.49 (6.25–14.81) 0.151

MTV 6.56 (3.29–15.51) 8.81 (4.29–15.21) 0.269
TLG 51.86 (21.58–123.98) 59.57 (20.83–91.38) 0.650

Peritumoral AT
First-order features

Maximum SUV 2.40 (2.21–2.76) 2.52 (2.24–2.82) 0.270
Mean SUV 0.72 (0.64–0.82) 0.80 (0.70–0.90) 0.011

Standard deviation SUV 0.35 (0.31–0.40) 0.37 (0.33–0.45) 0.137
25th percentile SUV 0.44 (0.40–0.56) 0.52 (0.45–0.64) 0.017
50th percentile SUV 0.60 (0.54–0.71) 0.71 (0.61–0.85) <0.001
75th percentile SUV 0.89 (0.78–1.00) 0.99 (0.84–1.14) 0.009

SUV histogram kurtosis 5.05 (4.16–6.95) 4.68 (3.81–5.83) 0.121
SUV histogram skewness 1.31 (1.05–1.56) 1.17 (0.91–1.42) 0.072

SUV histogram energy 0.30 (0.27–0.34) 0.28 (0.25–0.32) 0.051
SUV histogram entropy 2.02 (1.88–2.18) 2.14 (2.01–2.35) 0.020

GLCM features
Contrast 1.07 (0.83–1.36) 1.28 (0.96–1.71) 0.052

Correlation 0.49 (0.43–0.57) 0.50 (0.38–0.58) 0.986
Dissimilarity 0.66 (0.54–0.77) 0.74 (0.61–0.88) 0.028

Energy 0.14 (0.12–0.19) 0.13 (0.10–0.17) 0.054
Entropy 3.12 (2.94–3.65) 3.63 (3.32–3.94) <0.001

Homogeneity 0.75 (0.70–0.78) 0.70 (0.66–0.74) 0.003



J. Pers. Med. 2024, 14, 952 9 of 17

Table 3. Cont.

Parameter Responders
(n = 36)

Non-Responders
(n = 111) p-Value

NGLDM features
Busyness 3.10 (1.77–4.20) 2.80 (1.72–4.07) 0.604

Coarseness 0.015 (0.011–0.029) 0.014 (0.009–0.022) 0.439
Contrast 0.026 (0.020–0.032) 0.027 (0.020–0.036) 0.592

All data are expressed as median (interquartile range). The p-values are the results of the Mann-Whitney test. AT,
adipose tissue; GLCM, gray-level co-occurrence matrix; MTV, metabolic tumor volume; NGLDM, neighborhood
gray-level difference matrix; SUV, standardized uptake value; TLG, total lesion glycolysis.

Table 4. ROC curve analysis of imaging parameters for predicting pathological complete response.

Parameter AUC (95% Confidence
Interval) Cut-Off Value Sensitivity (%) Specificity (%)

Primary tumor
Maximum SUV 0.580 (0.476–0.677) 10.77 58.3 59.5

MTV 0.561 (0.454–0.669) 3.48 30.6 84.7
TLG 0.534 (0.424–0.638) 85.90 38.9 73.0

Peritumoral AT
First-order features

Maximum SUV 0.561 (0.454–0.655) 2.45 61.1 56.8
Mean SUV 0.642 (0.531–0.731) 0.85 86.1 39.6

Standard deviation SUV 0.583 (0.469–0.677) 0.37 66.7 52.3
25th percentile SUV 0.633 (0.528–0.728) 0.45 52.8 74.8
50th percentile SUV 0.686 (0.583–0.768) 0.78 91.7 38.7
75th percentile SUV 0.645 (0.535–0.731) 1.04 86.1 41.4

SUV histogram kurtosis 0.586 (0.475–0.687) 7.04 25.0 93.7
SUV histogram skewness 0.600 (0.942–0.702) 1.35 50.0 69.4

SUV histogram energy 0.608 (0.501–0.706) 0.26 80.6 39.6
SUV histogram entropy 0.653 (0.552–0.750) 2.20 86.1 44.1

GLCM features
Contrast 0.608 (0.486–0.707) 1.25 72.2 52.3

Correlation 0.505 (0.400–0.608) 0.64 97.2 12.6
Dissimilarity 0.622 (0.510–0.719) 0.73 72.2 52.3

Energy 0.607 (0.500–0.699) 0.11 86.1 36.0
Entropy 0.697 (0.585–0.791) 3.24 63.9 78.4

Homogeneity 0.717 (0.600–0.811) 0.75 58.3 85.6

NGLDM features
Busyness 0.529 (0.419–0.630) 2.70 66.7 47.7

Coarseness 0.543 (0.434–0.643) 0.011 77.8 36.0
Contrast 0.530 (0.418–0.627) 0.023 41.7 69.4

AT, adipose tissue; AUC, area under the receiver operating characteristic curve; GLCM, gray-level co-occurrence
matrix; MTV, metabolic tumor volume; NGLDM, neighborhood gray-level difference matrix; SUV, standardized
uptake value; TLG, total lesion glycolysis.

The relationship between pathological complete response and FDG PET/CT imag-
ing features was further analyzed using univariate and multivariate logistic regression
analyses (Table 5). Mean, 25th percentile, 50th percentile, and 75th percentile values of
SUV, SUV histogram entropy, GLCM energy, GLCM entropy, and GLCM homogeneity of
the peritumoral AT were significantly associated with pathological complete response in
the univariate analysis (p < 0.05). Significant imaging features in the univariate analysis
were included in the multivariate analysis, adding age, clinical TNM stage, and molecular
subtype as covariates. In the multivariate analysis, mean SUV (p = 0.012), 50th percentile
SUV (p = 0.002), 75th percentile SUV (p = 0.015), SUV histogram entropy (p = 0.034), GLCM
entropy (p = 0.001), and GLCM homogeneity (p = 0.002) were independent predictors for
pathological complete response. Higher values of GLCM homogeneity and lower values of



J. Pers. Med. 2024, 14, 952 10 of 17

the mean, 25th percentile, and 75th percentile values of SUV, SUV histogram entropy, and
GLCM entropy were associated with higher pathological complete response rates.
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Figure 3. ROC curves analysis of PET/CT parameters to identify predictors of pathological
complete response.

Table 5. Univariate and multivariate logistic regression analyses of predictors for pathological
complete response.

Parameter
Univariate Analysis Multivariate Analysis

p-Value Odds Ratio
(95% Confidence Interval) p-Value Odds Ratio

(95% Confidence Interval)

Primary tumor
Maximum SUV 0.355

MTV 0.380
TLG 0.385

Peritumoral AT
First-order features

Maximum SUV 0.258
Mean SUV 0.016 23.70 (1.83–307.75) 0.012 26.92 (2.06–351.31)

Standard deviation SUV 0.174
25th percentile SUV 0.025 29.49 (1.54–564.71) 0.139
50th percentile SUV 0.004 55.27 (3.70–826.21) 0.002 76.37 (4.80–1215.22)
75th percentile SUV 0.015 12.47 (1.62–95.81) 0.015 12.46 (1.64–94.70)

SUV histogram kurtosis 0.074
SUV histogram skewness 0.059

SUV histogram energy 0.074
SUV histogram entropy 0.029 3.98 (1.15–13.77) 0.034 4.11 (1.12–15.14)

GLCM features
Contrast 0.426

Correlation 0.840
Dissimilarity 0.174

Energy 0.037 0.02 (0.01–0.70) 0.083
Entropy 0.001 3.49 (1.65–7.37) 0.001 3.67 (1.65–8.16)

Homogeneity 0.001 0.32 (0.16–0.63) 0.002 0.33 (0.16–0.66)
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Table 5. Cont.

Parameter
Univariate Analysis Multivariate Analysis

p-Value Odds Ratio
(95% Confidence Interval) p-Value Odds Ratio

(95% Confidence Interval)

NGLDM features
Busyness 0.402

Coarseness 0.843
Contrast 0.668

AT, adipose tissue; GLCM, gray-level co-occurrence matrix; MTV, metabolic tumor volume; NGLDM, neighbor-
hood gray-level difference matrix; SUV, standardized uptake value; TLG, total lesion glycolysis.

3.4. Survival Analysis for PFS

The patients’ median PFS was 36.9 months (range, 5.6–90.5 months). During the
follow-up, disease progression or death was observed in 29 patients (19.7%). The asso-
ciation between FDG PET/CT features and PFS was assessed using a Cox proportional
hazards regression model (Table 6). In the univariate analysis, along with MTV and TLG
of the primary breast cancer lesion, 50th percentile value of SUV, SUV histogram entropy,
GLCM correlation, GLCM entropy, and NGLDM coarseness of the peritumoral AT were
significantly associated with PFS (p < 0.05). Significant PET/CT imaging features were
included in the multivariate survival analysis after adjusting for age, clinical TNM stage,
and molecular subtype. In the multivariate analysis, MTV of the primary breast tumor
(p = 0.039; hazard ratio, 1.01 per 1.00 cm3 increase; 95% CI, 1.00–1.02) and SUV histogram
entropy (p = 0.042; hazard ratio, 2.71 per 1.00 increase; 95% CI, 1.10–10.54) and GLCM
correlation (p = 0.040; hazard ratio, 29.32 per 1.00 increase; 95% CI, 1.17–734.56) of the
peritumoral AT were independent predictors for PFS. An increased MTV of the primary
tumor, increased SUV histogram entropy and GLCM correlation of peritumoral AT were
associated with poor survival. When the Kaplan–Meier survival curves were generated,
patients with high values of MTV (≥10.47 cm3), SUV histogram entropy (≥2.10), and
GLCM correlation (≥0.54) had a significantly worse PFS than those with low values
(p = 0.035, p = 0.007, and p = 0.001, respectively; Figure 4).

Table 6. Univariate and multivariate survival analyses for predicting PFS.

Parameter
Univariate Analysis Multivariate Analysis

p-Value Hazard Ratio
(95% Confidence Interval) p-Value Hazard Ratio

(95% Confidence Interval)

Primary tumor
Maximum SUV 0.332

MTV 0.002 1.01 (1.01–1.02) 0.039 1.01 (1.00–1.02)
TLG 0.008 1.00 (1.00–1.01) 0.178

Peritumoral AT
First-order features

Maximum SUV 0.360
Mean SUV 0.238

Standard deviation SUV 0.600
25th percentile SUV 0.310
50th percentile SUV 0.022 8.60 (1.37–53.88) 0.083
75th percentile SUV 0.224

SUV histogram kurtosis 0.555
SUV histogram skewness 0.535

SUV histogram energy 0.221
SUV histogram entropy 0.012 4.23 (1.38–12.93) 0.042 2.71 (1.10–10.54)
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Table 6. Cont.

Parameter
Univariate Analysis Multivariate Analysis

p-Value Hazard Ratio
(95% Confidence Interval) p-Value Hazard Ratio

(95% Confidence Interval)

GLCM features
Contrast 0.487

Correlation 0.019 38.25 (1.83–796.39) 0.040 29.32 (1.17–734.56)
Dissimilarity 0.542

Energy 0.418
Entropy 0.045 1.87 (1.01–3.46) 0.437

Homogeneity 0.546

NGLDM features
Busyness 0.998

Coarseness 0.028 0.63 (0.42–0.95) 0.082
Contrast 0.378

All hazard ratios are expressed per 1.00 increase in parameter values, except for NGLDM coarseness. For the
NGLDM coarseness, the hazard ratio values are expressed per 0.01 increase in the parameter values. AT, adipose
tissue; GLCM, gray-level co-occurrence matrix; MTV, metabolic tumor volume; NGLDM, neighborhood gray-level
difference matrix; SUV, standardized uptake value; TLG, total lesion glycolysis.
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4. Discussion

Nowadays, there is ample evidence that breast cancer cells have intimate bidirec-
tional communication with peritumoral AT cells via cell-to-cell interactions and secretion
of bioactive factors, including cytokines and chemokines [15]. Breast cancer cells mod-
ify adipocytes and AT-derived mesenchymal stromal/stem cells into cancer-associated
adipocytes and cancer-associated fibroblasts with decreased differentiation marker expres-
sion and increased expression of pro-tumoral and pro-inflammatory molecules [15–17]. In
previous studies, modifications of AT cells were more prominently found in peritumoral
AT than in AT distant from the tumors [16,25]. These modified cells play a crucial role in
promoting growth, metastasis, angiogenesis, and therapy resistance of breast cancer tissue
and recruiting immunosuppressive cells in the peritumoral AT [15,16,26].

The cross-talk between cancer cells and peritumoral AT cells can alter FDG uptake of
peritumoral AT through two mechanisms. One is the Warburg effect induced by cancer
cells in cancer-associated adipocytes [18]. In a previous study, breast cancer cells induced
overexpression of 5′-adenosine monophosphate-activated protein kinase (AMPK) and
hexokinase 2 (HK2) in cancer-associated adipocytes located in the peritumoral AT [18]. As
both AMPK and HK2 are the main enhancers of glucose uptake and glycolysis in cells,
this phenomenon leads to increased FDG uptake in cancer-associated adipocytes [18]. An-
other mechanism is increased inflammatory changes and recruitment of immune cells in
peritumoral AT [15,27]. By secreting diverse pro-inflammatory cytokines and chemokines,
cancer-associated adipocytes recruit immunosuppressive cells such as tumor-associated
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macrophages and regulatory T-cells and evoke an inflammatory response in peritumoral
AT [15,27,28]. Of immune cells, M2-subtype macrophages, which are associated with
tumor progression and immune suppression in the tumor microenvironment, are asso-
ciated with FDG uptake in peritumoral AT [19,29]. In previous immunohistochemical
analyses of surgical specimens of gastric and colorectal cancers, increased M2-subtype
macrophage infiltration in peritumoral AT was significantly related to increased mean SUV
and metabolic heterogeneity of peritumoral AT on FDG PET/CT [20,21]. Considering the
significant relationship between FDG PET/CT findings and cancer-induced modifications
in peritumoral AT, it is not surprising that FDG PET/CT textural features of peritumoral
AT could have clinical implications in predicting tumor aggressiveness and prognosis. In
previous studies, the textural features of peritumoral AT on FDG PET/CT turned out to
be independent predictors of recurrence-free survival after curative surgery in patients
with gastric and colorectal cancers [20,21]. In patients with breast cancer, a previous study
extracted 38 PET/CT textural features of peritumoral and contralateral AT from the data of
326 patients with breast cancer [19]. In that study, 37 textural features showed significant
differences between peritumoral and contralateral AT, indicating increased FDG uptake and
metabolic heterogeneity in peritumoral AT. Moreover, the textural features of peritumoral
AT demonstrated a high diagnostic ability for predicting axillary lymph node metastasis of
breast cancer, which was comparable to that of maximum SUV of lymph node. Therefore,
peritumoral AT showing increased FDG uptake and metabolic heterogeneity on PET/CT
can be considered to have a more robust interrelationship with cancer cells, which further
increases the risk of cancer metastasis and recurrence.

In this study, we investigated whether the textural features of peritumoral AT on FDG
PET/CT have clinical value in predicting the pathological response to NAC in patients with
breast cancer. We found that the mean, 50th percentile, and 75th percentile values of SUV,
SUV histogram entropy, GLCM entropy, and GLCM homogeneity of peritumoral AT were
independent predictors of pathological complete response to NAC, with higher values of
the mean, 50th percentile, and 75th percentile values of SUV, SUV histogram entropy, and
GLCM entropy and a lower value of GLCM homogeneity in non-responders than respon-
ders. The mean, 50th percentile, and 75th percentile values of SUV represent the degree
of FDG uptake. SUV histogram entropy and GLCM entropy measure the randomness of
the SUV intensity distribution within an image; a high entropy value indicates an image
with a random distribution of SUV intensities [21,30]. GLCM homogeneity measures the
uniformity of pixel pairs, and a high GLCM homogeneity value indicates many voxels
with similar SUV intensities in an image [31]. Hence, the results of our study implied that
patients with breast cancer who showed increased FDG uptake intensity and metabolic
heterogeneity in the peritumoral AT were less likely to have a chance of pathological
complete response to NAC, suggesting the role of PET/CT textural features of peritumoral
AT as potential imaging biomarkers for predicting the response to NAC. The results of
this study provide imaging evidence that interactions between breast cancer cells and
peritumoral AT cells are involved chemotherapy resistance. Recently, to improve breast
cancer treatment effects, cancer-associated adipocytes, and cancer-associated fibroblasts
have been targeted [15,32]. Drugs that target these cells themselves or bioactive molecules
secreted from the cells have been shown to reduce breast cancer cell growth and resistance
to chemotherapy [15,32]. In future clinical studies targeting cancer-associated AT, the
textural features of peritumoral AT might help in selecting optimal candidates.

In our study, two textural features of peritumoral AT, SUV histogram entropy and
GLCM correlation, were significantly associated with PFS in the multivariate survival
analysis, along with the MTV of the primary tumor. The GLCM correlation measures the
linear dependence of SUV intensity in an image [31]. It evaluates whether there is a linear
relationship of the SUV intensity between the two neighboring pixels in an image, and,
in previous studies, patients with malignant tumors with high GLCM correlation values
had significantly poor survival [33]. Although both SUV histogram entropy and GLCM
correlation were independent predictors of PFS, SUV histogram entropy might be more
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suitable for use as an imaging biomarker because it also showed a significant association
with NAC response in our study and the presence of axillary lymph node metastasis in
a previous study [19]. Furthermore, textural features based on SUV histogram reflect the
global heterogeneity of a lesion and are known to be more stable and reliable than GLCM
features [8]. However, because textural features of peritumoral AT only represent cancer-
associated changes in the peritumoral AT, incorporating both tumor and peritumoral AT
imaging features could improve the predictability of clinical outcomes in patients with
breast cancer [30].

In the comparative analyses of FDG PET/CT imaging features according to molecular
subtypes of breast cancer, HER-enriched and triple-negative breast cancers showed signifi-
cantly higher maximum SUV values than all other breast cancer types, as shown in previous
studies [34]. Furthermore, among the peritumoral AT imaging features, HER-enriched and
triple-negative breast cancers showed significantly lower NGLDM coarseness values than
the luminal A type, and several textural features including SUV histogram kurtosis, SUV
histogram entropy, GLCM entropy, and NGLDM busyness showed borderline significance.
NGLDM coarseness measures the average difference between the central voxel and its
neighborhood voxels, and a high value of NGLDM coarseness indicates a more uniform
texture in an image [35]. Considering that HER-enriched and triple-negative breast cancers
show different characteristics in the tumor microenvironment than other subtypes [36], it
seems that these differences in the tumor microenvironment also affected the peritumoral
AT imaging features on FDG PET/CT.

This study had several limitations. The retrospective design of this study is the first
limitation, which might contain a certain risk of bias. Further, the results of the current study
should be externally validated with larger patient populations. Second, textural analysis
has been widely used to quantify imaging features; however, the lack of standardization
of analytical methods is still a major hurdle to the general clinical applications of textural
features [37]. Third, since molecular subtypes of breast cancer, NAC regimens, and types
of adjuvant treatment modalities can affect the response to NAC and survival of breast
cancer patients, further evaluation of the clinical significance of peritumoral AT imaging
parameters according to those factors might be needed. Fourth, although AT within a 1 cm
distance of the tumor margin has been applied to define peritumoral AT on FDG PET/CT
in previous studies, the definition of peritumoral AT for extracting textural features should
be further validated [19–21]. Further studies are necessary to establish the method for
measuring textural features of peritumoral AT. Finally, there might be a mild limitation
arising from analyzing images from two different PET/CT scanners, even though the two
scanners were from the same company (Siemens Healthineers) and adopted the same
acquisition protocol for PET images.

5. Conclusions

The present study demonstrated that the textural features of peritumoral AT on
FDG PET/CT could predict the response to NAC and PFS in patients with breast cancer.
Increased FDG uptake intensity and metabolic heterogeneity of peritumoral AT were
associated with poor response to NAC and worse PFS. The textural features of peritumoral
AT on FDG PET/CT could be potential imaging biomarkers for predicting clinical outcomes
in patients with breast cancer treated with NAC.
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