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Simple Summary: The InterVision framework employs advanced deep learning techniques to
interpolate or create intermediate images between existing ones using deformable vectors, thereby
capturing specific patient characteristics, such as unique anatomical features and variations in
organ shape, size, and position. These characteristics are vital for personalizing treatment plans in
radiotherapy, as they allow for the use of pre-planning information, which is available before the
treatment begins, ensuring a tailored and precise approach to each patient’s care. The training process
involves two steps: first, generating a general model using a comprehensive dataset, and second,
fine-tuning this general model with additional data produced by the InterVision framework. By
incorporating the dataset generated through the InterVision framework, we were able to create a
more personalized model, surpassing the level of customization achieved by previous fine-tuning
approaches. The performance of these models is evaluated using the volumetric dice similarity
coefficient (VDSC) and the Hausdorff distance 95% (HD95%) across 18 anatomical structures in
20 test patients. A total of 18 anatomical structures were selected based on prior treatments that
involved the most organs, and 20 test patients were chosen according to the availability that has a
re-planning CT and manual contours within the total dataset. This framework is especially valuable
for accurately predicting complex organs and targets that present significant challenges for traditional
deep learning algorithms, particularly due to the intricate contours and the variability in organ shapes
across different patients.

Abstract: Adaptive radiotherapy (ART) workflows are increasingly adopted to achieve dose esca-
lation and tissue sparing under dynamic anatomical conditions. However, recontouring and time
constraints hinder the implementation of real-time ART workflows. Various auto-segmentation meth-
ods, including deformable image registration, atlas-based segmentation, and deep learning-based
segmentation (DLS), have been developed to address these challenges. Despite the potential of DLS
methods, clinical implementation remains difficult due to the need for large, high-quality datasets
to ensure model generalizability. This study introduces an InterVision framework for segmentation.
The InterVision framework can interpolate or create intermediate visuals between existing images to
generate specific patient characteristics. The InterVision model is trained in two steps: (1) generating
a general model using the dataset, and (2) tuning the general model using the dataset generated
from the InterVision framework. The InterVision framework generates intermediate images between
existing patient image slides using deformable vectors, effectively capturing unique patient char-
acteristics. By creating a more comprehensive dataset that reflects these individual characteristics,
the InterVision model demonstrates the ability to produce more accurate contours compared to
general models. Models are evaluated using the volumetric dice similarity coefficient (VDSC) and
the Hausdorff distance 95% (HD95%) for 18 structures in 20 test patients. As a result, the Dice score
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was 0.81 ± 0.05 for the general model, 0.82 ± 0.04 for the general fine-tuning model, and 0.85 ± 0.03
for the InterVision model. The Hausdorff distance was 3.06 ± 1.13 for the general model, 2.81 ± 0.77
for the general fine-tuning model, and 2.52 ± 0.50 for the InterVision model. The InterVision model
showed the best performance compared to the general model. The InterVision framework presents a
versatile approach adaptable to various tasks where prior information is accessible, such as in ART
settings. This capability is particularly valuable for accurately predicting complex organs and targets
that pose challenges for traditional deep learning algorithms.

Keywords: Swin-Unet; transformer; deep learning; ART; auto-segmentation; head and neck; deform
vector

1. Introduction

Adaptive radiation therapy (ART) has significantly advanced over recent decades.
Its key benefit is adjusting treatment plans based on systematic feedback from ongoing
measurements [1–5]. This approach enhances radiation therapy by monitoring treatment
variations and proactively optimizing treatment protocols as therapy progresses. Online
ART further refines this process by adjusting the patient’s treatment plan immediately
before delivery, accounting for transient and random changes observed during a single
treatment fraction [6–9]. However, bringing the benefits of online ART faces a significant
bottleneck in the recontouring steps. This progress is time-consuming and is a limitation of
daily clinic routines.

Conventional techniques, such as atlas-based segmentation and deformable image
registration, have been used in the auto-segmentation process to improve the effectiveness
and accuracy of the segmentation results [10–13]. However, these techniques were also
not suited to solving the limitations due to the anatomical variations observed during
the adaptive treatment. In response, deep convolutional neural networks (DCNNs) have
shown the potential to succeed in the segmentation tasks [14–19]. Numerous investigations
have harnessed the power of CNNs to perform segmentation tasks on various organs and
substructures in the context of radiotherapy across different disease sites and imaging
modalities. However, given the intrinsic variability in the size of organs at risk (OARs),
especially in cases where specific OARs occupy only a few image slices, it is imperative to
evaluate the effectiveness of deep neural network models for OAR segmentation within
the head and neck (HN) region [20,21].

As CNNs have become a state-of-the-art segmentation method in radiotherapy, more
commercial artificial intelligence (AI) software is being introduced into clinical practice.
However, a complete subjective and comprehensive evaluation of their performance is lack-
ing. Due to the significant inconsistency between different gold-standard training datasets,
the automatic segmentations provided by different vendors vary widely. Different network
architectures also lead to discrepancies in prediction results. This increases segmentation
uncertainty, and the impact on clinical practice cannot be neglected.

Given the limitations of available datasets in medical imaging compared to those in
computer vision, researchers have increasingly adopted the concept of adaptive radiation
therapy (ART). Online ART involves repetitive re-planning at each treatment fraction,
leveraging prior knowledge from planning CT scans and corresponding contours, ei-
ther generated by deep learning models or manually created by physicians. This prior
knowledge, which closely approximates the ground truth, provides a valuable resource.
Many researchers have developed personalized deep learning segmentation (DLS) models
through a dual-phase training strategy: initially training a generalized model on a large
dataset and then fine-tuning it with patient-specific data [22–25]. This approach, known
as fine-tuning, enhances the model’s accuracy and applicability to individual patients.
The transition from general to fine-tuning training is driven by the performance of the
general model, which, while robust, may lack precision when applied to individual patient
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cases. Identified limitations in the general model’s predictions highlight the need for fine-
tuning, ensuring that the model adapts more accurately to the unique anatomical features
of each patient.

Using the fine-tuning framework, a lot of papers showed a high performance com-
pared to the previous works, but the limitation was that only one dataset was applied,
and this resulted into a less personalized fine-tuning model. To solve this problem, other
approaches such as using a multi-fraction dataset that can increase personalized dataset
collection has been showed. However, if we use the multi-fraction dataset, we cannot use
this process in the real-time clinical application because we do not have a multi-fraction
dataset before treatment [26–28]. To address this challenge, we introduce the InterVi-
sion framework, which overcomes the limitations of previous studies by generating new
datasets from existing ones, thereby enhancing both the scope and precision of the data.
Unlike conventional approaches that rely solely on pre-existing datasets, the InterVision
framework creates new datasets by interpolating between existing image slices, generating
new images between the slides.

In this study, we have developed an innovative framework designed to generate more
personalized datasets by utilizing the original dataset. This enhanced dataset is created
using the deformable vector of each slide of the personalized patient. We believe that with
further development, and the ability to generate CT images with thinner slice thickness
than currently possible, this technique could significantly enhance the creation of more
personalized datasets. The primary aim of this research is to propose a patient-specific
data augmentation strategy that surpasses the performance of traditional segmentation
models. However, we recognize a limitation in that our focus is specifically on head and
neck (HN) region segmentation. Ultimately, this approach will enhance the accuracy and
robustness of auto-segmentation models, leading to more reliable and precise outcomes in
clinical applications.

2. Materials and Methods
2.1. Patient Cohorts

This study enrolled 120 patients with head and neck (H&N) cancer who underwent
radiotherapy (RT). Patients with a history of surgery in the H&N region were excluded
to focus on those treated with radiotherapy. This exclusion ensures that the study results
are not influenced by surgical interventions, allowing for a more consistent and reliable
analysis. All of the CT are scanned using Aquilion TSX-201A (Toshiba, Tokyo, Japan)
or Somatom Sensation Open Syngo CT 2009E (Siemens, Munich, Germany) with a slice
thickness of 3 mm. From 120 patients, 100 planning CTs (pCTs) and manual contours
(MCs) (patients P001–P100) and 20 pCTs and MCs of P101–P120 were the dataset that had a
re-planned CT (rpCT) and re-planned manual contours (rpMCs). The rpCT was generated
after 36 days (range of 29~43 days). The manual contours were validated from a single
radiation oncologist according to the consensus guidelines [29].

2.2. Overview of the Framework

Figure 1 illustrates the proposed InterVision framework. The InterVision model
consists of two parts: general training and personalized training. As shown in the figure,
the initial step involves training a general model using the original dataset. Following this,
the personalized model is trained using the dataset generated by the InterVision framework
using the personalized dataset. The goal of employing the InterVision framework is to
create a gold-standard model tailored for each patient. Given the limitations of the dataset
compared to those available in computer vision, this discrepancy makes it challenging to
fit them into an adaptive personalized framework. In this study, the InterVision model
is aimed to create new images by generating intermediate slices using the deform vector
between each original slice. Essentially, for each pair of adjacent slides, a deform vector
will be used to produce a new image that represents the transition from one slide to the
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next. This method allows us to interpolate and generate additional data points, enhancing
the overall dataset.
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Figure 1. The proposed InterVision framework. (1) illustrates the general model training using
the original dataset, the training set and the validation set is divided using the original dataset.
(2) illustrates the progress of the general fine-tuning model. The general fine-tuning model is using
1 personalized patient data for the training. For the evaluation, other fraction of the personalized
patient data will be used. (3) shows the workflow of the InterVision framework. (3-1), (3-2) and (3-3)
show the process of generating InterVision dataset.

After training the general DL model using the original dataset in Step 1, we generated
the fine-tuning model using the personalized model in Step 2. We generated a new image
for each slide using the deform vector specific to each slide. This approach allows us to
collect a more personalized dataset, making the model better suited for individualized
patient care (Figure 1(3-1)). The concept of the InterVision framework is illustrated in
Figure 2. Using the dataset generated by the InterVision framework, we have trained an
InterVision model to enhance personalization and accuracy in patient-specific applications.
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Figure 2. Conceptual representation of generating the InterVision dataset. A deformable vector is
created by comparing each slide. Utilizing this deformable vector, we generate intermediate images
between each slide. Consequently, we nearly doubled the size of the personalized dataset.

2.3. The General Model and the General Fine-Tuning Model

We assume a general dataset consisting of n patients (n = 100), each with a planning
CT (pCT). The general model is trained using this dataset of 100 patients, none of whom
have a re-planning CT (rpCT). These 100 patients are divided into training and validation
sets. For the general fine-tuning model, the personalized dataset is derived from the single
planning CT (pCT) and the corresponding manual contour (MC) of the patient of interest.
The patient’s re-planning CT (rpCT) and re-planning manual contour (rpMC) are used as
the test dataset.

The primary difference between the general model, general fine-tuning model and the
InterVision model lies in the data used for training:

• The general model: This model is trained on a standard dataset without any personal-
ized adjustments.

• The general fine-tuning model: This model takes the general model and fine-tunes it
using data from a single patient to better adapt to that specific case.

• The InterVision model: This model builds upon the general fine-tuning model by
incorporating additional data generated by the InterVision framework.

2.4. The InterVision Framework

Before generating the InterVision dataset, we first standardized the image resolution
for all patients to 1.0 × 1.0 × 3.0 mm³. Additionally, we adjusted all patient image sizes
to 160 × 128 × 130. Subsequently, we generated deform vectors between each slide of the
personalized patient images. To create these deform vectors, we developed a Python script
based on the reference methodology [30]. Selecting control points was essential for the
deformation process. These control points were chosen based on the segmentation results
for each organ, comparing the patient slide (N) to another patient slide (N + 1).

Dp = Lp − Kp, (1)

Lp represents the control point on slide N + 1, Kp represents the control point on slide
N, Dp is the deformation vector from Lp to Kp, and p is the index of the control point
number. Gathering the deformable vector of each slide is illustrated in Figure 3.
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Figure 3. Concept of calculating deformation vectors using control points. Images within the original
image are repositioned based on the deformation vectors derived from each control point. The degree
of deformation applied to a voxel increases as its proximity to the control point decreases.

Deformable vectors are computed by analyzing the differences between corresponding
anatomical structures across adjacent slices. These vectors represent the transformation
needed to align the skull structure, capturing the subtle changes in shape and position be-
tween the slices. To generate intermediate slices, we interpolate between these deformable
vectors, effectively creating a smooth transition that reflects the anatomical continuity. For
example, suppose we have two consecutive slices, A and B, the deformable vector would
map the control points in slice A to their corresponding positions in slice B by interpolating
this vector field. In that case, we can generate an intermediate slice that reflects a gradual
shift from A to B, preserving the anatomical details. This process is repeated across the
entire patient slides, allowing us to create a more refined and personalized model.

By generating these deformation vector V at the 2D image coordinates, Sn was deter-
mined through a weighted summation of the deformation vectors corresponding to the
control points. This can be mathematically expressed as:

Vn =
∑m

p=1
(
G
(∣∣Lp − Sn

∣∣ , σ2

)
w
(∣∣Lp − Sn

∣∣, σ1
)
Dp

∑m
p=1 G

(∣∣Lp − Sn
∣∣, σ2

) , (2)

G(x, σ) =
1√
2πσ

exp
{
− x2

2σ2

}
, (3)

w(x, σ) =
G(x, σ)

G(0, σ)
, (4)

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

V represents the deformation vector of 2D image coordinates of the compared image
and m is the number of control points. The terms σ1 and σ2 are the standard deviations,
and G denotes the normal distribution. Finally, w represents the weight, obtained by
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normalizing the normal distribution with respect to the central value. Using this approach,
we scaled these vector fields by a factor of 0.5 to create intermediate images for each
slide. As a result, we doubled up the slides per patient accompanied by paired contours,
establishing the foundation for contouring 18 organs.

2.5. Model Evaluation

After generating the dataset for training, we proceeded to train and compare three
distinct models. The training dataset, consisting of 100 planning CTs (pCTs) and their
corresponding manual contours (MCs) from patients P001–P100, was used to develop a
generalized auto-contouring model. Following this, the general fine-tuning model and the
proposed InterVision model were trained. Basic augmentation techniques were applied
across all models to enhance their robustness. For comprehensive validation, a separate set
of 20 re-planning CTs (rpCTs) and MCs from patients P101–P120 was employed.

2.6. Network Architectures

Figure 4 illustrates the overall architecture of the used Swin-Unet [31,32]. Swin-Unet
consists of encoder, bottleneck, decoder and skip connections. The basic unit of Swin-
Unet is a Swin Transformer block. For the encoder, medical images are divided into
non-overlapping patches with a size of 4 × 4 to transform the inputs into sequence embed-
dings. This partitioning results in a feature dimension of 4 × 4 × 3 = 48 for each patch. A
linear embedding layer is then applied to project the feature dimension into an arbitrary
dimension, denoted as C. The transformed patch tokens pass through multiple Swin Trans-
former blocks and patch merging layers to generate hierarchical feature representations.
Specifically, the patch merging layer is responsible for downsampling and increasing the
dimension, while the Swin Transformer block handles feature representation learning.
Inspired by the U-Net architecture, we designed a symmetric transformer-based decoder.
The decoder consists of Swin Transformer blocks and patch expanding layers. The extracted
context features are fused with multi-scale features from the encoder via skip connections to
compensate for the loss of spatial information caused by downsampling. Unlike the patch
merging layer, the patch expanding layer is specially designed for upsampling. This layer
reshapes feature maps of adjacent dimensions into larger feature maps with 2× upsampling
resolution. Finally, the last patch expanding layer performs 4× upsampling to restore the
feature maps to the input resolution (W × H). A linear projection layer is then applied to
these upsampled features to produce pixel-level segmentation predictions. Each block will
be elaborated upon in the following sections.

The Swin Transformer block is unlike the conventional multi-head self-attention (MSA)
module, as the Swin Transformer block is based on shifted windows. As illustrated in
Figure 5, two consecutive Swin Transformer blocks are shown. Each Swin Transformer
block consists of a LayerNorm (LN) layer, a multi-head self-attention module, a residual
connection, and a 2-layer multi-layer perceptron (MLP) with GELU non-linearity. The
window-based multi-head self-attention (W-MSA) module and the shifted window-based
multi-head self-attention (SW-MSA) module are employed in these successive transformer
blocks, respectively. This window partitioning mechanism allows continuous Swin Trans-
former blocks to be formulated as follows:

X̂s = LN1

(
Xs−1

)
+ W − MSA

(
LN1

(
Xs−1

))
, (5)

Xs = LN2
(
X̂s)+ MLP

(
LN2

(
X̂s)), (6)

X̂s+1 = LN3(Xs) + SW − MSA(LN3(Xs)), (7)

Xs+1 = LN4

(
X̂s+1

)
+ MLP

(
LN4

(
X̂s+1

))
, (8)

where X̂s and Xs represent the outputs of the (S)W-MSA module and the MLP module of
the sth block, respectively.
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The loss function employed was dual cross-entropy [33]. This dual cross-entropy loss
function comprises two components: a cross-entropy term LCE which is responsible for
increasing the probability, and a term Lr, which is responsible for decreasing the probability.
The dual cross-entropy loss function can be expressed as follows:
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LDCE = LCE + Lr, (9)

Lr =
1
M

M

∑
i=1

(
(1 − yi)

Tlog (α + pi)) , (10)

M is the training dataset size, yi is an ith element of the output vector, and pi is a vector
in which jth, element is the probability that sample xi is assigned to the j th class. Lr aims
to improve the model’s generalization by penalizing overconfident wrong predictions,
thereby encouraging a more balanced and cautious assignment of probabilities across the
different classes.

2.7. Evaluation Metrics

We assessed VDSC [34] and the HD95 [35] in three trained models to compare with
the MCs. The VDSC is a measure of segmentation volume overlap, comparing the outputs
of the trained model segmentation A and the expert segmentation B:

VDSC =
2|A ∩ B|
|A|+ |B| , (11)

The Hausdorff distance is a measure that compares the spatial separation between the
trained model segmentation A and the expert segmentation B. Specifically, HD95 represents
the largest surface-to-surface separation among 95% of the surface points of the trained
model segmentation A and the expert segmentation B. Let a and b denote points in A and
B, respectively.

HD95(A, B) = max
a⊂A

{
min
b⊂B

(dis(a, b))
}

95%
, (12)

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn. where dis(a, b) is the Euclidean distance between points a
and b.

VDSC is widely used because it provides a measure of overlap between the predicted
segmentation and the ground truth, making it a reliable indicator of how well the model
captures the shape and size of the target structure. Its value ranges from 0 to 1, with 1
indicating perfect overlap. This makes it an intuitive metric for assessing the accuracy of
the segmentation.

HD95%, on the other hand, measures the maximum distance between the boundary
points of the predicted segmentation and the ground truth, but it focuses on the 95th
percentile of these distances. This metric is particularly useful because it is less sensitive to
outliers than the traditional Hausdorff distance, providing a more robust assessment of
boundary accuracy. This is critical in medical applications, where small inaccuracies at the
boundaries can have significant clinical implications.

We chose these metrics over others, such as precision, recall, or Jaccard index, because
VDSC and HD95% provide a comprehensive evaluation of both the overlap and boundary
accuracy, which are crucial for ensuring that the segmentation is not only accurate but also
clinically viable.

By using these two quantitative evaluations, we were able to validate the perfor-
mance of three models (the general model, the general fine-tuning model and the InterVi-
sion model).

3. Results

Table 1 presents the total volumetric dice similarity coefficient (VDSC) of the four
models for 18 organs in the head and neck region, including the brainstem, oral cavity,
larynx, esophagus, spinal cord, left and right cochlea, mandible, left and right parotid, right
and left submandibular gland (SMG), thyroid, left and right optic nerve, optic chiasm, and
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left and right eye. By training the InterVision model with the inclusion of intermediate
slides, we achieved more accurate contour predictions compared to other models. The
InterVision model improved VDSC results across all organs compared to the general model
and the general fine-tuning model. Additionally, the VDSC standard deviations (SD)
were significantly lower than those of the other models, highlighting the consistency and
robustness of the InterVision approach.

Table 1. Comparison of segmentation performance for 18 organs using the general model, the general
fine-tuning model, and the InterVision model using VDSC and 95% Hausdorff distance measures.

VDSC SD VDSC SD HD95 SD HD95 SD

Brainstem

General 0.88 0.01

L cochlea

General 0.74 0.08

Brainstem

General 3.26 0.70

L cochlea

General 2.39 1.01

General
Fine-

tunning
0.89 0.02

General
Fine-

tunning
0.75 0.09

General
Fine-

tunning
3.16 0.67

General
Fine-

tunning
2.11 0.85

InterVision 0.90 0.02 InterVision 0.84 0.05 InterVision 2.97 0.61 InterVision 2.01 0.81

Oral cavity

General 0.89 0.02

R cochlea

General 0.74 0.03

Oral cavity

General 4.75 1.55

R cochlea

General 2.52 0.97

General
Fine-

tunning
0.90 0.01

General
Fine-

tunning
0.75 0.04

General
Fine-

tunning
4.19 0.57

General
Fine-

tunning
2.22 0.84

InterVision 0.92 0.01 InterVision 0.79 0.03 InterVision 3.78 0.43 InterVision 1.89 0.49

Larynx

General 0.85 0.03

Mandible

General 0.94 0.01

Larynx

General 3.15 0.58

Mandible

General 1.4 0.45

General
Fine-

tunning
0.85 0.03

General
Fine-

tunning
0.95 0.01

General
Fine-

tunning
3.12 0.55

General
Fine-

tunning
1.29 0.39

InterVision 0.88 0.01 InterVision 0.95 0.01 InterVision 2.97 0.32 InterVision 1.21 0.34

Esophagus

General 0.81 0.05

L optic
nerve

General 0.71 0.05

Esophagus

General 4.6 1.51

L optic
nerve

General 2.94 1.47

General
Fine-

tunning
0.82 0.03

General
Fine-

tunning
0.73 0.06

General
Fine-

tunning
4.13 1.01

General
Fine-

tunning
2.57 1.29

InterVision 0.85 0.03 InterVision 0.77 0.05 InterVision 3.5 0.77 InterVision 2.21 0.53

Spinal cord

General 0.81 0.04

R optic
nerve

General 0.70 0.07

Spinal cord

General 2.38 0.85

R optic
nerve

General 2.82 1.84

General
Fine-

tunning
0.83 0.04

General
Fine-

tunning
0.74 0.07

General
Fine-

tunning
2.13 0.33

General
Fine-

tunning
2.46 1.33

InterVision 0.86 0.03 InterVision 0.76 0.06 InterVision 2.07 0.21 InterVision 2.08 0.61

L parotid

General 0.81 0.05

Optic
chiasm

General 0.49 0.19

L parotid

General 3.58 0.45

Optic
chiasm

General 3.96 1.78

General
Fine-

tunning
0.85 0.03

General
Fine-

tunning
0.51 0.15

General
Fine-

tunning
3.27 0.41

General
Fine-

tunning
3.45 1.39

InterVision 0.88 0.02 InterVision 0.60 0.17 InterVision 2.8 0.38 InterVision 3.07 1.24

R parotid

General 0.87 0.03

L eye

General 0.90 0.02

R parotid

General 3.74 1.13

L eye

General 2.17 0.47

General
Fine-

tunning
0.89 0.02

General
Fine-

tunning
0.91 0.02

General
Fine-

tunning
3.33 0.79

General
Fine-

tunning
2.10 0.43

InterVision 0.90 0.01 InterVision 0.93 0.01 InterVision 2.93 0.35 InterVision 2.00 0.39

R SMG

General 0.82 0.05

R eye

General 0.89 0.01

R SMG

General 3.26 1.29

R eye

General 2.26 0.55

General
Fine-

tunning
0.84 0.02

General
Fine-

tunning
0.90 0.02

General
Fine-

tunning
3.12 0.78

General
Fine-

tunning
2.16 0.47

InterVision 0.86 0.01 InterVision 0.93 0.01 InterVision 2.65 0.49 InterVision 2.01 0.29

L SMG

General 0.83 0.03

L SMG

General 3.04 0.55

General
Fine-

tunning
0.86 0.04

General
Fine-

tunning
3.13 0.81

InterVision 0.87 0.02 InterVision 2.87 0.39

Thyroid

General 0.86 0.09

Thyroid

General 2.91 3.11

General
Fine-

tunning
0.87 0.04

General
Fine-

tunning
2.67 0.97

InterVision 0.89 0.03 InterVision 2.33 0.42

Notably, the InterVision model showed particular performance gains for small organs,
where the general model often struggles. For larger structures such as the mandible
and eyes, the differences between the models were less pronounced, but the InterVision
approach continued to demonstrate strong performance.

Similarly, Table 1 presents the results for HD95. The InterVision model exhibited
the best HD95 performance compared to the other models. The PHL-IDOL approach
consistently produced smaller standard deviations, indicating more reliable performance.
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These results emphasize the superior capability of the InterVision model in accurately
identifying and segmenting challenging organs, positioning it as a leading solution for
precise organ detection.

Figure 6 visually compares segmentation performance. The InterVision model out-
performs both the general model and the general fine-tuning model. Remarkably, even
in scenarios where the general model struggles the most, the InterVision model excels,
particularly in accurately segmenting smaller, harder-to-visualize organs.
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4. Discussion

By generating accurate contours, we aim to deliver high radiation doses to tumor
targets while protecting healthy tissues, a paramount priority in radiation treatment. Conse-
quently, significant research on auto-segmentation using deep learning has been published
and remains a hot topic. Despite these advancements, there is a consensus that auto-
segmentation models face challenges in clinical applications due to the varied structures
of organs at risk (OARs) and the diversity of segmentation algorithms. Additionally, the
number of available datasets in the field of medical imaging is significantly lower than in
computer vision, which limits progress.

Acknowledging the limitations of available datasets, researchers have turned to adap-
tive radiation therapy (ART), which involves repetitive re-planning at each treatment
fraction by leveraging prior CT scans and contours. This enables the development of
personalized deep learning segmentation (DLS) models through a dual-phase strategy:
training a generalized model on a large dataset and then fine-tuning with patient-specific
data. This method significantly enhances model accuracy and applicability. While fine-
tuning has improved performance in many studies, using only one dataset limits person-
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alization. Multi-fraction datasets offer more personalized models but are not feasible for
real-time clinical use. To address these issues, we present the InterVision framework, which
overcomes these limitations.

The main innovation of the proposed InterVision model develops a framework capable
of generating more natural personalized datasets from each slide of the patient. Using each
slide of the data, we were able to double up the slides that can overcome the challenge
of limited fine-tuning data, resulting in improved segmentation results compared with
other models. The InterVision model showed outstanding performance compared to the
general model and the general fine-tuning model. The InterVision model demonstrated
superior performance with an average VDSC value of 0.85, compared to 0.81 for the general
model and 0.82 for the general fine-tuning model. In terms of HD95, the InterVision model
achieved the best result at 2.52, while the general model achieved 3.06 and the general
fine-tuning model achieved 2.81. Notably, the HD95 result for the InterVision model reflects
a significant improvement, with a reduction of 0.54 (nearly a 20% enhancement) over the
general model. Additionally, for the VDSC value, most of the contours do not change
by more than 6.5% throughout the entire course of radiotherapy, which is comparable to
the difference observed between the InterVision model and the general model [36] and
comparing with other papers, we believe that the InterVision model shows a significant
improvement [25,37].

While the advantages and innovations of the InterVision model are evident, it is
important to recognize that the scope of organs examined in this study was limited. To
fully validate the framework’s clinical applicability, it is essential to extend our evaluations
to encompass target volumes and tumors. Given the model’s exceptional performance
in contouring small and difficult-to-visualize organs, there is substantial potential for it
to excel in delineating target volumes and tumors [38–40]. The results in Table 1 show
that the deep learning auto-segmentation models, which typically struggle with accurately
predicting the optic chiasm, optic nerve, and cochlea, demonstrated notably improved
performance. Building on this success, we are actively developing comprehensive datasets
that will include additional critical structures such as the prostate, liver, lung tumors, lymph
nodes and clinical target volumes. These structures are chosen for their complexity and
clinical significance in radiotherapy. Collaborating with clinical partners, we aim to ensure
that our datasets capture a wide range of anatomical variations and treatment scenarios,
further validating the robustness and adaptability of the InterVision framework.

Moreover, the realm of online adaptive radiotherapy (ART) presents numerous oppor-
tunities where cutting-edge solutions are in high demand. We envisage that our proposed
concept can be seamlessly extended to a variety of image generation tasks, including the
creation of synthetic CT images from CBCT scans and the enhancement of image resolution
from lower-quality inputs. Enhancing these images directly addresses the challenges of
real-time treatment adjustments and patient-specific planning, which are essential for better
clinical outcomes. We plan to explore these tasks by leveraging the InterVision framework’s
capability to generate high-quality, patient-specific data, ensuring more accurate and reli-
able treatment planning. Our future endeavors will involve evaluating the framework’s
adaptability and effectiveness in addressing the critical image generation challenges pivotal
to online ART.

Our research signifies a major leap forward in adaptive radiotherapy, providing a more
robust and dependable framework for creating patient-specific models. The InterVision
approach exemplifies the potential for personalized healthcare within radiotherapy envi-
ronments. This method’s capability to generate datasets enriched with prior information
not only overcomes the limitations of the previous fine-tuning DL model but also paves the
way for future exploration for online ART. In essence, the InterVision model emerges as a
groundbreaking framework that enhances segmentation accuracy and ensures superior
treatment planning and execution in adaptive radiotherapy.
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5. Conclusions

The InterVision approach utilizes a deep learning (DL) framework to create patient-
specific DL networks for common adaptive radiotherapy (ART) applications, demonstrat-
ing markedly superior performance over traditional methods. The InterVision concept
epitomizes a flexible framework that can be adapted to a multitude of tasks where prior
information is available, as is often the case in ART settings. By employing InterVision, we
anticipate performance enhancements, with VDSC increasing from 81% to 85% and HD95
results improving from 3.06 mm to 2.52 mm compared to the general model. These ad-
vancements lead to more accurate treatment plans, potentially improving patient outcomes
by delivering higher radiation doses to tumors while better sparing surrounding healthy
tissues. This capability is especially valuable for accurately predicting complex organs and
targets that are challenging for DL algorithms.
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