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Abstract: Background: Femoral neck fractures are rare but serious injuries in children
and adolescents, often resulting from high-energy trauma and prone to complications
like avascular necrosis (AVN) and nonunion. Even rarer is the development of slipped
capital femoral epiphysis (SCFE) following femoral neck fracture, which presents unique
diagnostic and treatment challenges. SCFE can destabilize the femoral head, with severe
cases requiring complex surgical interventions. Case presentation: This report details a
case of a 15-year-old male with autism spectrum disorder (ASD) who developed severe
SCFE one month after treatment for a Delbet type III femoral neck fracture. The condition
was managed with an Imhäuser intertrochanteric osteotomy (ITO), in situ fixation (ISF), and
osteochondroplasty (OChP), supported by virtual surgical planning (VSP) and 3D-printed
patient-specific instruments (PSIs) for precise correction and fixation. Discussion: The
surgery was completed without complications. Six months after the operation, the patient
exhibited a pain-free, mobile hip with radiographic evidence of fracture healing and no
signs of AVN. Functional outcomes were favorable despite rehabilitation challenges due to
ASD. Conclusions: The Imhäuser ITO, combined with ISF and OChP, effectively addressed
severe SCFE after femoral neck fracture, minimizing AVN risk. VSP and PSIs enhanced
surgical accuracy and efficiency, demonstrating their value in treating rare and complex
pediatric orthopedic conditions.

Keywords: slipped capital femoral epiphysis; SCFE; femoral neck fracture; Imhäuser
intertrochanteric osteotomy; 3D printing; virtual surgical planning; patient-specific
instruments; CUX1

1. Introduction
Femoral neck fractures in children and adolescents are rare but serious injuries, typ-

ically resulting from high-energy trauma and representing less than 1% of all pediatric
fractures [1]. These fractures are classified using the Delbet system, which categorizes
them based on fracture location: Type I (transepiphyseal), Type II (transcervical), Type III
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(cervicotrochanteric), and Type IV (intertrochanteric) [2]. Pediatric femoral neck fractures
are prone to complications, including avascular necrosis, nonunion, and premature physeal
closure, which can affect growth and hip function [2]. Avascular necrosis (AVN) remains
the most serious complication of these fractures, in particular in Delbet Type II and Type
III, with incidence rates ranging from 6% in nondisplaced fractures to 35% in displaced
fractures, independent of the treatment approach [3].

Very rarely, femoral neck fractures may be complicated by slipped capital femoral
epiphysis (SCFE) [1]. Spence et al. reported a 3% incidence of SCFE in a large case series of
femoral neck fractures with an average of 2.8 years of follow-up [3]. Similarly to idiopathic
SCFE, post-traumatic SCFE is characterized by a posterior and inferior displacement of the
femoral head relative to the femoral neck, and it requires careful assessment of hip pain in
affected patients using appropriate radiological studies [1].

SCFE classification is traditionally based on several criteria: stability (stable vs. un-
stable), degree of displacement (mild, moderate, or severe), and duration of symptoms
(acute, chronic, or acute-on-chronic). The most relevant aspect is to differentiate a stable
SCFE, which allows for weight-bearing without severe pain, from an unstable SCFE, which
involves significant pain and instability, posing a higher risk for AVN [4]. For isolated SCFE,
in situ fixation, without attempting to reduce the slippage, is the most widely accepted
surgical treatment, particularly for mild to moderate chronic cases, which are the most
common [5,6]. Open or closed reduction is rarely recommended for acute unstable slippage.
Intra-articular and extra-articular osteotomies are used for correcting severe head–neck
junction deformities, but their recommendations are still controversial [5]. AVN is the most
serious complication, particularly in acute unstable SCFE, and is more frequently reported
with intra-articular osteotomies for deformity correction [7]. Although the exact etiology of
SCFE is unknown, several risk factors have been identified, including endocrine disorders,
obesity, and excessive acetabular and/or femoral neck retroversion [8].

Treating SCFE that occurs following a femoral neck fracture presents additional chal-
lenges due to the presence of internal fixation devices and the risks associated with a
nearby healing fracture site [9]. Over recent decades, only a few cases have been docu-
mented, highlighting the need for further evidence to improve treatment approaches for
this complication in pediatric orthopedic trauma [10].

Virtual surgical planning (VSP), a component of Computer-Assisted Surgery (CAS),
enables surgeons to simulate and plan procedures entirely within a virtual environment. It
facilitates precise three-dimensional deformity analysis, implant positioning, surgical access
planning, and treatment customization, enhancing intraoperative accuracy and improving
postoperative outcomes [11]. When integrated with 3D printing, VSP enables the creation of
patient-specific instruments (PSIs), such as anatomical models, cutting guides, and implants,
which help reduce surgery time, minimize blood loss, decrease intraoperative fluoroscopy,
and enhance overall efficiency compared to traditional surgery [12,13]. The increasing
adoption of in-house 3D-printing facilities in hospitals further promotes personalization
and lowers costs compared to industry-manufactured alternatives [14].

This case report describes the treatment of severe SCFE that occurred 1 month af-
ter surgery for a femoral neck fracture in a 15-year-old boy, and it was treated with the
Imhäuser intertrochanteric osteotomy (ITO) combined with in situ fixation (ISF) and osteo-
chondroplasty (OChP), describing how VSP with 3D-printed PSIs may be helpful for such
rare and complex cases.

2. Case Presentation
A 15-year-old male with autism spectrum disorder (ASD) associated with mild neu-

rodevelopmental delay in a heterozygous deletion of CUX1 sustained a skiing injury in



J. Pers. Med. 2025, 15, 13 3 of 15

February 2024, resulting in a Delbet Type III basicervical femoral neck fracture (Figure 1a).
The patient’s medical history revealed no previous fractures, surgeries, or chronic medi-
cation use. He had a BMI of 18.6 (28th percentile by age and sex) with a height of 177 cm
and a weight of 55 kg. Treatment involved closed reduction and internal fixation using
a Dynamic Hip Screw (DHS) plate and an additional free cannulated screw (Figure 1b).
Intraoperative fluoroscopic images showed a satisfactory reduction on the anteroposte-
rior plane with a residual 15◦ retroversion deformity on the lateral plane. The reduction
was deemed satisfactory, and at a one-month follow-up, progressive fracture healing was
noted (Figure 1c). However, three months later, radiographs revealed worsening slippage
(Figure 1d). Although initially overlooked, mild slippage was evident on radiographs
taken one month post-injury, with residual pain attributed to the recently healed fracture.
As the condition worsened, the patient was referred to a tertiary referral center for pediatric
orthopedics for further evaluation.
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Figure 1. (a) Radiograph after trauma showing a Delbet Type III femoral neck fracture; (b) radiograph
after open reduction and internal fixation surgery; (c) radiograph at one-month follow-up showing
signs of mild SCFE (white arrow); (d) radiograph at three-month follow-up showing worsening SCFE
(white arrow).
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The patient presented with severe limitations in posture and ambulation. Radiographs
revealed severe epiphysiolysis with a radiographic posterior sloping angle of 62◦ with the
fracture healed and the fixation devices intact. The fracture had healed, and the fixation
devices were in place. After a team discussion, the decision was made to remove the
devices, perform ISF, and carry out an ITO with OChP of the residual bump. VSP and
3D-printed PSIs were also planned.

2.1. Virtual Surgical Planning and Design of 3D-Printed Cutting Guide

The first step involved generating a virtual 3D model of the affected bone segments,
derived from CT imaging using the hospital’s 3D-printing facility. The procedure and
workflow, using Mimics Medical software Suite 25.0 (Materialise, Leuven, Belgium), have
been previously described [15]. A mirrored model of the healthy contralateral hip was
used to facilitate the analysis of the deformity (Figure 2a). A plane tangent to the base of
the epiphysis was created in order to identify the best position of the screw for ISF. This
process determined the precise entry point, direction, and length of the screw, which was
65 mm (Figure 2b). A 6.5 mm Rondò screw (Citieffe s.r.l., Calderara di Reno, Bologna, Italy)
was chosen and its length was also determined.
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Figure 2. (a) Overlap of the healthy contralateral femur (shown in green with an orange outline);
(b) Identification of a plane tangent to the base of the slipped epiphysis and of the position of the
screw for ISF (outlined in orange).

To ensure precise identification of the final plate position and osteotomy sites, a
reverse planning approach was employed. This began with a detailed analysis of the
deformity, followed by determining the desired angular and rotational corrections to
improve hip range of motion (Figure 3a). The correction was planned in valgus, flexion,
and internal rotation of the distal femur. The osteotomy site and the final plate position
were then meticulously defined in order to prevent intersecting the holes left by previous
hardware (Figure 3b,c). We chose to use a 4.5 mm 90◦ Locking Cannulated Blade Plate
(OrthoPaediatrics, Warsaw, IN, USA). Subsequently, maintaining the plate in its position
relative to the proximal femur, the femur was reverted to its original deformed state
(Figure 3d). This step was crucial for designing PSIs for positioning guidewires and for
identifying the osteotomy planes.
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Figure 3. (a) The first step was to determine the final position of the proximal femur after an
intertrochanteric closing wedge and derotative osteotomy in order to improve the range of motion of
the hip; (b) final positioning of the 90◦ blade plate; (c) the plate (highlighted in orange) was positioned
in order to avoid the holes of the previous hardware (in dark gray) as much as possible; (d) restoring
the femur to its deformed state maintaining the plate in its position relative to the proximal femur
reveals the initial position of the blade and the shape of the bone wedge that needs to be removed
(in red).

Once cutting planes, entry points for the epiphyseal screw, and the plate position were
defined, the design and fabrication of cutting guides were carried out. The guides were
modeled using the CAD software Creo Parametric v7.0 (PTC Inc., Boston, MA, USA) and
manufactured using Fused Deposition Modeling (FDM) 3D-printing technology.

The first PSI was designed to guide the insertion of three guidewires (Figure 4). The
most anterior wire, with a diameter of 3 mm, was designated to position the epiphyseal
screw for ISF, while the other two parallel guidewires of 1.5 mm were intended to assist
in positioning the proximal portion of the plate. Notably, the design of the first guide
incorporated an opening in the slot for the epiphyseal screw’s guidewire, enabling the PSI
to be easily removed without interfering with the parallel wires.
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Figure 4. (a) Anterior view of the proximal femur with the initial plate positioning and the bone
wedge to remove; (b) positioning of the guidewire for the cannulated screw (the more anterior wire)
and two lateral wires for the placement of the blade plate; (c) design of the first 3D-printed PSI
(highlighted in light blue).

Subsequently, we developed second and third PSIs to facilitate the cutting process
and ensure the precise alignment of the blade plate during insertion (Figure 5). According
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to the surgical technique, after inserting the proximal guidewire for the blade plate, the
blade slot must be prepared. To address this, both guides were equipped with a support for
the chisel to achieve the desired rotation of the blade and a slot for the second guidewire,
which remained unchanged. The design process started with the guide intended for the
most distal cut. This guide included a slot to secure the second guidewire for accurate
positioning, a recess to direct the chisel during blade slot preparation, and a raised platform
to stabilize the saw for precise cutting. Next, the second guide was designed with the same
features, but its saw support was specifically aligned for the more proximal cut (Figure 6).
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Figure 5. (a) The position of the chisel along the proximal 1.5 mm guidewire and of the distal 1.5 mm
guidewire; (b) the second PSI(highlighted in light blue), designed to fit onto the distal guidewire,
precisely indicates the directions for chisel insertion and for the distal cut; (c) design of the third PSI
(highlighted in light blue), featuring similar characteristics to the second, but specifically guiding the
proximal cut; (d) simulated correction in valgus, flexion, and internal rotation of the distal femur.
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Figure 6. The final 3D-printed samples of the PSIs. From the left to the right: the first PSI for wire
positioning, the second PSI for the distal cut, and the third PSI for the proximal cut.

2.2. Surgical Procedure

The patient was positioned on a radiolucent table with the contralateral hip flexed
and abducted. The anatomical landmarks were identified, including the anterior superior
iliac spine and greater trochanter, and a dotted line was drawn from the anterior superior
iliac spine to the patella to assess rotational alignment on the skin. Prior to the procedure,
anteroposterior, lateral, and oblique views in internal and external rotation were verified
using an image intensifier.

A curvilinear lateral incision that incorporated the previous scar was marked. The
previous scar was excised, and the subcutaneous tissue was retracted to expose and open
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the fascia lata in line with the skin incision. An L-shaped incision was made along the
proximal inferior border of the vastus lateralis, facilitating subperiosteal exposure of the
proximal femur. The DHS plate was subsequently identified and removed, along with the
free screw (Figure 7).
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Figure 7. (a) Anatomical landmarks and fluoroscopy check; (b) L-incision along the proximal inferior
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At this point, the hip was slightly externally rotated to facilitate the positioning of the
first patient-specific template (Figure 8). The three guidewires were inserted, the template
removed, and the 6.5 mm cannulated epiphyseal screw easily placed along the 3 mm
guidewire. The 3 mm guidewire was then removed.
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The second PSI was positioned on the femur, leveraging the distal 1.5 mm guidewire
as a reference to accurately identify the distal osteotomy site (Figure 9). A longitudinal line
was marked along the anterior part of the diaphysis to assess rotational alignment.

The third PSI was then applied to identify the proximal osteotomy and to achieve the
correct angulation of the chisel in the sagittal plane, allowing for the placement of the blade
plate at 20◦ of flexion (Figure 10). The cannulated chisel was inserted along the proximal
guidewire, while the PSI was still secured to the femur using the distal 1.5 mm guidewire.
Notably, both the second and third PSIs could be utilized to guide the chisel, providing a
reliable backup in case of device issues such as breakage or contamination.
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Figure 10. The intraoperative application of the third PSI. (a) Application of the third cutting guide
on the previously inserted guidewire; (b) application of the third guide to set the correct angulation
of the chisel.

Once the chisel was in its final position, the third PSI was carefully removed, and
the second PSI was reinserted to verify the positions of the two cuts. The distal cut was
then marked using an oscillating saw, but not completed. This step facilitated the internal
rotation of the distal fragment along the proximal straight osteotomy.

The third PSI was reapplied, and the proximal femoral cut was completed. Afterward,
the femur was internally rotated, the chisel removed, and the blade plate gently inserted,
securing it with the proximal locking screw to prevent displacement and cut-out.

Next, the distal cut was completed with the femur internally rotated, and an anterolat-
eral bony wedge was removed. The thigh was flexed and abducted, securing the distal part
of the blade plate to the femoral shaft with a clamp. The correct position and orientation of
the osteotomy were verified, and the plate was fixed with screws.

After completing the osteotomy, the proximal femur was shifted anteriorly and lat-
erally, improving visibility and access to the residual bump. Taking advantage of the
Watson–Jones anterolateral approach, the anterior edges of the gluteus medius and gluteus
minimus were partially detached, and the anterior fat pad was elevated to expose the joint
capsule. An anterolateral reverse T-shaped capsulotomy was performed. The residual
anterolateral bump was identified through visual inspection and fluoroscopic guidance,
and was carefully removed using straight and curved osteotomes, rongeurs, and burs. A
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final fluoroscopic check confirmed the satisfactory removal of the intra-articular bump
(Figure 11).
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Figure 11. (a) Intraoperative fluoroscopy showing the anterior bump; (b) intraoperative fluoroscopy
showing the bump removal after the OChP (fine needle marks the area of the resected bump).

The joint capsule was then closed, the muscles were reattached, and the skin was
sutured.

2.3. Postoperative Protocol

The postoperative rehabilitation protocol included passive and active hip motion in
flexion and abduction, avoiding hip rotations for the first six weeks. Sitting, standing, and
early ambulation with partial weight-bearing were allowed from the day after surgery and
continued for six weeks. No cast or brace was required. From 6 to 12 weeks, full weight-
bearing was gradually achieved, and full active range of motion of the hip was restored;
swimming and biking were recommended. From 12 to 24 weeks, muscle-strengthening ex-
ercises, gait improvement, and progressive return to running and jumping were introduced.
Return to sports was allowed six months after surgery.

2.4. Results

The presented case required approximately two weeks from the date of the preop-
erative CT scan for the planning, design, production, and sterilization of the PSIs. The
surgery was performed without any complications. Blood loss was 500 mL, the number of
fluoroscopic images was 41 (cumulative dose 72.7 cGy/cm2), and the surgical time was
176 min. At the last follow-up, 6 months postoperatively, the patient had resumed walking,
although with difficulties in following the rehabilitation program due to his autism. The
hip was highly mobile and pain-free. Radiographs showed good consolidation with no
signs of AVN of the femoral head (Figure 12).
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3. Discussion
This case report described a SCFE following a femoral neck fracture in an adolescent.

Both events are rare in this age group, and their combined occurrence has been documented
in fewer than ten cases in the literature (see Table 1 for details) [9,10,16–22]. SCFE may
develop up to 15 months post-trauma, and it has been frequently reported in children below
10 years of age [9,10,17,18,21]. Based on Loder and Skopelja’s observation that the average
age for SCFE onset is 12.0 years in males and 11.2 years in females, with a trend toward
younger ages, we might hypothesize that SCFE could be a complication associated with
femoral neck fractures in younger patients [23]. However, the case presented here notably
increases the age range at which this complication may arise. In our case, we believe that a
slight initial malreduction, leaving the neck in mild retroversion, may have increased stress
on an already fragile physis. We do not think excess weight played a role, as the patient
was very thin (BMI 18.6, 28th percentile by age and sex), although SCFE in non-obese
adolescents has been reported to occur at older ages [24]. Furthermore, the CUX1 gene
mutation, identified as the underlying cause of the patient’s neurodevelopmental disorder,
has not previously been linked to any bone or cartilage disorders. Another consideration is
the choice of fixation, which avoided crossing the physis with cervical screws. While this
is the standard choice for children to prevent femoral neck shortening, many believe that
crossing the physis in older children poses minimal risk of shortening and it can improve
fixation stability, preventing such complications [25].

Table 1. Cases of slipped capital femoral epiphysis (SCFE) after femoral neck fractures described
in the literature by year of publication. M = male; F = female; CR = closed reduction; OR = open
reduction; ISF = in situ fixation; VO = valgus osteotomy; VFO = valgus and flexion osteotomy;
OChP = osteochondroplasty.

Author and Year Age
(Years) Sex Delbet

Type
Treatment for

Fracture
Fracture to SCFE

(Months)
SCFE

Severity
Treatment for

SCFE

Ogden et al., 1975 [16] 11 M II CR + cast 15 Mild None

Manukaran et al., 1989 [17] 9 M III CR + screws 14 Mild ISF

Joseph and Mulpuri, 2000 [18] 3.8 M II CR + screws 1 Moderate CR + pins + VO

Gopinathan et al., 2012 [19] 10 M II CR + screws + cast 4 Mild CR + screw + cast

Jung and Park, 2012 [20] 11 M III OR + screws + splint 15 Mild ISF + VFO + cast

Li et al., 2013 [9] 12 F III CR + screws + cast 5 Moderate CR + pins

Li et al., 2013 [9] 6 F II CR + plate 9 Mild ISF + VO

Chinoy et al., 2020 [10] 5 F III CR + cast 7 Moderate ISF

Elbaseet et al., 2023 [21] 9 F III OR + screws 3 Moderate ISF + VO

Current study, 2024 15 M III CR + plate 1 Severe ISF + VFO + OChP
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In nearly all other cases of SCFE following femoral neck fracture reported in the litera-
ture, epiphyseal fixation was performed, occasionally accompanied by closed reduction
maneuvers. Additionally, an intertrochanteric valgus osteotomy was carried out in four
cases (44%). No cases of open reduction and/or modified Dunn procedures were reported.
There is ongoing debate on the best strategy to restore joint alignment in moderate to severe
slips [5]. Many authors believe intra-articular osteotomies are more effective because they
correct the deformity at its source [26]. However, these procedures are technically challeng-
ing and carry a significant risk of AVN [7,27]. In contrast, extra-articular osteotomies are
simpler to perform, and have a lower risk of complications such as AVN, as they do not
compromise the terminal blood supply to the femoral epiphysis [7,27]. However, they are
less effective in correcting femoral deformity, potentially leaving residual bumps that can
reduce hip mobility, cause femoro-acetabular impingement, and lead to early osteoarthri-
tis [27]. In our experience, we have confirmed lower rates of AVN and early complications
with extra-articular osteotomies but also less effective deformity correction compared to
the modified Dunn procedure [28]. We believe extra-articular osteotomy is preferable in
cases like this, where the posterior periosteum of the femoral neck, containing the terminal
vessels of the epiphyseal blood supply, has already been partially damaged by the fracture
and its fixation. Exposing it to further stress from a modified Dunn procedure could have
increased the risk of AVN.

We have previously detailed our extensive experience with the Imhäuser ITO [29].
This procedure corrects the position of the femoral epiphysis and restores joint alignment
by adjusting the proximal femur in three planes: valgus, flexion, and external rotation.
Our earlier studies have shown satisfactory results, with native hip survival at 20, 30, and
nearly 40 years of follow-up, and a low risk of necrosis, chondrolysis, and early total hip
replacement. These satisfactory results are consistently supported by numerous studies in
the literature [7,30–38].

The use of virtual surgical planning and PSIs for osteotomies in pediatric orthopedic
surgery has demonstrated a significant reduction in surgery time and decreased reliance
on intraoperative imaging [39–42]. The reduced use of fluoroscopic imaging serves as
an indirect indicator of the efficiency and precision with which correction and fixation
are achieved. This support is especially valuable during the Imhäuser intertrochanteric
osteotomy, as both the correction and fixation positioning are counterintuitive [43,44].
Having this technology in-house, using low-cost methods and standard implants, lowers
costs while maintaining high surgical safety and precision [42,45].

Personalized treatments and patient-specific instruments (PSIs) offer significant ben-
efits but come with higher costs due to the need for advanced materials, specialized
technologies, and skilled personnel. In-hospital 3D-printing facilities can help reduce
these expenses [46,47]. Our previous experience suggests that in-hospital VSP and 3D
printing improve cost–utility, especially in complex surgeries, by reducing surgical time,
complications, and implant errors, while enhancing outcomes and minimizing reoperations.
However, the process still requires substantial resources, including expertise, software,
printers, and efforts in design, production, and sterilization. We are continuing research to
reduce the economic impact of this promising technology, including integrating immersive
virtual reality, augmented reality, and AI-enhanced planning [48].

It has been clearly demonstrated that assessing cam deformity in SCFE surgery is
essential to prevent acetabular damage and ensure long-lasting hip function [49]. Some
authors have even proposed combining the Imhäuser intertrochanteric osteotomy with a
safe hip dislocation to enhance visualization and remodeling of the femoral head [38,50].
However, for the recent fracture, we opted to avoid dislocating the head and instead
perform OChP through an anterolateral capsulotomy, according to the technique reported
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by Abdelaziz et al. [51]. We noted that there was no mention of additional treatments for
the anterior bump in other cases of SCFE following a femoral neck fracture.

Despite being a case report, this study adds valuable evidence on a complication
of femoral neck fractures, which is probably underappreciated and underreported [22].
This case highlights a rare complication of pediatric femoral neck fractures, stressing the
importance of perfect fracture reduction and the potential benefit of combined ISF of the
femoral epiphysis. In the debated treatment of severe SCFE, we advocate for ITO with ISF
as the preferred approach over techniques like the modified Dunn procedure, especially
when associated with a recent femoral neck fracture.

4. Conclusions
The Imhäuser intertrochanteric osteotomy, combined with in situ fixation and osteo-

chondroplasty, proved to be a reliable surgical option for severe SCFE following a femoral
neck fracture. Among the cases reported in the literature, there is still no evidence of major
complications, such as avascular necrosis and/or early conversion to total hip replacement.
The use of virtual surgical planning and 3D-printed surgical guides in the Imhäuser in-
tertrochanteric osteotomy can significantly enhance the accuracy of correction compared
to the classic approach. Additionally, the residual intra-articular bump can be safely and
effectively removed concurrently through an anterolateral approach.
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