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Abstract: Background/Objectives: Next-generation sequencing (NGS) can explain how
genetics influence morbidity and mortality in children. However, it is unclear whether
health providers will perceive and use such treatments. We conducted a discrete choice
experiment (DCE) to understand Italian health professionals’ preferences for NGS to
improve the diagnosis of paediatric genetic diseases. Methods: The DCE was adminis-
tered online to 125 health professionals in Italy. We documented attributes influencing
professionals’ decisions of NGS, including higher diagnostic yield, shorter counselling
periods, cost, turnaround time, and the identification of fewer variants of unknown sig-
nificance. Results: Results show that factors such as higher diagnostic yield, shorter
counselling periods, lower costs, and faster turnaround times positively influenced the
adoption of NGS tests. Willingness to pay (WTP) estimates varied from EUR 387 (95% CI,
271.8–502.9) for 7% increase in the diagnostic yield to EUR 469 (95% CI, 287.2–744.9) for
a decrease of one week in the turnaround time. Responders would reduce diagnostic
yield by 7% to decrease the turnaround time by one week in both the preference and the
willingness to trade (WTT) spaces. Respondents prioritised diagnostic yield (RI = 50.36%;
95% CI 40.2–67.2%) compared to other attributes. Conclusions: therefore, health profes-
sionals value NGS for allowing earlier, more accurate genetic diagnoses.

Keywords: paediatric population; NGS tests; suspected genetic disorders; discrete choice
experiment; health policy

1. Introduction
Clinical genetics is an evolving speciality influenced by the availability of increasingly

sophisticated investigational techniques [1]. Due to technological development, genetic
counselling is gaining importance with further applications of genetic testing for diagnosis
and clinical treatment [2]. More than 77,000 genetic tests [3] were estimated to be in use
in 2022, with many others being developed and focused on detecting mutations in genes,
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chromosomes, or proteins. Over the past 50 years, DNA-based tests have shown an expo-
nential increase in the number of disorders for which genetic testing has become available
(biochemical, chromosomal, etc.) [4]. DNA and RNA sequencing and variant/mutation
detection [5] via next-generation sequencing (NGS) have been integrated into molecular
pathology and significantly increased the breadth of genomic information through the
profiling of hundreds of genes [6,7], especially in the oncological field [8].

It is possible to distinguish three typologies of NGS testing: whole exome sequencing
(WES), whole genome sequencing (WGS), and targeted NGS sequencing or panel NGS
sequencing [9]. Targeted NGS is the most employed sequencing approach for molecular
analysis in clinical practice [10]. Conversely, the widely used WES and WGS have limited
clinical applications due to their low coverage depth and relatively high cost [11,12]. Studies
demonstrate that these procedures can shorten the differential diagnosis process, targeted
treatment timing, and genetic and prognostic counselling [10]. Genetic diseases (as per
single-gene disorders, genomic structural defects, and copy number variants) are a leading
cause of death in children under ten years old [11–15]. The application of NGS testing to
neonatal care for early diagnosis of congenital diseases is a promising field of application.
The goal is to reduce the disease burden for neonatal conditions with significant clinical
impact by identifying all genetic disorders to allow for the timely implementation of
appropriate therapies, apart from symptoms [16].

Neonatal intensive care units (NICU) are a pivotal service for critically ill neonates
experiencing high morbidity and mortality rates, with significant diagnostic errors account-
ing for up to 20% of autopsied deaths. Newborns with undiagnosed or rare congenital
disorders may mimic severely ill ones with more commonly acquired conditions, meaning
that the diagnostic evaluation context can generate unique biases leading to diagnostic
errors [17]. However, NGS testing might partially solve misdiagnosed clinical status hin-
drances. Assessing the preferences of the professionals involved could play an essential role
in determining which method should be introduced in clinical practice. Indeed, specialised
healthcare teams in many countries had stringent control over patient access to such NGS
tests [18]. The preferences and insights of these professionals may play a multifaceted
role in shaping the future of genomics in healthcare. Health professionals possess a deep
understanding of the clinical context, ensuring that any new genomic method aligns with
the practical needs of patient care. Furthermore, their input is invaluable for strategies
successfully implementing new methods and helping identify barriers and facilitators to
adopting the NGS techniques. Ethical considerations, resource allocation, and public trust
in genomics heavily rely on their expertise. By fostering collaboration, ensuring regulatory
compliance, and promoting continuous improvement, the engagement of health professionals
is essential for the responsible integration of genomics into public health practice.

Surveys are a high-quality, efficient, and viable tool for exploring healthcare profes-
sionals’ preferences and opinions about a specific topic [19]. To elicit preferences that
can be used in the absence of revealed preference data, the most valid survey design is
a discrete choice experiment (DCE). This method detects the stakeholders’ propensities
towards different attributes of hypothetical alternative scenarios. At the same time, the
responses are employed to determine whether the preferences are significantly influenced
by the attributes and their associated relevance [20].

The DCE methodology and especially the willingness to pay (WTP) elicitation are
well-established approaches within the clinical field. In the realm of genetic testing,
Buchanan et al. determined the attributes encouraging or discouraging the uptake of
genomic tests in the context of inherited cardiovascular disease in the UK. Findings show
that healthcare professionals predominantly emphasise the importance of diagnostic yield
and the capacity to discover fewer variants of unknown clinical relevance in contrast to
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the duration of counselling, which received comparatively less emphasis [21]. Ries et al.
documented results concerning the WTP for genetic testing. In this study, individuals from
the general population demonstrated a readiness to allocate more than CAD 500 towards
genetic diagnostic services. Meanwhile, Dhanda et al. indicated that payer-preferred
genetic tests, with a focus on enhancing quality of life, exhibited substantial consensus
among health professionals for effecting modifications in medical care and extending
life expectancy through precisely tailored treatments [22]. Albeit in a different research
context, Leigh et al. elicited preferences and WTP estimates from health professionals
about the adoption of mobile health services in the UK [23]. Similarly, Tarekegn et al.
measured preferences of health professionals for human papilloma virus vaccines through
the WTP approach, helping policy makers setting priorities among alternative cervical
cancer prevention methods in poor countries [24].

This paper tried to fill a gap in favour of understanding attributes related to NGS
techniques implementation in a health system (i.e., Italy) where there is very little prior
evidence. This paper elicits individual preferences, the WTP, and the willingness to trade
(WTT) for NGS techniques. Being that health professionals are the key decision makers in
the diagnostic workflow, stated preferences and the analysis of their WTTs contribute to
steering NGS techniques adoption within the clinical practice by prioritising specific steps
within the whole diagnostic process. Furthermore, from a policy perspective, given that
our WTP estimates were elicited in the absence of NGS techniques regulations, they may
represent shadow prices and thus are of paramount relevance for policymaking in defining
tailored reimbursement tariffs that may be subsequently adopted for ad hoc economic
analyses by decision makers.

This study aims to assess health professionals’ preferences regarding the attributes of
NGS techniques for the diagnosis of suspected genetic disorders by using a DCE approach.

2. Materials and Methods
DCEs elicit individuals’ stated preference parameters between two alternative treat-

ments. According to the Lancasterian theory of demand, treatments are defined by their
characterising attributes [25], while the alternatives are generated by changing the values
taken by a set of attributes. Generally, each individual is asked to choose the option from
a list of choice sets, thus obtaining multiple observations [26]. Moreover, the inclusion
of continuous variables, such as cost or waiting time, allows researchers to compute the
willingness to pay (WTP) [27,28] or willingness to trade (WTT) [29–32] for variations in
attribute levels.

Considering the abovementioned measures as important preference parameters useful
in interpreting DCE results, our focus was on identifying a set of attributes and their
importance levels according to health professionals. Then, both the relative importance
of the attributes and the WTP/WTT were estimated by asking health professionals to
choose between two NGS techniques with different test attributes in multiple-choice
tasks. As a note, institutional review board approval for this study was obtained from the
Ethics Committee of the Fondazione Policlinico Universitario Agostino Gemelli IRCCS
(protocol code 4952; date of approval: 19 May 2022). The study adopted anonymous data
only, which guaranteed full adherence to the Helsinki Declaration of Ethical Principles and
with Italian (Law 2003/196) and international (EC/2016/679) data protection regulations.
Written informed consent was obtained from all participants prior to their inclusion in
the study. Participants were informed about the purpose of the research, the voluntary
nature of their participation, and the measures in place to ensure the confidentiality and
anonymity of their responses.
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2.1. Sample Population

The sampling population selected for this experiment was composed of health pro-
fessionals working in highly specialised centres in Italy and with expertise in using NGS
techniques to diagnose the paediatric population with suspected genetic disorders. The
DCE survey was circulated among the health professionals of twelve Italian hospitals
with expertise in medical management and/or genetic counselling of genetic diseases to
guarantee that the sampling population reflected standard characteristics (e.g., age, gender)
and preferences.

The sample size was calculated according to the formula proposed by Johnson and
Orme [33,34]:

N =
500 × c
(t × a)

.

This rule of thumb suggests that the sample size depends on the number of choice
tasks (t), the number of alternatives (a), and the largest number of levels for any of the
attributes (c). A more analytic approach by de Bekker-Grob et al. [35] was adopted to look
for the minimum sample size for testing the significance of the various parameters with a
desired power level. The following formula was applied:

Nk >

[
(Z1−a + Z1−b)se

(
βk
)

βk

]2

where se
(

βk
)

is the asymptotic standard error of the parameter β̂k, a is the significance
level (i.e., 95%), and b is the power level (i.e., 80%), while Z1−a and Z1−b represent the
100 (1 − a)th and 100 (1 − b)th quantiles of the standard normal distribution, respectively.

2.2. Selection of Attributes and Levels for Each Testing Alternative

Attributes and levels in Table 1 were defined by adopting the approaches suggested
by Regier et al. [36].

Table 1. Summary of attributes and levels adopted in the final DCE survey.

Test Attribute Possible Levels for Each Testing Alternative
Genetic Test A Genetic Test B

Diagnostic yield
Pathogenic variation identified in 32 out of 100 cases
Pathogenic variation identified in 39 out of 100 cases
Pathogenic variation identified in 46 out of 100 cases

Turnaround time 8 weeks, 10 weeks, 12 weeks

Counselling time 40 min, 50 min, 60 min

Ability of the test to
identify variants of

unknown significance

Variants of unknown significance identified in 5 out of 100 cases
Variants of unknown significance identified in 10 out of 100 cases
Variants of unknown significance identified in 15 out of 100 cases
Variants of unknown significance identified in 20 out of 100 cases
Variants of unknown significance identified in 25 out of 100 cases

Test cost EUR 1000, EUR 1500, EUR 2000, EUR 2500, EUR 3000

Literature was extensively reviewed by querying the primary scientific databases
(i.e., PubMed, Scopus, EMBASE, and Web of Science) to identify the studies providing infor-
mation on NGS-related factors that health professionals consider relevant to the diagnosis
of suspected genetic disorders (see Supplementary Text S1 for additional details). Then,
12 potential attributes were chosen and brought to interviews with health professionals
such as paediatricians, medical geneticists, biologists, and laboratory scientists, who rated
the importance of each attribute (i.e., diagnostic yield, turnaround time, counselling time,
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ability of the test to identify variants of unknown significance, test cost, ease of interpreta-
tion for clinicians, follow-up testing requirements, ease of interpretation, security measures,
sample requirement, reanalysis option, and clinical actionability). Five attributes were
selected based on the rank assigned, the clinical and scientific plausibility, and the ability to
capture the key characteristics of the testing practice. Finally, levels were defined for each
attribute following the results of the interviews and the literature review.

2.3. Experimental Design

A full factorial design adopting the attributes and levels hitherto defined resulted in
675 potential choice sets (given by the multiplication of the attributes with five and three levels,
52 × 33), which are excessive for a DCE being too time-consuming to be completed. Accord-
ing to McFadden and Train [37], completeness, monotonicity, and transitivity of preferences
are essential conditions for interpreting the DCE parameters’ estimates. When full factorial
design is not feasible, D-optimality is the standard metric for design construction [38].
Therefore, the design was restricted to 10 choice tasks adopting a D-efficient algorithm
appointed to identify a list of choice sets in which dominant alternatives are absent, and
choice sets are not repeated. The D-optimal designs approach was adopted to maximise the
determinant of the information matrix. These designs consider factors such as main effects,
interactions, and curvature to achieve the highest efficiency level. Only the main-effects
design was used to avoid the complexity of the design, and the estimation of interaction
effects among attributes was denied at the design stage. Python programming language was
used to generate the D-optimal designs. Each participant was faced with 10 choice tasks.

2.4. DCE Survey Design

In each choice set, respondents were presented with the same hypothetical scenario.
This scenario described a situation in which a newborn came to the specialist’s attention
with muscular hypotonia and a negative muscular spinal atrophy test. Once brought to
the neonatal intensive care unit for not feeding and irregular breathing, routine controls
confirmed low control of the head and hypotonic arms, leading the health professional to a
potential genetic origin of the clinical condition. Respondents were asked to choose the
two alternatives (genetic test A or genetic test B) they would prefer in each set. The DCE
was set up in an unlabelled and forced choice format. Supplementary Text S2, in the
Supplementary Materials, shows a hypothetical choice set presented to respondents and
a description of each attribute. Similar evidence already available in the scientific litera-
ture [37–39] showed that an opt-out alternative was excluded since individuals were asked
which option they would prefer rather than which one they would have chosen. Moreover,
given the clinical complexity of the investigated population, healthcare professionals cannot
avoid the conduct of an NGS test. Particularly, the decision to exclude an opt-out option
in this DCE is grounded in the realistic simulation of clinical decision-making scenarios
at tertiary care facilities involved in the survey. In this context, children presenting with
a suspected genetic disorder are offered one of the two advanced genomic tests. The
choice does not typically include traditional genetic testing or the option to forego testing
altogether. The final DCE survey was organised as follows: (a) the welcome page provided
respondents with instructions on how to complete the survey, the legal statements about
personal data confidentiality, and the declaration of informed consent; (b) the respondents
completed the 10 choice tasks; and (c) the DCE survey ended with multiple choice questions
regarding the respondents’ demographic and background information.

2.5. Data Collection

A pilot survey was conducted among the study team and local collaborators.
A few presentational changes were made, and some survey text was edited for clarity.
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No concerns were raised about the experimental design. Data were collected through an on-
line survey using Qualtrics (Qualtrics, Provo, UT, USA) from 1 June 2022 to 31 August 2022
(92 days). Respondents were contacted electronically via email to invite them to complete
the DCE.

Missing data and straight-lining responses were systematically addressed to ensure
the reliability of the study findings. Missing data, defined as unanswered choice sets,
were addressed through listwise deletion. Straight-lining responses, identified as instances
where a respondent consistently selected the same alternative across all choice sets, were
excluded from the analysis as these likely reflect disengagement or lack of understanding
of the task.

2.6. Econometric Analysis
2.6.1. Utility Function

A random utility function approach was used to predict choices and compute prefer-
ence weights from the data collected through the DCE survey design. According to this
framework [39], the utility that a respondent assigns to each alternative can be written
as Untk = Vntk + εntk, where Vntk is the deterministic part of the utility obtained by the
respondent n choosing the alternative t in the choice set k. Given two scenarios (i.e., genetic
tests A and B), the assumption is that a respondent will choose alternative A if UnAk > UnBk.
Under this framework, we can assume that respondents make trade-offs among attribute
levels to maximise their utility. The utility function can be written as follows:

Untk =
5

∑
k=1

βnk Antk + εntk

where βnk are the preference weights of each attribute level, Antk are the attributes,
and εntk is the error term.

2.6.2. Model

A mixed logit regression analysis was implemented to estimate the model of choice
behaviour [40]. This approach allows consideration of preference heterogeneity among re-
spondents by permitting one or more model parameters to be randomly distributed [41,42].
Furthermore, the mixed logit model allows for within-person correlation across choice
tasks. When variables are random, it is necessary to specify a distribution function. In the
present analysis, a log-normal distribution was attached to random parameters. Variables
are considered fixed when they are not assumed to be random. We first estimate a model
with all variables included as random, then, by looking at those with a non-significant
standard deviation, we identify fixed variables and use this information to specify our
final model. We assumed a linear relationship between attributes and choices and consid-
ered all attributes as continuous (the presence of non-linearity was tested by estimating a
model with attributes expressed as dichotomous variables. We did not find evidence of a
non-linear relationship between attributes and the outcome, and for this reason, we decided
to consider attributes as continuous variables) variables. Including a variable measuring
costs allowed the estimation of the WTP both in preference and WTP space [42]. WTP
assigns monetary values to attributes (i.e., how much money respondents are willing to
pay for a one-unit improvement in one of the attribute levels [43]). Estimates for WTP in
the preference space can be computed as follows:

WTPnk = −
dU

dAnk
dU

dcostn

=
βnk

βn,cost
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where βnk is the coefficient of the attribute, while βn,cost is the coefficient of the cost attribute
(i.e., test cost). The previous formula produces valid WTP estimates assuming the price
variable as fixed. This is an obvious limitation because the price could have a random
distribution in many cases.

To assess the robustness of the findings, a sensitivity analysis was conducted by
handling straight-lining respondents.

2.6.3. Re-Parametrised Model

Generally, the log-normal distribution describes a random price variable, although
this would lead to unrealistic WTP values and heavily skewed distributions [42]. Therefore,
we estimated the mixed logit model in the WTP space after performing the following
re-parametrisation:

Untk = −βncost

[
costntk −

1
βncost

∑4
k=1 βnk Antk

]
+ εntk = −βncost

[
costntk − ∑4

k=1 WTPnk Antk

]
+ εntk

In this framework, the coefficients of the attributes are re-parametrised by taking the
ratio between each attribute parameter and the attribute price (see Train and Weeks [37,44]).
This transformation allows us to assume a distribution directly for WTPnk and not for the
original coefficients. We assume each WTPnk to be normally distributed and βncost to be
log-normally distributed. Preference heterogeneity related to observable characteristics
such as experience and occupation was assessed only in the preference space, while the
assessment in the WTP space was not possible due to convergence issues. Following the
same methodology, WTT was estimated both in preference and in WTT space, allowing
interestingly for elicit trade-off preferences using a non-monetary variable (i.e., diagnostic
yield) as a benchmark attribute.

Additionally, the mixed logit model was used to estimate the distributions of
individual-level coefficients for each attribute following the approach proposed by Revelt
and Train [45]:

β̂n =

1
R ∑R

r=1 β
[r]
n ∏T

t=1 ∏J
j=1

[
exp

(
x′njt β

[r]
n

)
∑J

j=1

(
x′njt β

[r]
n

)
]ynjt

1
R ∑R

r=1 ∏T
t=1 ∏J

j=1

[
exp

(
x′njt β

[r]
n

)
∑J

j=1

(
x′njt β

[r]
n

)
]ynjt

where β
[r]
n is the r-th draw for individual n from the estimated distribution of β.

In conclusion, part-worth utility values were computed by estimating a random effects
multinomial logit model [46], which allows for obtaining the probability Pt of a health
professional choosing an alternative t, among a set of possible alternative Ts in the choice
task, with the βs representing the estimated part-worth utilities.

Pt =
exp(β, Xt)

∑T
j=1 exp

(
β, Xj

)
A positive part-worth utility suggests that the given attribute level is preferred over

levels of the same attribute. In contrast, larger part-worth utilities, with respect to smaller
ones, indicated a higher degree of preference for one level over another. The computed
part-worth utilities were then standardised to have a mean value of zero and used to
calculate the attribute relative attribute importance (RI). Accordingly, RI was computed as:

RI = (overall utility f or each attribute)/(total utility)
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The overall utility for each attribute was given by the range of part-worth utilities
within each attribute, whilst the total utility equalled the sum of the overall utility values
among all the DCE attributes. The RI was expressed as a percentage. All statistical analyses
were performed in STATA 17 (StataCorp LP, College Station, TX, USA).

3. Results
3.1. Respondents’ Characteristics

Overall, 200 surveys were sent out. A total of 125 eligible participants provided
informed consent and finished the DCE survey. Thirty participants did not respond to
multiple questions, and 14 straight-lined their responses. Hence, these participants were
excluded from the analyses, resulting in a final sample with 81 respondents. Demographic
characteristics are reported in Table 2. Women represented 55.8% of the sample, while most
respondents were between 25 and 34 years old (39.7%).

Table 2. Demographic characteristics of DCE survey participants.

Variable Value SD

Gender
Female 55.8% 0.51
Male 41.7% 0.49

Prefer not to say 2.5% 0.16
Age of respondent

24 years and under 2.5% 0.16
25–34 years 39.7% 0.49
35–44 years 13.7% 0.34
45–54 years 8.7% 0.28

55–64 19.9% 0.39
65 years and over 15.5% 0.36

Respondent occupation
Clinical geneticist 34.8% 0.48

Paediatrician 45.3% 0.49
Biologist 17.4% 0.38

Laboratory scientist 1.25% 0.11
Other 1.25% 0.11

Respondent’s experience in the genomic field
Less than 1 year 37.4% 0.48

1–9 years 33.5% 0.47
10–20 years 18.1% 0.39

20 years and over 11% 0.31
Education/research activities on NGS testing approaches

Yes 44.6% 0.49
No 55.4% 0.49

Use of NGS testing approaches
Yes 44.8% 0.49
No 55.2% 0.49

Survey details

Median time to complete the survey, minutes 12.1 3.16
Survey response rate 62.2% 0.03

Abbreviation: NGS, next-generation sequencing.

3.2. Model of Choice Behaviour

Each respondent answered 10 choice tasks, so 810 choice tasks were completed. Table 3
illustrates the results of the mixed logit model.
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Table 3. Mixed logit regression estimates.

Attribute B-Coefficient SD Lower CI Upper CI p

Fixed parameters
Diagnostic yield 0.205 *** 0.659 0.178 0.232 <0.001
Counselling time −0.015 * 0.326 −0.028 −0.001 <0.071

Test cost −0.001 *** 0.039 −0.0007 −0.0004 <0.001
Random parameters

Turnaround time −0.248 *** 2.050 −0.339 −0.173 <0.001
Variance of unknown significance −0.016 *** 0.511 −0.037 0.004 <0.001

AIC 782.29
Log-likelihood −384.15

Abbreviations: AIC, Akaike Information Criterion; CI, 90% confidence interval; p, p-value; and SD, standard
deviation. Notes: significant levels: *** p < 0.01, and * p < 0.1.

The estimated coefficients show that NGS tests are preferred when they provide a
higher diagnostic yield, require shorter counselling periods, lower costs, lower turnaround
time, and identify fewer variants of unknown significance. All the estimated coefficients
were of the expected sign and were statistically significant. Among the parameters, diag-
nostic yield generated the highest utility (coef. = 0.205). The coefficients of counselling time,
test cost, turnaround time, and ability to identify variances of unknown significance were
negative, implying a decrease in utility as the number of minutes of counselling, the cost,
the number of weeks, and the probability of identifying variances of unknown significance
increase, respectively.

Since the coefficients associated with the standard deviations are significant for at-
tributes such as counselling time, diagnostic yield, turnaround time, and the ability to
identify variants of unknown significance, this means that there is considerable heterogene-
ity around these parameters, and for this reason, we considered them as random.

With regard to heterogeneous effects, respondents with higher experience (i.e., >20 years)
assigned lower levels of utility to the diagnostic yield attribute, i.e., 38% lower
(i.e., –0.090/0.234) (Supplementary Text S3, Table S1, panel A) as per the average respondent.
Regarding the job occupation, the coefficient associated with being a paediatrician is not
statistically significant, implying no difference between being a medical geneticist and a pae-
diatrician in terms of perceived utility of diagnostic yield. Conversely, biologists assigned
higher levels of utility to the diagnostic yield attribute. Concerning medical geneticists,
the utility assigned to the attribute is 100% more (i.e., 0.204/0.204) (Supplementary Text S3,
Table S1, panel B).

Supplementary Text S4, in the Supplementary Materials, shows the distribution of
individual-level coefficients for each attribute and provides a visual description of the
parameters’ dispersion due to heterogeneous preferences. Of note are a few observations:
(a) all the attributes manifested a heterogenous distribution; (b) diagnostic yield coefficients
showed a right-skewed bimodal distribution; (c) the density curve of the turnaround time
coefficients was concentrated around the mean having no skew; and (d) the remaining
attributes’ coefficient density curves depicted unimodal right-skewed distributions.

Sensitivity analysis showed that coefficients and their significance level were largely
consistent with the original estimates, with minor variations in the magnitude of preferences.

3.3. Willingness to Pay and Willingness to Trade Estimates

Table 4 reports the WTP estimates in preference and the WTP space. All attributes
were assumed to be independent. Diagnostic yield, counselling time, and test cost were
assumed to be fixed, while turnaround time and the ability to identify variances of unknown
significance were random and log-normally distributed.
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Table 4. Comparison of willingness to pay estimates in preference and WTP space.

Attribute Preference Space WTP Space

Estimate (CI 95%) Estimate (CI 95%)

Diagnostic yield EUR 387.3 (271.8–502.9) EUR 709.8 (427.5–992.1)
Turnaround time EUR 468.7 (287.2–744.9) EUR 777.3 (752.4–802.2)
Counselling time EUR 27.8 (2.5–58.8) EUR 44.9 (12.3–77.6)

Variance of unknown significance EUR 31.2 (8.6–77.3) EUR 42.4 (39.01–45.8)
Abbreviation: CI, confidence interval. Notes: Those attributes for which increasing values correspond to undesired
situations by the health professional (i.e., turnaround time, counselling time, and ability to detect variance of
unknown significance) are associated with negative coefficients in the mixed logit model providing negative
WTP values. However, to ease the interpretability of the results, WTP estimates related to the abovementioned
attributes were multiplied by −1 and converted into positive values. Narrow CIs indicate greater precision in
the estimate, suggesting a high degree of agreement among respondents regarding the value of the attribute.
Wider CIs reflect higher uncertainty, which may result from variability in respondents’ preferences. Preference
space estimates assume a fixed cost coefficient, providing stable and narrower confidence intervals for WTP by
dividing attribute coefficients by the cost coefficient. In contrast, WTP space estimates model the cost coefficient
as random, accounting for variation in cost sensitivity across respondents. While WTP space estimates reflect
heterogeneity more realistically, they often exhibit wider confidence intervals and greater variability. Differences
between the two approaches highlight the extent of heterogeneity in cost preferences among respondents and
should be interpreted accordingly.

The WTP results in the preference space differed notably from those computed in the
WTP space, with the latter showing larger values. Overall, the relevance of the proposed
analysis to obtain unbiased estimates of the WTP appears justified.

In the preference space, the WTP estimates varied from EUR 387 (95% CI,
271.8–502.9) for a 7% increase in the diagnostic yield to EUR 469 (95% CI, 287.2–744.9)
for a decrease of one week in the turnaround time. Furthermore, individuals with higher
professional experience showed a WTP of 43% (i.e., −EUR 203/EUR 471) lower than those
with less experience. Regarding the job occupation, biologists highlighted a WTP 76%
(i.e., EUR 357/EUR 471) higher, with respect to medical geneticists, for a 7% increase in diag-
nostic yield (Supplementary Text S3, Table S2). In the WTP space, the WTP estimates varied
from EUR 710 (95% CI, 427.5–992.1) for a 7% increase in the diagnostic yield to EUR 777
(95% CI, 752.4–802.2) and for a one-week decrease in the turnaround time.

Overall, the WTP for respondents was more significant for the investigation process
and the waiting time, whereas the WTP for health professionals spending enough time in
consultation was smaller.

Table 5 outlines the WTT estimates in preference and the WTT space.

Table 5. Comparison of willingness to trade estimates in preference and WTT space.

Attribute Preference Space WTT Space

Estimate (CI 90%) Estimate (CI 90%)

Turnaround time 1.21 (0.786–1.677) 1.09 (1.022–1.158)
Counselling time 0.07 (0.006–0.138) 0.06 (0.009–0.117)

Variance of unknown significance 0.08 (−0.021–0.186) 0.05 (0.022–0.094)
Abbreviation: CI, confidence interval. Notes: Those attributes for which increasing values correspond to undesired
situations by the health professional (i.e., turnaround time, counselling time, and ability to detect variance of
unknown significance) are associated with negative coefficients in the mixed logit model providing negative
WTP values. However, to ease the interpretability of the results, WTP estimates related to the abovementioned
attributes were multiplied by −1 and converted into positive values.

Contrary to the WTP, the WTT results in the preference space were similar to those
in the WTT space. In both the preference and the WTT spaces, turnaround time is associ-
ated with the highest coefficient. Responders were willing to reduce diagnostic yield by
1.2 or 1.1 units (corresponding to a 7% reduction) to decrease the turnaround time by
one week in both the preference and the WTT spaces, respectively. They were willing
to reduce diagnostic yield by 0.07 and 0.06 percentage points to increase counselling
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time by one hour. Finally, they were willing to reduce the diagnostic yield by 0.08 and
0.05 percentage points to increase the ability to detect variances of unknown significance
by one percentage point.

3.4. Relative Importance of Attributes

The relative importance demonstrated that, among the attributes, respondents valued
diagnostic yield as the most important (RI = 50.36%; 95% CI 40.2–67.2%), preferring tests
with higher values of this attribute. In the context of this study, the second-most impor-
tant attribute was the turnaround time (RI = 18.92%; 95% CI 14.4–25.9%). Participants
valued a lower turnaround time over a larger one. Other attributes, in order of relative
importance, were test cost (RI = 10.93%, 95% CI 7–16.3%), the probability of detecting vari-
ances of unknown significance (RI = 10.37%; 95% CI 6.5–15.6%), and the counselling time
(RI = 9.42%; 95% CI 6.2–13.9%). Part-worth utilities were in the expected direction for the
levels within each of the above-reported attributes, with more extensive preferences for
higher counselling time, lower probability of detecting variances of unknown significance,
and lower costs. Part-worth utilities are depicted in Figure 1.
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4. Discussion
We evaluated the attributes’ burden to detect specialists’ preferences in the process of

deciding on a testing strategy. We submitted to responders a hypothetical scenario in which
a newborn infant presented a clinical picture compatible with a genetic disease. Referring
to the previous case, we asked health specialists to provide their preferences regarding
WTP, diagnostic accuracy, waiting time, counselling time, and VUS identification. The
resulting responses suggest that uptake for NGS tests was positively affected by a higher
diagnostic yield, shorter periods of counselling, lower costs, shorter turnaround time, and
identifying fewer variants of unknown significance.

Our findings show that the most important attribute was the diagnostic yield, for
which responders were willing to spend up to EUR 387 for a 7% increase in accuracy. This
result is relevant since the test accuracy is fundamental for diagnosing genetic disorders.
Based on its diagnostic yield, the genetic test choice could directly support the diagnosis
process, affecting health professionals and their clinical management decisions [47]. More-
over, a genetic disease, disorder, or phenotype can be challenging to define, considering
the possible technical error derived from an outdated instrument [48]. Indeed, an uncertain
result might require an additional exam, resulting in higher costs and time loss [49].

A further remarkable finding was the importance of a shorter turnaround time. This
likely reflects that rapid identification of genetic diseases may provide information to direct
clinical and public health interventions to shorten or end the diagnostic odyssey [50]. As is
known, the impact of rapid genomic testing on morbidity and mortality through immediate
access to provisional diagnosis, for which a specific treatment might eventually be available,
has already been widely described in the literature [50].

The DCE methodology is not a novelty in the clinical field as well. Indeed, its applica-
tion involved different scenarios of the care process [43,51,52]. This study proposes a novel
application of the DCE methodology to the fast-growing genomic diagnostic technology
field, considering that further investigation is needed in this context. Our estimates match
previous findings in other DCE studies evaluating the preferences of all the actors involved
in the diagnosis process (e.g., patients, health professionals, and payers). In the genetic test-
ing context, Buchanan et al. supported the findings that health professionals mostly valued
the diagnostic yield and the ability to identify fewer variances of unknown significance
compared to counselling time, which instead has been less prioritised [21]. In addition,
a systematic review of the literature strengthened this result [53].

Our study aligns with a common finding establishing the greater preference of
health professionals for outcome attributes (i.e., diagnostic yield and identification of
variances of unknown significance) with respect to process outcomes (i.e., counselling time).
Ries et al. [54] reported similar findings regarding WTP for genetic testing, albeit from
a different point of view. Here, respondents from the general population were willing
to invest more than CAD 500 for genetic diagnostic services. Additionally, a literature
review summarising median WTP values for different diagnostic technologies identified a
median WTP ranging from USD 100 to USD 1000 for genetic testing [55]. With reference
to the assumed importance of adopting NGS tests for an early diagnosis and treatment,
evidence in the scientific literature reinforces this hypothesis even from a payer perspective.
Dhanda et al. stated that payer-preferred genetic tests improving the quality of life had
high expert agreement on changing medical care and increased life expectancy through
targeted treatments [22].

The study finding that health professionals with over 20 years of experience placed less
emphasis on diagnostic yield aligns with patterns observed in the broader literature [56,57].
This perspective is supported by studies examining the interplay between clinical experi-
ence and decision making. Nalliah et al. has shown that intuition-based decision making,
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under certain conditions, can be as effective or even superior to evidence-based processes.
These conditions include the presence of domain expertise, typically requiring several years
of practice beyond initial qualification, as well as scenarios with time constraints, complex
and ambiguous problems, or limited scientific evidence. In such cases, intuition allows
experts to rapidly access subconsciously stored knowledge, enabling quick and effective
decision making [58]. In addition, the balance between experience-based and evidence-
based approaches is increasingly recognised in clinical practice. Wattiez et al. emphasised
that experience-based management can complement evidence-based guidelines by inte-
grating tacit knowledge and insights gained from real-world practice into decision-making
processes. This integration is particularly valuable in addressing complex or multifaceted
conditions, where guidelines may not account for every clinical scenario [59]. In the context
of genomic diagnostics, experienced clinicians may develop a more nuanced perspective
on the diagnostic process, recognising that diagnostic yield, while an important metric,
does not always guarantee better patient outcomes. These individuals might prioritise
other factors such as clinical judgement and patient context as well as on long-term clinical
outcomes, resource utilisation, or broader implications of diagnostic decisions, viewing
diagnostic yield as just one component of overall care quality [60].

Considering the elicited preferences from health professionals, our findings may steer
decision making toward the choice of NGS tests, which should ensure a higher diagnostic
yield and a shorter turnaround time. The joint reading of our findings allows for some
practical main implications. The strong preference for shorter turnaround times under-
scores the importance of policies promoting process optimisation in genomic diagnostic
workflows. Healthcare policies should prioritise investments in infrastructure and technol-
ogy that expedite the analysis and interpretation of genomic data, potentially integrating
automated pipelines and artificial intelligence tools. For instance, Australia’s Medicare
Benefits Scheme introduced reimbursement policies for genomic testing in rare diseases
and cancer, enabling faster access to testing and improving patient outcomes. Similarly,
the UK’s National Health Service Genomic Medicine Service implemented a centralised
approach to genomic diagnostics, providing equity of access to high-quality NGS services
while streamlining turnaround times. Furthermore, the significant role of test cost in
shaping clinician preferences highlights the necessity of establishing economically sustain-
able policies focused on implementing reimbursement systems for genomic diagnostics
technologies. For example, Germany introduced statutory health insurance coverage for
specific NGS panels, reducing financial barriers and fostering adoption among clinicians.
Moreover, the differences in preferences between experienced and less experienced profes-
sionals suggest that training programs should be tailored to address specific knowledge
gaps. The emphasis on diagnostic yield across all respondents highlights the potential
for genomic diagnostics to reduce inequities in healthcare. Policymakers should aim to
integrate these technologies within underserved and resource-limited settings, ensuring
that vulnerable populations can benefit from precision medicine advancements. A more
conceptual implication may be derived from comparing our findings with those obtained
in different contexts as reported by the scientific literature. Indeed, it is paramount to
give accountability to all the actors engaged in the diagnostic workup when developing
sounding genomic policies, especially by weighing health professionals’ preferences with
patients’ and payers’. This may address two issues about empowerment. Firstly, it may
guarantee to overcome the shattering relationship [61,62] among the stakeholders involved
at the different levels (i.e., macro-, meso-, and micro-level) of the decision-making process
in the healthcare system. Secondly, it might optimise the health system performance by
pursuing the Triple Aim framework [63], which embodies the core principles of public
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health, by simultaneously improving population health experience of care, and decreasing
the burden of healthcare costs for national health services.

The present study should be considered considering its main strengths and limitations.
Given the online nature of the experiment, participation and non-response biases are po-
tential caveats to data collection [64]. Moreover, the personal experience may influence the
attitude of the responder towards the items. Nevertheless, the web survey was addressed
only to sector specialists, thus increasing the likelihood of obtaining coherent answers.
Additionally, the time needed to complete the questionnaire might have discouraged some
recipients, potentially reducing the sample size. In addition, the observed considerable
heterogeneity was not explored in depth due to the study’s sample size. However, proper
methodology [33,34] was adopted to address this issue by computing the needed sample
to yield reliable estimates of the attributes’ coefficients. It has been noted that a sample
size of at least 20 is sufficient to correctly compute a DCE model since each participant
provides multiple observations [65]. A further limit was that a reduction in the amount
of counselling time positively affected the uptake of genetic tests. Nonetheless, this may
be an artefact of the design of the DCE, even though the relative size of the coefficients
for the counselling attribute in the regression model may imply that this attribute likely
only had a negligible impact on the individuals’ choices. A further caveat is the presence of
missing data that can significantly affect the study findings by introducing bias, reducing
statistical power, and impairing the validity of preference estimates. Notwithstanding,
a sensitivity analysis confirmed that the exclusion of missing data did not materially affect
the parameter estimates, ensuring the robustness of the results. An additional limitation is
the exclusion of an opt-out option, which might have introduced some bias on preference
estimation, realism, behavioural responses, and generalisability.

Excluding an opt-out option forces respondents to select one of the available al-
ternatives. This can increase the precision of utility estimates for the attributes under
consideration, as all responses contribute information about preferences. It may also lead
to biased estimates if respondents would have preferred not to choose either option in
a real-world scenario, thus artificially inflating the importance of certain attributes.

As the study is based on a real-world setting where clinicians must choose between
two genomic tests, excluding the opt-out option increases the contextual realism of the
study. Notwithstanding, without an opt-out option, respondents might make choices they
would not make in practice, leading to hypothetical bias.

Forcing respondents to choose between two alternatives in every choice set can lead to
decision fatigue, resulting in lower engagement, random answering, or reduced reliability
of responses. Therefore, the increased variability in responses might reduce the precision
of the estimated preferences.

The absence of an opt-out option may limit the generalisability of the findings to
settings with different clinical workflows.

Notwithstanding, the study did not adopt an experimental design with alternative-
specific attribute levels nor a labelled design, allowing it to achieve the level balance for
all attributes and to improve response efficiency [66]. Furthermore, including an opt-out
option could misrepresent the actual clinical workflow, potentially leading to responses that
deviate from such real-world practice. Finally, in the present DCE, responders answered
several choice tasks while assessing a hypothetical scenario. Alternative scenarios might
originate different patterns of results.

The observed differences between preference space and WTP space estimates can
be attributed to several factors inherent to the modelling approaches. First, preference
space models estimate utility coefficients directly for each attribute, while WTP space
models reformulate utility functions to estimate WTP by dividing attribute coefficients
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by the marginal utility of cost. This transformation introduces additional assumptions
about the distribution of the cost parameter, which can differ between the two approaches.
Variability or non-linear scaling in the cost parameter, such as declining marginal utility
with increasing cost, may further amplify disparities. Additionally, WTP space estimates
are more sensitive to unobserved heterogeneity in cost sensitivity, as variability in the cost
parameter directly affects WTP estimates for all non-monetary attributes.

Further research is required to investigate the drivers of preference heterogeneity
among health professionals about genomic testing through revealed preference studies.

Additional research should aim to include a more diverse range of professional back-
grounds, such as genetic counsellors and other specialised healthcare providers, to enable
more granular comparisons of preferences across subgroups.

5. Conclusions
The highly shared preference for the diagnostic yield and turnaround time draws at-

tention to the need to invest in more accurate and faster instruments to tackle the diagnostic
odyssey of ill paediatric patients. Study findings have implications for the design of future
genomic policies and the implementation of genomic testing services. These preferences
may also impact the translation of NGS techniques into clinical practice for diagnosing
suspected genetic disorders in the medium-to-long term. Investigating NGS application
to diagnose suspected genetic disorders through sector specialists’ perspectives may gen-
erate room for accurate and early genetic diagnosis, ultimately reducing the diagnostic
odyssey [67,68]. However, sustainable allocation of healthcare resources should become
a focal point in discussing economic investments in the genetic field to ensure the most
suitable and cost-effective care for the fragile paediatric population.
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