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Abstract: Background: Large language models (LLMs) have seen a significant boost
recently in the field of natural language processing (NLP) due to their capabilities in
analyzing words. These autoregressive models prove robust in classification tasks
where texts need to be analyzed and classified. Objectives: In this paper, we explore
the power of base LLMs such as Generative Pre-trained Transformer 2 (GPT-2), Bidirec-
tional Encoder Representations from Transformers (BERT), Distill-BERT, and TinyBERT
in diagnosing acute inflammations of the urinary bladder and nephritis of the renal
pelvis. Materials and Methods: the LLMs were trained and tested using supervised
fine-tuning (SFT) on a dataset of 120 examples that include symptoms that may indicate
the occurrence of these two conditions. Results: By employing a supervised fine-tuning
method and carefully crafted prompts to present the data, we demonstrate the feasi-
bility of using minimal training data to achieve a reasonable diagnostic, with overall
testing accuracies of 100%, 100%, 94%, and 79%, for GPT-2, BERT, Distill-BERT, and
TinyBERT, respectively.

Keywords: large language models; LLMs; NLP; autoregressive; transformer; GPT-2; BERT;
Distill-BERT; TinyBERT; supervised fine-tuning; SFT

1. Introduction
Acute inflammation of the urinary bladder, known as acute cystitis, is an abrupt and

frequently painful condition marked by the inflammation of the bladder’s lining [1]. This
condition is predominantly triggered by bacterial infections, with Escherichia coli being
the most common pathogen implicated in these cases. Acute cystitis represents a specific
form of urinary tract infection (UTI) that targets the bladder, resulting in a variety of
discomforting symptoms [1,2].

Acute inflammation of the urinary bladder is marked by the abrupt onset of abdom-
inal pain and a persistent urge to urinate, accompanied by painful micturition and, in
some cases, difficulty in retaining urine [2]. This disease is characterized by an elevated
body temperature, typically not exceeding 38 ◦C. The urine produced is often cloudy
and may contain blood. With appropriate treatment, symptoms generally subside within
a few days; however, there is a tendency for recurrence. Individuals experiencing acute
urinary bladder inflammation may be at risk of the condition developing into a chronic
form [3].
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Acute nephritis of the renal pelvis, commonly known as acute pyelonephritis, is
a critical medical issue marked by the inflammation of both the renal pelvis and the
surrounding kidney tissue, predominantly resulting from a bacterial infection [4]. This
condition frequently develops as a consequence of an ascending urinary tract infection
(UTI), wherein bacteria migrate from the bladder through the ureters to the kidneys.

This condition, originating from the renal pelvis, is significantly more prevalent in
women than in men. The condition typically presents with a sudden onset of fever, which
can reach or even surpass 40 ◦C [1]. This fever is often accompanied by chills and unilateral
or bilateral lumbar pain, which can be quite severe [1,5]. Symptoms indicative of acute
inflammation of the urinary bladder frequently manifest as well. Additionally, it is not
uncommon for patients to experience nausea, vomiting, and diffuse abdominal pain [5,6].

Conventional diagnostic methods of such conditions, although effective, often require
considerable time and may fail to fully address the complexities of patient presentations.
In this regard, utilizing advanced large language models (LLMs) such as BERT [7] and
GPT-2 [8] presents a valuable opportunity to improve both the accuracy and efficiency
of diagnostics.

The utilization of large language models (LLMs) in the field of healthcare has signifi-
cantly transformed numerous facets of medical practice, especially in the area of diagnos-
tics [9]. These models are proficient in analyzing extensive volumes of textual information,
which encompasses patient histories, clinical documentation, and laboratory findings. By
tailoring these models to numerical datasets related to urinary tract disorders, we can
improve their capacity to detect patterns and relationships that may not be readily ob-
servable to human practitioners [10]. For example, research has indicated that LLMs can
aid in forecasting disease outcomes based on symptom descriptions and clinical informa-
tion [8,9]. This functionality is particularly vital in the diagnosis of conditions such as acute
nephritic syndrome, where symptoms like hematuria and reduced urine output necessitate
meticulous interpretation [11,12].

The fine-tuning process of these LLMs further customizes these models to align with
the particular language and context associated with medical diagnostics [2,10,13]. By
training large language models (LLMs) on datasets that encapsulate the clinical language
relevant to urinary bladder inflammations and renal pelvis nephritis, we can enhance their
predictive accuracy. This level of specificity is crucial, as it enables the models to grasp the
nuances of medical terminology and patient presentations, resulting in more dependable
diagnostic outputs. Incorporating LLMs into clinical workflows has the potential to sub-
stantially decrease diagnostic errors and improve patient care by equipping clinicians with
effective decision-support tools.

In this work, GPT-2 [8], BERT [7], Distill-BERT [14], and TinyBERT [15] were fine-tuned
on a classification-based dataset [16], which comprises medical attributes that can indicate
the occurrence of acute inflammations of the urinary bladder and nephritis of the renal
pelvis. After fine-tuning, the textual analysis capability of these LLMs can help analyze the
symptoms and decide whether an instance represents a potential patient or not. Table 1
show the exact models employed in this study, in addition to their sizes and descriptions.

The rest of this paper is organized as follows: Section 2 is a review of the related
studies and papers. Section 3 gives the materials and methods, which include a dataset
description, prompt creation, and the fine-tuning process of the models. Section 4 presents
the results, and Section 5 offers a discussion of the results. Finally, Section 6 sets out the
conclusion of this work.
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Table 1. Summary of the models employed: GPT-2, BERT, Distill-BERT, and TinyBERT, including
their names, numbers of parameters, and descriptions.

Model Full Name Number of
Parameters Pros Cons Originality Results

GPT-2
Generative
Pre-trained

Transformer 2
1.5 billion

High-quality text
generation,
versatile,

large-scale
pre-training.

Computationally
expensive,
requires

significant
resources for
fine-tuning.

Introduced
large-scale

unsupervised
pre-training for

generative tasks.

Achieved
state-of-the-art
performance in
text generation

tasks.

BERT-Base

Bidirectional
Encoder

Representations
from

Transformers

110 million

Strong
performance on a

wide range of
NLP tasks,

bidirectional
context.

Large model size,
slower inference

compared to
distilled versions.

Pioneered
bidirectional

pre-training for
contextualized

word
representations.

Set new
benchmarks in

tasks like
question

answering and
sentiment
analysis.

Distill-BERT Distilled BERT 66 million

Faster inference,
reduced resource

requirements,
retains BERT’s

accuracy.

Slight
performance drop

compared to
BERT-Base.

Introduced
knowledge

distillation to
compress BERT

while
maintaining

performance.

Achieved
near-BERT

performance with
significantly

fewer parameters.

TinyBERT
(4-layer) Tiny BERT ~14 million

Extremely
lightweight,

suitable for edge
devices, fast

inference.

Reduced
performance
compared to

larger models,
limited capacity.

Focused on
extreme model

compression for
low-resource

environments.

Demonstrated
competitive

performance in
resource-

constrained
settings.

2. Review
The employment of machine learning (ML) models, particularly large language models

(LLMs), in diagnosing acute urinary bladder inflammation and nephritis has attracted
considerable interest in contemporary research. This review consolidates the results from
multiple studies that have utilized these computational methods to improve diagnostic
precision and a predictive performance in urological disorders.

A recent study [17] introduced three distinct machine learning models—logistic re-
gression, decision tree, and random forest—aimed at predicting recurrent urinary tract
infections (RUTIs) attributed to Escherichia coli. Among these, the random forest model ex-
hibited the greatest accuracy in predictions, underscoring the potential of machine learning
to proficiently evaluate both host and bacterial traits in predicting RUTIs. Furthermore,
the decision tree model showed significant classification accuracy within particular pa-
tient subgroups, indicating that customized strategies may enhance clinical outcomes for
vulnerable populations.

A separate investigation [3] assessing GPT-4’s role as a diagnostic support tool re-
vealed that, although it was capable of producing differential diagnoses with a satisfactory
level of accuracy, it encountered difficulties when faced with intricate cases. The research
underscored the promise of large language models (LLMs) in aiding healthcare profes-
sionals by offering a list of potential diagnoses; however, it emphasized that these models
should not supplant human judgment. This finding carries significant implications for the
incorporation of LLMs into clinical settings, especially in complex diagnostic situations.

Moreover, a research study concentrated on uncomplicated urinary tract infections
employed a range of artificial intelligence methodologies, such as decision trees and artifi-
cial neural networks (ANNs), to assess the probability of conditions like cystitis [18]. The
ANN model attained a remarkable accuracy of 98.3%, highlighting the potential of machine
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learning techniques in the diagnosis of urinary disorders by analyzing clinical symptoms
alongside laboratory findings.

Another study examined the application of machine learning techniques to predict
damage to the upper urinary tract by integrating inflammatory markers with conventional
clinical indicators. This methodology demonstrated the capacity of machine learning to
improve early detection and risk assessment in individuals at risk of urinary tract injury,
emphasizing its significance in the realm of preventive healthcare [19].

3. Materials and Methods
3.1. Dataset Description

The Acute Inflammations dataset, obtained from the UCI Machine Learning Repos-
itory [16], is a publicly available dataset that was curated by Dr. Jacek Czerniak of the
Systems Research Institute, Polish Academy of Sciences, Laboratory of Intelligent Sys-
tems in Warsaw, Poland. This dataset comprises 120 instances, each characterized by six
attributes, as shown in Table 2.

Table 2. The Acute Inflammations dataset attribute descriptions [16].

Attribute Description Data Type Range/Values

Temperature Body temperature of the patient Numeric 35–42 ◦C

Nausea Presence of nausea Categorical Yes, No

Lumbar Pain Presence of lumbar pain Categorical Yes, No

Urine Pushing Continuous need for urination Categorical Yes, No

Micturition Pains Pain during urination Categorical Yes, No

Urethra Inflammation Inflammation, itching, or swelling of
the urethra outlet Categorical Yes, No

The dataset presents two binary class labels, as shown in Figure 1:

• Inflammation of urinary bladder: Indicates the presence or absence of urinary blad-
der inflammation.

• Nephritis of renal pelvis origin: Indicates the presence or absence of nephritis originat-
ing in the renal pelvis.

Of the 120 instances, 59 exhibit inflammation of the urinary bladder, while 50 exhibit
nephritis of renal pelvis origin.
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Figure 1. Acute Inflammations dataset [11]. The dataset comprises 120 instances in total; amongst
them, 59 have bladder inflammation and 50 have nephritis of the renal pelvis. The remaining
11 instances have none of these conditions. The presence of a condition was noted as ‘Yes’, while the
absence of it was noted as ‘No’.
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3.2. Data Preprocessing and Prompt Engineering

Recently, large language models have made a significant breakthrough in the domain
of natural language processing (NLP) and have attracted substantial attention [14,19].
These autoregressive models are characterized by their huge parameter counts, exten-
sive pre-training on large datasets of text, and subsequent fine-tuning for targeted
applications [14,15,17].

The method used for fine-tuning the large language models (LLMs) in this work is
referred to as supervised fine-tuning (SFT) [20], which involves adapting a pre-trained
model, such as GPT-2, to a specific downstream task using labeled data. In this case,
LLMs such as GPT-2 should be fine-tuned to diagnose the acute inflammations of the
urinary bladder and nephritis. However, this process involves several steps such as dataset
preparation and prompt engineering.

3.2.1. Dataset Preparation

Dataset preparation is the process where we prepare our dataset so that an LLM
can understand it. As shown in Table 1, some parameters are categorical (Yes, No) while
the temperature parameter is numerical (35.5–41.5 ◦C), and since LLMs are language
models, we kept the categorical parameters as they were, whereas the temperature fea-
ture was normalized using scikit-learn’s StandardScaler to ensure all features were on a
comparable scale.

The next step was to encode the labels, in which the output labels for bladder inflam-
mation and nephritis were encoded as binary values (1 for “yes” and 0 for “no”). This
transformation converted the LLMs into classifications models.

The last step was to split the data into training (60%) and testing (40%) sets using a
train–test split function with a fixed random state for reproducibility.

3.2.2. Prompt Engineering

Once the dataset [16] is prepared and processed, it is time to create the prompts that
will be used to train the models. LLMs are language models, i.e., they understand language,
unlike classical image classification models, which work with images or numerical values
only. Thus, we engineered prompts to structure the input data in a prompt-completion
format suitable for training the language model as shown in Box 1. The prompt template
was designed as follows:

Box 1. Prompt engineering of the input data.

{“prompt”: “Diagnose urinary tract conditions based on the following symptoms:\nTemperature:
−0.72\nNausea: No\nLumbar Pain: No\nUrine Pushing: No\nMicturition Pains: No\nBurning of
Urethra: No\n\nDiagnosis:”, “completion”: “Bladder inflammation: No\nNephritis: No”}

This prompt structure was crafted to mimic the clinical presentation of symptoms,
allowing the model to interpret the input as a diagnostic classification task.

3.3. Supervised Fine-Tuning of the LLMs

To optimize the LLMs’ performance while addressing computational constraints, we
selected pre-trained LLMs that are relatively small in size for the task of acute inflammation
and nephritis diagnosis. For instance, we selected the GPT-2 base model, which has
124 million parameters, BERT base model, which has 110 million parameters, Distill-BERT,
which has approximately 66 million parameters, and TinyBERT, which has approximately
14.5 million parameters.



J. Pers. Med. 2025, 15, 45 6 of 12

The four employed models—GPT-2, BERT, Distill-BERT, and TinyBERT—utilize dif-
ferent architectural frameworks and pre-training goals. GPT-2 is based on a decoder-only
transformer architecture, whereas the BERT variants are structured around an encoder-
only framework.

Before fine-tuning, the text data, comprising patient symptoms and diagnoses, were
tokenized using the GPT-2 tokenizer, in the case of GPT-2. This process involves breaking
down text into smaller units called tokens. The tokenizer of every LLM employs a subword
tokenization technique that efficiently handles out-of-vocabulary words by breaking them
into smaller subword units. This approach allows for a flexible vocabulary and better
handling of unseen words. Once tokenized, the sequences were padded to a fixed length,
ensuring a consistent input to the model. The resulting tokenized sequences, along with
their corresponding labels, were fed into the fine-tuning process. Figure 2 shows the
fine-tuning process of the LLMs. Table 3 shows the performance of each model.

The pre-trained LLMs were adapted to their new target task by modifying their
output layers to have two neurons, corresponding to the two disease classes: bladder
inflammation and nephritis. The AdamW optimizer with a learning rate of 2 × 10−5

was used to update the model’s parameters during training. For each training batch, the
model generated predictions, calculated the cross-entropy loss, and updated its parameters
through backpropagation. Each model was trained for 20 epochs, with evaluation on both
training and test sets after each epoch to monitor the performance and prevent overfitting.
In this study, all experiments were conducted using Python 3.9 with PyTorch (v2.0.0) and
the Transformers library (v4.30.0) for loading and fine-tuning pre-trained models (GPT-2,
BERT, Distill-BERT, TinyBERT). The models were implemented on an NVIDIA GTX 1650 Ti
GPU using CUDA (v11.7) for acceleration. Data preprocessing, including tokenization and
padding, was performed using the tokenizers provided by the Transformers library.
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Table 3. LLM performance evaluation.

GPT-2 (%) BERT (%) Distill-BERT (%) TinyBERT (%)

Accuracy 1.0 1.0 0.94 0.79

Precision 1.0 1.0 1.0 0.75

F1-score 1.0 1.0 0.94 0.69

Recall 1.0 1.0 0.90 0.66

3.3.1. Comparison of LLMs with Shallow Neural Networks

To explore the power of fine-tuning large language models (LLMs) compared to
shallow neural networks, we trained two baseline models on our dataset:

• A three-layer feedforward neural network (FFNN): This model consisted of an input
layer, a hidden layer with 128 units and ReLU activation, and an output layer with
softmax activation for classification.

• A one-dimensional convolutional neural network (1D-CNN): This model included a
1D convolutional layer with 64 filters, a kernel size of 3, and ReLU activation, followed
by a max-pooling layer and a fully connected layer for classification.

Both models were trained using the Adam optimizer with a learning rate of 1 × 10−3

and a batch size of 32. Early stopping was employed to prevent overfitting, and the models
were evaluated on the same test set used for the LLMs. The results of this comparison are
presented in Table 4, which shows the accuracy of the shallow neural networks versus the
fine-tuned LLMs.

Table 4. Results comparison of plain neural networks and LLMs.

Models Accuracy (%)

ANN 72

1D-CNN 64

GPT-2 100

BERT 100

Distill-BERT 94

TinyBERT 79

3.3.2. Few-Shot Learning with DeepSeek Chat

For comparison purposes, we employed a few-shot learning approach to evaluate
the performance of DeepSeek Chat [21,22], a cutting-edge large language model based
on the GPT architecture with approximately 175 billion parameters. The specific version
used was DeepSeek Chat v1.0, which is optimized for natural language understanding and
generation tasks.

Fine-tuning involved further training pre-trained models (e.g., GPT-2, BERT) on a
labeled dataset, updating their weights to learn task-specific patterns, and achieving a high
performance at the cost of computational resources. In contrast, few-shot learning utilized
DeepSeek Chat with only two examples to guide predictions, leveraging its pre-trained
knowledge without weight updates, making it efficient for low-data scenarios but with a
slightly lower accuracy.

To guide the model, we crafted a prompt that included two examples, one for each
class, to establish the initial classification criteria. The prompt was designed to help the
model understand the relationship between symptoms and diagnoses. The structure of the
prompt was as follows:
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Input:
Temperature: [value], Nausea: [yes/no], Lumbar pain: [yes/no], Urine pushing: [yes/no],
Micturition pains: [yes/no], Burning urethra: [yes/no]
Output:
Inflammation of urinary bladder: [yes/no], Nephritis of renal pelvis origin: [yes/no]

4. Results
In this section, we report the results achieved by the LLMs during training and testing.

We selected the Accuracy, Precision, F1-score, and Recall as the evaluation metrics of the
models. Note that the models were tested on 40% of the data. Figure 3 shows the learning
curves of the four different models in the training phase. Note that all models were trained
on 60% of the data and for 20 epochs. Table 3 shows the performance evaluation metrics of
the models when tested on 40% of the remaining data.
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4.1. Impact of LLMs on the Diagnosis of Acute Inflammation and Nephritis

To explore the power of LLM fine-tuning over shallow neural networks, we trained
a simple three-layer feedforward neural network and a one-dimensional convolutional
neural network (1D-CNN) on our dataset to compare their performance to that of the LLMs.

Table 4 shows the comparative results of neural networks versus LLMs in terms
of accuracy.
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4.2. Few-Shot Learning of DeepSeek Model

For comparison purposes, we employed a few-shot learning approach to evaluate
the performance of a cutting-edge large language model called DeepSeek Chat [21,22]
for classifying patients with acute inflammation or nephritis into either “Inflammation of
urinary bladder” or “Nephritis of renal pelvis origin” based on their clinical symptoms.
We utilized a dataset comprising 120 records [16], each with features such as temperature,
nausea, lumbar pain, urine pushing, micturition pains, and burning urethra. To guide the
model, we crafted a prompt that included only two examples, one for each class, which
were used to establish the initial classification criteria. The prompt was designed to guide
the model in understanding the relationship between symptoms and the corresponding
diagnoses. Specifically, the prompt had the following structure [16]:

Input: Temperature: [value], Nausea: [yes/no], Lumbar pain: [yes/no], Urine pushing:
[yes/no], Micturition pains: [yes/no], Burning urethra: [yes/no]

Output: Inflammation of urinary bladder: [yes/no], Nephritis of renal pelvis origin:
[yes/no]

For instance, the two examples provided were the following [16]:

1. Input: Temperature: 35.9, Nausea: no, Lumbar pain: no, Urine pushing: yes, Micturi-
tion pains: yes, Burning urethra: yes
Output: Inflammation of urinary bladder: yes, Nephritis of renal pelvis origin: no

2. Input: Temperature: 40.0, Nausea: yes, Lumbar pain: yes, Urine pushing: yes,
Micturition pains: yes, Burning urethra: yes
Output: Inflammation of urinary bladder: no, Nephritis of renal pelvis origin: yes

These examples were used to prompt the DeepSeek Chat model [21], and its predic-
tions were then compared against ground truth labels for the remaining 118 records [16]
to assess its accuracy. Table 5 shows the results of the few-shot learning of the DeepSeek
Chat model. The overall accuracy of this model was calculated to be 75%. Additionally,
we computed the precision, recall, and F1-score for each class to provide a comprehensive
evaluation. For “Inflammation of urinary bladder”, the model achieved a precision of 0.875,
recall of 0.875, and F1-score of 0.875. Conversely, for “Nephritis of renal pelvis origin”,
the precision was 0.5, recall was 0.25, and F1-score was 0.3333. These metrics highlight
the model’s strong performance in identifying inflammation of the urinary bladder but
indicate its room for improvement in diagnosing nephritis of renal pelvis origin, suggesting
potential areas for further refinement and validation.

The model used in this few-shot learning comparative experiment was DeepSeek Chat,
a large language model developed by DeepSeek [22]. It is based on the GPT architecture
and has approximately 175 billion parameters. The specific version used was DeepSeek
Chat v1.0, which is optimized for natural language understanding and generation tasks.

Table 5. Few-shot learning of DeepSeek Chat.

Metrics Acute Inflammation Nephritis

Accuracy 0.72

Precision 0.875 0.5

Recall 0.875 0.25

F1-score 0.875 0.33

5. Discussion
This study aimed to explore the power of fine-tuned LLMs in acute inflammation

and nephritis of renal pelvis diagnosis. Our research addresses the need to leverage LLMs
in the medical field where data need to be retrieved and analyzed to make medical de-
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cisions. Large language models (LLMs) like GPT-2 and BERT have significant potential
for medical diagnostic tasks, particularly those involving the classification of conditions
such as acute inflammation and nephritis. The ability of LLMs to analyze and interpret
complex linguistic patterns, coupled with their extensive training on diverse text corpora,
makes them well-suited for tasks where the primary data consist of descriptive symptoms
and clinical parameters. Unlike traditional neural networks, which may require exten-
sive feature engineering and large datasets, LLMs can leverage their natural language
processing capabilities to understand and classify symptoms directly from textual descrip-
tions. This inherent advantage positions LLMs as a superior choice for such diagnostic
tasks, offering a more intuitive and efficient approach to medical classification based on
symptom-based datasets.

The models selected for this research were GPT-2, BERT, Distill-BERT, and TinyBERT.
These models were trained and evaluated using the dataset [16]. Figure 3 illustrates the
training loss for these models over 20 epochs. Notably, GPT-2 and BERT achieved excellent
training loss (100%) without exhibiting signs of overfitting or hallucination. In contrast,
Distill-BERT and TinyBERT did not attain such low training loss. The learning curve for
TinyBERT suggests an initial high accuracy (~90%), which abruptly increased to 100%,
potentially indicating overfitting.

This training performance was reflected in the test set results, as presented in Table 3.
GPT-2 and BERT demonstrated superior diagnostic capabilities for acute inflammation and
nephritis of the renal pelvis, achieving 100% for their accuracy, precision, F1-score, and
recall. Conversely, Distill-BERT and TinyBERT exhibited lower performance metrics, with
reduced scores across the accuracy, precision, F1-score, and recall.

An additional experiment was conducted to investigate the efficacy of large language
models (LLMs) in diagnosing acute inflammation of the urinary bladder and nephritis
of the renal pelvis by analyzing symptoms and interpreting complex linguistic patterns
indicative of these conditions. In this experiment, a simple three-layer artificial neural
network (ANN) and a convolutional neural network (1-CNN) were employed. Both
networks were trained on the same dataset used for the LLMs. The results are summarized
in Table 4. Notably, the LLMs demonstrated a superior performance in terms of accuracy
compared to the ANN and 1-CNN. This superior performance highlights the potential
of LLMs to revolutionize medical diagnostics, providing a more accurate and effective
method for classifying diseases based on symptom-driven datasets.

Furthermore, Table 5 presents the results of an experiment involving an interactive
instruction-based chat model (DeepSeek Chat) prompted using few-shot learning, to assess
its ability to diagnose acute inflammation of the urinary bladder and nephritis using
only two examples during training. The findings in Table 5 indicate that, despite having
more parameters and being trained on larger datasets, DeepSeek Chat did not surpass
any of the fine-tuned LLMs utilized in this study, such as GPT-2, BERT, Distill-BERT, and
TinyBERT, which are smaller in size. This underscores the efficacy of supervised fine-tuning
methods for LLMs, particularly when considering the differences in model size (number
of parameters) and the size of the training corpus between the fine-tuned models and
DeepSeek Chat.

Lastly, despite the impressive performance demonstrated by the LLMs fine-tuned
using our dataset, these models exhibit certain limitations. The models were evaluated on
a relatively small dataset, which restricts the generalizability of these findings from this
specific study. A more extensive dataset, encompassing thousands of testing examples,
would enhance the reliability and feasibility of these conclusions, providing a more robust
validation of the LLMs’ diagnostic capabilities.
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6. Conclusions
This study has explored the potential of large language models (LLMs) in diagnosing

acute inflammation of the urinary bladder and nephritis of the renal pelvis using symptom-
based datasets. By employing a supervised fine-tuning method and carefully crafted
prompts to present the data, we demonstrated the feasibility of using minimal training data
to achieve a reasonable diagnostic accuracy. The LLMs—GPT-2, BERT, Distill-BERT, and
TinyBERT—were fine-tuned on a dataset of 120 records and achieved overall accuracies of
100%, 100%, 94%, and 79%, respectively.

Additionally, precision, recall, and F1-score metrics were computed for each class, high-
lighting the models’ strong performance in identifying inflammation of the urinary bladder
but indicating their room for improvement in diagnosing nephritis of renal pelvis origin.

Despite the promising results, this study has limitations. The models were tested
on a small dataset, which restricts the generalizability of these findings. A larger dataset
with thousands of testing examples will enhance the reliability and feasibility of these
conclusions, providing a more robust validation of the LLMs’ diagnostic capabilities.

In conclusion, this paper contributes to the field by demonstrating the potential of fine-
tuning LLMs in medical diagnostics, particularly for symptom-based classification tasks.
The findings suggest that LLMs offer a more intuitive and efficient approach compared
to traditional neural networks, paving the way for future research in this domain. Future
work should focus on expanding the dataset and exploring more sophisticated fine-tuning
techniques to further improve the diagnostic accuracy of LLMs.
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