Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO
Abstract
:1. Introduction
2. Overview of DECIGO
2.1. Design of DECIGO
2.2. Science Target of DECIGO
3. Sensitivity in Gravitational Wave Detectors
3.1. Michelson Interferometer
3.2. Differential Fabry-Perot Interferometer
3.3. Sensitivity of Gravitational Wave Detector Cluster
3.4. Typical Noise Power Spectral Density
4. Beneficial Effect of Employing Fabry-Perot Cavities on DECIGO
4.1. Primordial Gravitational Waves
4.1.1. Wave Form
4.1.2. Signal-to-Noise Ratio
4.1.3. Comparison of Sensitivity
4.1.4. Result
4.2. Gravitational Waves from Coalescence of Binary Star System
4.2.1. Wave Form
4.2.2. Signal-to-Noise Ratio
4.2.3. Comparison of Sensitivity
4.2.4. Results
5. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Phys. Rev. X 2023, 13, 041039. [Google Scholar] [CrossRef]
- Collaboration, T.L.S.; Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2014, 32, 024001. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.; Affeldt, C.; et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 2017, 34, 044001. [Google Scholar] [CrossRef]
- Buikema, A.; Cahillane, C.; Mansell, G.; Blair, C.; Abbott, R.; Adams, C.; Adhikari, R.; Ananyeva, A.; Appert, S.; Arai, K.; et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. 2020, 102, 062003. [Google Scholar] [CrossRef]
- Michimura, Y.; Ando, M.; Capocasa, E.; Enomoto, Y.; Flaminio, R.; Haino, S.; Hayama, K.; Hirose, E.; Itoh, Y.; Kinugawa, T.; et al. The Fifteenth Marcel Grossmann Meeting; World Scientific: London, UK, 2022. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Aoudia, S.; Babak, S.; Binétruy, P.; Berti, E.; Bohé, A.; Caprini, C.; Colpi, M.; Cornish, N.J.; Danzmann, K.; et al. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 2012, 29, 124016. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space. Phys. Rev. Lett. 2001, 87, 221103. [Google Scholar] [CrossRef]
- Kawamura, S.; Ando, M.; Seto, N.; Sato, S.; Musha, M.; Kawano, I.; Yokoyama, J.; Tanaka, T.; Ioka, K.; Akutsu, T.; et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Prog. Theor. Exp. Phys. 2021, 2021, 05A105. [Google Scholar] [CrossRef]
- Martens, W.; Joffre, E. Trajectory Design for the ESA LISA Mission. J. Astronaut. Sci. 2021, 68, 402–443. [Google Scholar] [CrossRef]
- Joffre, E.; Wealthy, D.; Fernandez, I.; Trenkel, C.; Voigt, P.; Ziegler, T.; Martens, W. LISA: Heliocentric formation design for the laser interferometer space antenna mission. Adv. Space Res. 2021, 67, 3868–3879. [Google Scholar] [CrossRef]
- Clohessy, W.; Wiltshire, R. Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 1960, 27, 653–658. [Google Scholar] [CrossRef]
- Allen, B. Stochastic gravity-wave background in inflationary-universe models. Phys. Rev. D 1988, 37, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V. Energy density of relic gravity waves from inflation. Phys. Rev. D 1990, 42, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Achúcarro, A.; Biagetti, M.; Braglia, M.; Cabass, G.; Caldwell, R.; Castorina, E.; Chen, X.; Coulton, W.; Flauger, R.; Fumagalli, J.; et al. Inflation: Theory and Observations. arXiv 2022, arXiv:2203.08128. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck2013 results. XXII. Constraints on inflation. Astron. Astrophys. 2014, 571, A22. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck2015 results: XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck2018 results: X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Guth, A.H.; Kaiser, D.I.; Nomura, Y. Inflationary paradigm after Planck 2013. Phys. Lett. 2014, 733, 112–119. [Google Scholar] [CrossRef]
- Chowdhury, D.; Martin, J.; Ringeval, C.; Vennin, V. Assessing the scientific status of inflation after Planck. Phys. Rev. D 2019, 100, 083537. [Google Scholar] [CrossRef]
- Kuroyanagi, S.; Tsujikawa, S.; Chiba, T.; Sugiyama, N. Implications of the B-mode polarization measurement for direct detection of inflationary gravitational waves. Phys. Rev. D 2014, 90, 063513. [Google Scholar] [CrossRef]
- Kuroyanagi, S.; Hiramatsu, T.; Yokoyama, J. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields. J. Cosmol. Astropart. Phys. 2016, 2016, 023. [Google Scholar] [CrossRef]
- Seto, N. Quest for circular polarization of a gravitational wave background and orbits of laser interferometers in space. Phys. Rev. D 2007, 75, 061302. [Google Scholar] [CrossRef]
- Schutz, B.F. Determining the Hubble constant from gravitational wave observations. Nature 1986, 323, 310–311. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar]
- Chen, H.-Y.; Fishbach, M.; Holz, D.E. A two per cent Hubble constant measurement from standard sirens within five years. Nature 2018, 562, 545–547. [Google Scholar] [CrossRef]
- Maselli, A.; Marassi, S.; Branchesi, M. Binary white dwarfs and decihertz gravitational wave observations: From the Hubble constant to supernova astrophysics. Astron. Astrophys. 2020, 635, A120. [Google Scholar] [CrossRef]
- Kinugawa, T.; Takeda, H.; Tanikawa, A.; Yamaguchi, H. Probe for Type Ia Supernova Progenitor in Decihertz Gravitational Wave Astronomy. Astrophys. J. 2022, 938, 52. [Google Scholar] [CrossRef]
- Yagi, K.; Tanaka, T. DECIGO/BBO as a Probe to Constrain Alternative Theories of Gravity. Prog. Theor. Phys. 2010, 123, 1069–1078. [Google Scholar] [CrossRef]
- Saito, R.; Yokoyama, J. Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance. Phys. Rev. Lett. 2009, 102, 161101. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Li, P.; Yu, H.; Biesiada, M.; Fan, X.-L.; Kawamura, S.; Zhu, Z.-H. Lensing rates of gravitational wave signals displaying beat patterns detectable by DECIGO and B-DECIGO. Phys. Rev. D 2021, 103, 044005. [Google Scholar] [CrossRef]
- Piórkowska-Kurpas, A.; Hou, S.; Biesiada, M.; Ding, X.; Cao, S.; Fan, X.; Kawamura, S.; Zhu, Z.-H. Inspiraling Double Compact Object Detection and Lensing Rate: Forecast for DECIGO and B-DECIGO. Astrophys. J. 2021, 908, 196. [Google Scholar] [CrossRef]
- Svelto, O.; Hanna, D.C. Principles of Lasers; Springer: Heidelberg, Germany, 2010; Volume 1. [Google Scholar]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J.; et al. In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Phys. Rev. Lett. 2019, 123, 031101. [Google Scholar] [CrossRef] [PubMed]
- Iwaguchi, S.; Ishikawa, T.; Ando, M.; Michimura, Y.; Komori, K.; Nagano, K.; Akutsu, T.; Musha, M.; Yamada, R.; Watanabe, I.; et al. Quantum Noise in a Fabry-Perot Interferometer Including the Influence of Diffraction Loss of Light. Galaxies 2021, 9, 9. [Google Scholar] [CrossRef]
- Ishikawa, T.; Iwaguchi, S.; Michimura, Y.; Ando, M.; Yamada, R.; Watanabe, I.; Nagano, K.; Akutsu, T.; Komori, K.; Musha, M.; et al. Improvement of the Target Sensitivity in DECIGO by Optimizing Its Parameters for Quantum Noise Including the Effect of Diffraction Loss. Galaxies 2021, 9, 14. [Google Scholar] [CrossRef]
- Prince, T.A.; Tinto, M.; Larson, S.L.; Armstrong, J.W. LISA optimal sensitivity. Phys. Rev. D 2002, 66, 122002. [Google Scholar] [CrossRef]
- Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments; Oxford University Press: New York, YN, USA, 2007; ISBN 9780198570745. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck2018 results: VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Mingarelli, C.M.F.; Taylor, S.R.; Sathyaprakash, B.S.; Farr, W.M. Understanding Ωgw(f) in Gravitational Wave Experiments. arXiv 2019, arXiv:1911.09745. [Google Scholar]
- Sathyaprakash, B.S.; Schutz, B.F. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 2009, 12, 1–141. [Google Scholar] [CrossRef] [PubMed]
- Tobar, M.E.; Suzuki, T.; Kuroda, K. Detecting free-mass common-mode motion induced by incident gravitational waves. Phys. Rev. D 1999, 59, 102002. [Google Scholar] [CrossRef]
- Maggiore, M.; Nicolis, A. Detection strategies for scalar gravitational waves with interferometers and resonant spheres. Phys. Rev. D 2000, 62, 024004. [Google Scholar] [CrossRef]
- Allen, B.; Romano, J.D. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Phys. Rev. D 1999, 59, 102001. [Google Scholar] [CrossRef]
- Farmer, A.J.; Phinney, E.S. The gravitational wave background from cosmological compact binaries. Mon. Not. R. Astron. Soc. 2003, 346, 1197–1214. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Shimizu, R.; Ishikawa, T.; Nagano, K.; Iwaguchi, S.; Watanabe, I.; Wu, B.; Yokoyama, S.; Kawamura, S. Optimization of Design Parameters for Gravitational Wave Detector DECIGO Including Fundamental Noises. Galaxies 2022, 10, 25. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. Phys. Rev. D 1995, 52, 848–855. [Google Scholar] [CrossRef]
- Moore, C.J.; Cole, R.H.; Berry, C.P.L. Gravitational-wave sensitivity curves. Class. Quantum Gravity 2014, 32, 015014. [Google Scholar] [CrossRef]
- Yamada, R.; Enomoto, Y.; Nishizawa, A.; Nagano, K.; Kuroyanagi, S.; Kokeyama, K.; Komori, K.; Michimura, Y.; Naito, T.; Watanabe, I.; et al. Optimization of quantum noise by completing the square of multiple interferometer outputs in quantum locking for gravitational wave detectors. Phys. Lett. A 2020, 384, 126626. [Google Scholar] [CrossRef]
- Yamada, R.; Enomoto, Y.; Watanabe, I.; Nagano, K.; Michimura, Y.; Nishizawa, A.; Komori, K.; Naito, T.; Morimoto, T.; Iwaguchi, S.; et al. Reduction of quantum noise using the quantum locking with an optical spring for gravitational wave detectors. Phys. Lett. A 2021, 402, 127365. [Google Scholar] [CrossRef]
- Ishikawa, T.; Kawasaki, Y.; Tsuji, K.; Yamada, R.; Watanabe, I.; Wu, B.; Iwaguchi, S.; Shimizu, R.; Umemura, K.; Nagano, K.; et al. First-step experiment for sensitivity improvement of DECIGO: Sensitivity optimization for simulated quantum noise by completing the square. Phys. Rev. D 2023, 107, 022007. [Google Scholar] [CrossRef]
- Tsuji, K.; Ishikawa, T.; Komori, K.; Nagano, K.; Enomoto, Y.; Michimura, Y.; Umemura, K.; Shimizu, R.; Wu, B.; Iwaguchi, S.; et al. Optimization of Quantum Noise in Space Gravitational-Wave Antenna DECIGO with Optical-Spring Quantum Locking Considering Mixture of Vacuum Fluctuations in Homodyne Detection. Galaxies 2023, 11, 111. [Google Scholar] [CrossRef]
Meaning | Symbol | Value |
---|---|---|
Arm Length | L | 1000 km |
Laser Power | P | 10 W |
Wavelength | 515 nm | |
Finesse | 10 | |
Mirror Mass | m | 100 kg |
Mirror Radius | R | m |
Meaning | Symbol | Value | DECIGO (Default) |
---|---|---|---|
Laser Power | P | W | 10 W |
Mirror Radius | R | m | m |
Arm Length | L | Free | 1000 km |
Amplitude Reflectance * | 0 to 1 | (Finesse: 10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuji, K.; Ishikawa, T.; Umemura, K.; Kawasaki, Y.; Iwaguchi, S.; Shimizu, R.; Ando, M.; Kawamura, S. Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO. Galaxies 2024, 12, 13. https://doi.org/10.3390/galaxies12020013
Tsuji K, Ishikawa T, Umemura K, Kawasaki Y, Iwaguchi S, Shimizu R, Ando M, Kawamura S. Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO. Galaxies. 2024; 12(2):13. https://doi.org/10.3390/galaxies12020013
Chicago/Turabian StyleTsuji, Kenji, Tomohiro Ishikawa, Kurumi Umemura, Yuki Kawasaki, Shoki Iwaguchi, Ryuma Shimizu, Masaki Ando, and Seiji Kawamura. 2024. "Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO" Galaxies 12, no. 2: 13. https://doi.org/10.3390/galaxies12020013
APA StyleTsuji, K., Ishikawa, T., Umemura, K., Kawasaki, Y., Iwaguchi, S., Shimizu, R., Ando, M., & Kawamura, S. (2024). Significance of Fabry-Perot Cavities for Space Gravitational Wave Antenna DECIGO. Galaxies, 12(2), 13. https://doi.org/10.3390/galaxies12020013