Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes
Abstract
:1. Introduction
2. Selecting Strongly Lensed DSFGs in the Sub-Millimeter Regime
3. Studying Lensed DSFGs from Observations
3.1. Studies of Individual Sources
3.2. Studies of Statistically Significant Samples
4. Improving Information in the Radio Continuum Domain
5. Improving the Sub-mm/NIR Spectral and Continuum Information
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casey, C.M.; Narayanan, D.; Cooray, A. Dusty star-forming galaxies at high redshift. Phys. Rep. 2014, 541, 45–161. [Google Scholar] [CrossRef]
- Holland, W.S.; Robson, E.I.; Gear, W.K.; Cunningham, C.R.; Lightfoot, J.F.; Jenness, T.; Ivison, R.J.; Stevens, J.A.; Ade, P.A.R.; Griffin, M.J.; et al. SCUBA: A common-user submillimetre camera operating on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. 1999, 303, 659–672. [Google Scholar] [CrossRef]
- Kreysa, E.; Gemuend, H.P.; Gromke, J.; Haslam, C.G.; Reichertz, L.; Haller, E.E.; Beeman, J.W.; Hansen, V.; Sievers, A.; Zylka, R. Bolometer array development at the Max-Planck-Institut fuer Radioastronomie. In Advanced Technology MMW, Radio, and Terahertz Telescopes, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Kona, HI, USA, 31 July 1998; Phillips, T.G., Ed.; SPIE Press: New York, NY, USA, 1998; Volume 3357, pp. 319–325. [Google Scholar] [CrossRef]
- Smail, I.; Ivison, R.J.; Blain, A.W. A Deep Sub-millimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution. Astrophys. J. 1997, 490, L5–L8. [Google Scholar] [CrossRef]
- Blain, A.W.; Smail, I.; Ivison, R.J.; Kneib, J.P.; Frayer, D.T. Submillimeter galaxies. Phys. Rep. 2002, 369, 111–176. [Google Scholar] [CrossRef]
- Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Delvecchio, I.; Berta, S.; Pozzetti, L.; Zamorani, G.; Andreani, P.; Cimatti, A.; Ilbert, O.; et al. The Herschel PEP/HerMES luminosity function—I. Probing the evolution of PACS selected Galaxies to z = 4. Mon. Not. R. Astron. Soc. 2013, 432, 23–52. [Google Scholar] [CrossRef]
- Casey, C.M.; Zavala, J.A.; Spilker, J.; da Cunha, E.; Hodge, J.; Hung, C.L.; Staguhn, J.; Finkelstein, S.L.; Drew, P. The Brightest Galaxies in the Dark Ages: Galaxies’ Dust Continuum Emission during the Reionization Era. Astrophys. J. 2018, 862, 77. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Illingworth, G.D.; Oesch, P.A.; Trenti, M.; Labbé, I.; Bradley, L.; Carollo, M.; van Dokkum, P.G.; Gonzalez, V.; Holwerda, B.; et al. UV Luminosity Functions at Redshifts z ∼ 4 to z ∼ 10:10,000 Galaxies from HST Legacy Fields. Astrophys. J. 2015, 803, 34. [Google Scholar] [CrossRef]
- McLeod, D.J.; McLure, R.J.; Dunlop, J.S. The z = 9–10 galaxy population in the Hubble Frontier Fields and CLASH surveys: The z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8. Mon. Not. R. Astron. Soc. 2016, 459, 3812–3824. [Google Scholar] [CrossRef]
- Ishigaki, M.; Kawamata, R.; Ouchi, M.; Oguri, M.; Shimasaku, K.; Ono, Y. Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization. Astrophys. J. 2018, 854, 73. [Google Scholar] [CrossRef]
- Rowan-Robinson, M.; Oliver, S.; Wang, L.; Farrah, D.; Clements, D.L.; Gruppioni, C.; Marchetti, L.; Rigopoulou, D.; Vaccari, M. The star formation rate density from z = 1 to 6. Mon. Not. R. Astron. Soc. 2016, 461, 1100–1111. [Google Scholar] [CrossRef]
- Gruppioni, C.; Béthermin, M.; Loiacono, F.; Le Fèvre, O.; Capak, P.; Cassata, P.; Faisst, A.L.; Schaerer, D.; Silverman, J.; Yan, L.; et al. The ALPINE-ALMA [CII] survey. The nature, luminosity function, and star formation history of dusty galaxies up to z ≅ 6. Astron. Astrophys. 2020, 643, A8. [Google Scholar] [CrossRef]
- Talia, M.; Cimatti, A.; Giulietti, M.; Zamorani, G.; Bethermin, M.; Faisst, A.; Le Fèvre, O.; Smolçić, V. Illuminating the Dark Side of Cosmic Star Formation Two Billion Years after the Big Bang. Astrophys. J. 2021, 909, 23. [Google Scholar] [CrossRef]
- Enia, A.; Talia, M.; Pozzi, F.; Cimatti, A.; Delvecchio, I.; Zamorani, G.; D’Amato, Q.; Bisigello, L.; Gruppioni, C.; Rodighiero, G.; et al. A New Estimate of the Cosmic Star Formation Density from a Radio-selected Sample, and the Contribution of H-dark Galaxies at z ≥ 3. Astrophys. J. 2022, 927, 204. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef]
- Harikane, Y.; Ouchi, M.; Oguri, M.; Ono, Y.; Nakajima, K.; Isobe, Y.; Umeda, H.; Mawatari, K.; Zhang, Y. A Comprehensive Study of Galaxies at z 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. Astrophys. J. Suppl. Ser. 2023, 265, 5. [Google Scholar] [CrossRef]
- Juodžbalis, I.; Conselice, C.J.; Singh, M.; Adams, N.; Ormerod, K.; Harvey, T.; Austin, D.; Volonteri, M.; Cohen, S.H.; Jansen, R.A.; et al. EPOCHS VII: Discovery of high-redshift (6.5 < z < 12) AGN candidates in JWST ERO and PEARLS data. Mon. Not. R. Astron. Soc. 2023, 525, 1353–1364. [Google Scholar] [CrossRef]
- Yang, G.; Caputi, K.I.; Papovich, C.; Arrabal Haro, P.; Bagley, M.B.; Behroozi, P.; Bell, E.F.; Bisigello, L.; Buat, V.; Burgarella, D.; et al. CEERS Key Paper. VI. JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts. Astrophys. J. 2023, 950, L5. [Google Scholar] [CrossRef]
- Kormendy, J.; Richstone, D. Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1995, 33, 581. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Ferrarese, L.; Ford, H. Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research. Space Sci. Rev. 2005, 116, 523–624. [Google Scholar] [CrossRef]
- McLure, R.J.; Dunlop, J.S. The cosmological evolution of quasar black hole masses. Mon. Not. R. Astron. Soc. 2004, 352, 1390–1404. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R. Correlations between Supermassive Black Holes, Velocity Dispersions, and Mass Deficits in Elliptical Galaxies with Cores. Astrophys. J. 2009, 691, L142–L146. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Shankar, F.; Bernardi, M.; Sheth, R.K.; Ferrarese, L.; Graham, A.W.; Savorgnan, G.; Allevato, V.; Marconi, A.; Läsker, R.; Lapi, A. Selection bias in dynamically measured supermassive black hole samples: Its consequences and the quest for the most fundamental relation. Mon. Not. R. Astron. Soc. 2016, 460, 3119–3142. [Google Scholar] [CrossRef]
- Boyle, B.J.; Terlevich, R.J. The cosmological evolution of the QSO luminosity density and of the star formation rate. Mon. Not. R. Astron. Soc. 1998, 293, L49–L51. [Google Scholar] [CrossRef]
- Franceschini, A.; Hasinger, G.; Miyaji, T.; Malquori, D. On the relationship between galaxy formation and quasar evolution. Mon. Not. R. Astron. Soc. 1999, 310, L5–L9. [Google Scholar] [CrossRef]
- Delvecchio, I.; Gruppioni, C.; Pozzi, F.; Berta, S.; Zamorani, G.; Cimatti, A.; Lutz, D.; Scott, D.; Vignali, C.; Cresci, G.; et al. Tracing the cosmic growth of supermassive black holes to z ∼ 3 with Herschel. Mon. Not. R. Astron. Soc. 2014, 439, 2736–2754. [Google Scholar] [CrossRef]
- Aird, J.; Coil, A.L.; Georgakakis, A.; Nandra, K.; Barro, G.; Pérez-González, P.G. The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z∼ 5. Mon. Not. R. Astron. Soc. 2015, 451, 1892–1927. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4. Astrophys. J. 2016, 823, 128. [Google Scholar] [CrossRef]
- Peng, Y.J.; Lilly, S.J.; Kovač, K.; Bolzonella, M.; Pozzetti, L.; Renzini, A.; Zamorani, G.; Ilbert, O.; Knobel, C.; Iovino, A.; et al. Mass and Environment as Drivers of Galaxy Evolution in SDSS and zCOSMOS and the Origin of the Schechter Function. Astrophys. J. 2010, 721, 193–221. [Google Scholar] [CrossRef]
- Cimatti, A.; Cassata, P.; Pozzetti, L.; Kurk, J.; Mignoli, M.; Renzini, A.; Daddi, E.; Bolzonella, M.; Brusa, M.; Rodighiero, G.; et al. GMASS ultradeep spectroscopy of galaxies at z ~2. II. Superdense passive galaxies: How did they form and evolve? Astron. Astrophys. 2008, 482, 21–42. [Google Scholar] [CrossRef]
- Behroozi, P.S.; Wechsler, R.H.; Conroy, C. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0–8. Astrophys. J. 2013, 770, 57. [Google Scholar] [CrossRef]
- Simpson, J.M.; Swinbank, A.M.; Smail, I.; Alexander, D.M.; Brandt, W.N.; Bertoldi, F.; de Breuck, C.; Chapman, S.C.; Coppin, K.E.K.; da Cunha, E.; et al. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: The Redshift Distribution and Evolution of Submillimeter Galaxies. Astrophys. J. 2014, 788, 125. [Google Scholar] [CrossRef]
- Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.K.; et al. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies. Astrophys. J. 2014, 782, 68. [Google Scholar] [CrossRef]
- Aversa, R.; Lapi, A.; de Zotti, G.; Shankar, F.; Danese, L. Black Hole and Galaxy Coevolution from Continuity Equation and Abundance Matching. Astrophys. J. 2015, 810, 74. [Google Scholar] [CrossRef]
- Oteo, I.; Zhang, Z.Y.; Yang, C.; Ivison, R.J.; Omont, A.; Bremer, M.; Bussmann, S.; Cooray, A.; Cox, P.; Dannerbauer, H.; et al. High Dense Gas Fraction in Intensely Star-forming Dusty Galaxies. Astrophys. J. 2017, 850, 170. [Google Scholar] [CrossRef]
- Scoville, N.; Lee, N.; Vanden Bout, P.; Diaz-Santos, T.; Sanders, D.; Darvish, B.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; et al. Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift. Astrophys. J. 2017, 837, 150. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. Ser. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Benson, A.J. Galaxy formation theory. Phys. Rep. 2010, 495, 33–86. [Google Scholar] [CrossRef]
- Fanidakis, N.; Baugh, C.M.; Benson, A.J.; Bower, R.G.; Cole, S.; Done, C.; Frenk, C.S.; Hickox, R.C.; Lacey, C.; Del, P. Lagos, C. The evolution of active galactic nuclei across cosmic time: What is downsizing? Mon. Not. R. Astron. Soc. 2012, 419, 2797–2820. [Google Scholar] [CrossRef]
- Somerville, R.S.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef]
- Dekel, A.; Sari, R.; Ceverino, D. Formation of Massive Galaxies at High Redshift: Cold Streams, Clumpy Disks, and Compact Spheroids. Astrophys. J. 2009, 703, 785–801. [Google Scholar] [CrossRef]
- Bournaud, F.; Dekel, A.; Teyssier, R.; Cacciato, M.; Daddi, E.; Juneau, S.; Shankar, F. Black Hole Growth and Active Galactic Nuclei Obscuration by Instability-driven Inflows in High-redshift Disk Galaxies Fed by Cold Streams. Astrophys. J. 2011, 741, L33. [Google Scholar] [CrossRef]
- Granato, G.L.; De Zotti, G.; Silva, L.; Bressan, A.; Danese, L. A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts. Astrophys. J. 2004, 600, 580–594. [Google Scholar] [CrossRef]
- Lapi, A.; Shankar, F.; Mao, J.; Granato, G.L.; Silva, L.; De Zotti, G.; Danese, L. Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies. Astrophys. J. 2006, 650, 42–56. [Google Scholar] [CrossRef]
- Lapi, A.; González-Nuevo, J.; Fan, L.; Bressan, A.; De Zotti, G.; Danese, L.; Negrello, M.; Dunne, L.; Eales, S.; Maddox, S.; et al. Herschel-ATLAS Galaxy Counts and High-redshift Luminosity Functions: The Formation of Massive Early-type Galaxies. Astrophys. J. 2011, 742, 24. [Google Scholar] [CrossRef]
- Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L. The Dramatic Size and Kinematic Evolution of Massive Early-Type Galaxies. Astrophys. J. 2018, 857, 22. [Google Scholar] [CrossRef]
- Bakx, T.J.L.C.; Eales, S.A.; Negrello, M.; Smith, M.W.L.; Valiante, E.; Holland, W.S.; Baes, M.; Bourne, N.; Clements, D.L.; Dannerbauer, H.; et al. The Herschel Bright Sources (HerBS): Sample definition and SCUBA-2 observations. Mon. Not. R. Astron. Soc. 2018, 473, 1751–1773. [Google Scholar] [CrossRef]
- Scott, K.S.; Austermann, J.E.; Perera, T.A.; Wilson, G.W.; Aretxaga, I.; Bock, J.J.; Hughes, D.H.; Kang, Y.; Kim, S.; Mauskopf, P.D.; et al. AzTEC millimetre survey of the COSMOS field—I. Data reduction and source catalogue. Mon. Not. R. Astron. Soc. 2008, 385, 2225–2238. [Google Scholar] [CrossRef]
- Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; et al. The Herschel ATLAS. Publ. Astron. Soc. Pac. 2010, 122, 499. [Google Scholar] [CrossRef]
- Aretxaga, I.; Wilson, G.W.; Aguilar, E.; Alberts, S.; Scott, K.S.; Scoville, N.; Yun, M.S.; Austermann, J.; Downes, T.P.; Ezawa, H.; et al. AzTEC millimetre survey of the COSMOS field—III. Source catalogue over 0.72 deg2 and plausible boosting by large-scale structure. Mon. Not. R. Astron. Soc. 2011, 415, 3831–3850. [Google Scholar] [CrossRef]
- Casey, C.M.; Berta, S.; Béthermin, M.; Bock, J.; Bridge, C.; Burgarella, D.; Chapin, E.; Chapman, S.C.; Clements, D.L.; Conley, A.; et al. A Population of z > 2 Far-infrared Herschel-SPIRE-selected Starbursts. Astrophys. J. 2012, 761, 139. [Google Scholar] [CrossRef]
- Casey, C.M.; Berta, S.; Béthermin, M.; Bock, J.; Bridge, C.; Budynkiewicz, J.; Burgarella, D.; Chapin, E.; Chapman, S.C.; Clements, D.L.; et al. A Redshift Survey of Herschel Far-infrared Selected Starbursts and Implications for Obscured Star Formation. Astrophys. J. 2012, 761, 140. [Google Scholar] [CrossRef]
- Smolčić, V.; Novak, M.; Delvecchio, I.; Ceraj, L.; Bondi, M.; Delhaize, J.; Marchesi, S.; Murphy, E.; Schinnerer, E.; Vardoulaki, E.; et al. The VLA-COSMOS 3 GHz Large Project: Cosmic evolution of radio AGN and implications for radio-mode feedback since z 5. Astron. Astrophys. 2017, 602, A6. [Google Scholar] [CrossRef]
- Elbaz, D.; Leiton, R.; Nagar, N.; Okumura, K.; Franco, M.; Schreiber, C.; Pannella, M.; Wang, T.; Dickinson, M.; Díaz-Santos, T.; et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 2018, 616, A110. [Google Scholar] [CrossRef]
- Rodighiero, G.; Brusa, M.; Daddi, E.; Negrello, M.; Mullaney, J.R.; Delvecchio, I.; Lutz, D.; Renzini, A.; Franceschini, A.; Baronchelli, I.; et al. Relationship between Star Formation Rate and Black Hole Accretion at Z = 2: The Different Contributions in Quiescent, Normal, and Starburst Galaxies. Astrophys. J. 2015, 800, L10. [Google Scholar] [CrossRef]
- Mullaney, J.R.; Alexander, D.M.; Goulding, A.D.; Hickox, R.C. Defining the intrinsic AGN infrared spectral energy distribution and measuring its contribution to the infrared output of composite galaxies. Mon. Not. R. Astron. Soc. 2011, 414, 1082–1110. [Google Scholar] [CrossRef]
- Stern, D.; Assef, R.J.; Benford, D.J.; Blain, A.; Cutri, R.; Dey, A.; Eisenhardt, P.; Griffith, R.L.; Jarrett, T.H.; Lake, S.; et al. Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS. Astrophys. J. 2012, 753, 30. [Google Scholar] [CrossRef]
- Bonzini, M.; Padovani, P.; Mainieri, V.; Kellermann, K.I.; Miller, N.; Rosati, P.; Tozzi, P.; Vattakunnel, S. The sub-mJy radio sky in the Extended Chandra Deep Field-South: Source population. Mon. Not. R. Astron. Soc. 2013, 436, 3759–3771. [Google Scholar] [CrossRef]
- Padovani, P.; Bonzini, M.; Kellermann, K.I.; Miller, N.; Mainieri, V.; Tozzi, P. Radio-faint AGN: A tale of two populations. Mon. Not. R. Astron. Soc. 2015, 452, 1263–1279. [Google Scholar] [CrossRef]
- Bonzini, M.; Mainieri, V.; Padovani, P.; Andreani, P.; Berta, S.; Bethermin, M.; Lutz, D.; Rodighiero, G.; Rosario, D.; Tozzi, P.; et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 2015, 453, 1079–1094. [Google Scholar] [CrossRef]
- Delvecchio, I.; Smolčić, V.; Zamorani, G.; Lagos, C.D.P.; Berta, S.; Delhaize, J.; Baran, N.; Alexander, D.M.; Rosario, D.J.; Gonzalez-Perez, V.; et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z ≲ 6. Astron. Astrophys. 2017, 602, A3. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Neri, R.; Genzel, R.; Combes, F.; Bolatto, A.; Cooper, M.C.; Wuyts, S.; Bournaud, F.; Burkert, A.; Comerford, J.; et al. Phibss: Molecular Gas Content and Scaling Relations in z ~ 1–3 Massive, Main-sequence Star-forming Galaxies. Astrophys. J. 2013, 768, 74. [Google Scholar] [CrossRef]
- Hodge, J.A.; Riechers, D.; Decarli, R.; Walter, F.; Carilli, C.L.; Daddi, E.; Dannerbauer, H. The Kiloparsec-scale Star Formation Law at Redshift 4: Widespread, Highly Efficient Star Formation in the Dust-obscured Starburst Galaxy GN20. Astrophys. J. 2015, 798, L18. [Google Scholar] [CrossRef]
- Hodge, J.A.; da Cunha, E. High-redshift star formation in the Atacama large millimetre/submillimetre array era. R. Soc. Open Sci. 2020, 7, 200556. [Google Scholar] [CrossRef]
- Simpson, J.M.; Smail, I.; Swinbank, A.M.; Almaini, O.; Blain, A.W.; Bremer, M.N.; Chapman, S.C.; Chen, C.C.; Conselice, C.; Coppin, K.E.K.; et al. The SCUBA-2 Cosmology Legacy Survey: ALMA Resolves the Rest-frame Far-infrared Emission of Sub-millimeter Galaxies. Astrophys. J. 2015, 799, 81. [Google Scholar] [CrossRef]
- Barro, G.; Faber, S.M.; Dekel, A.; Pacifici, C.; Pérez-González, P.G.; Toloba, E.; Koo, D.C.; Trump, J.R.; Inoue, S.; Guo, Y.; et al. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z ~ 1.7. Astrophys. J. 2016, 820, 120. [Google Scholar] [CrossRef]
- Oteo, I.; Zwaan, M.A.; Ivison, R.J.; Smail, I.; Biggs, A.D. ALMACAL I: First Dual-band Number Counts from a Deep and Wide ALMA Submillimeter Survey, Free from Cosmic Variance. Astrophys. J. 2016, 822, 36. [Google Scholar] [CrossRef]
- Barro, G.; Kriek, M.; Pérez-González, P.G.; Diaz-Santos, T.; Price, S.H.; Rujopakarn, W.; Pandya, V.; Koo, D.C.; Faber, S.M.; Dekel, A.; et al. Spatially Resolved Kinematics in the Central 1 kpc of a Compact Star-forming Galaxy at z∼2.3 from ALMA CO Observations. Astrophys. J. 2017, 851, L40. [Google Scholar] [CrossRef]
- Fujimoto, S.; Ouchi, M.; Shibuya, T.; Nagai, H. Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0–6 Revealed with 1034 ALMA Sources. Astrophys. J. 2017, 850, 83. [Google Scholar] [CrossRef]
- Tadaki, K.I.; Genzel, R.; Kodama, T.; Wuyts, S.; Wisnioski, E.; Förster Schreiber, N.M.; Burkert, A.; Lang, P.; Tacconi, L.J.; Lutz, D.; et al. Bulge-forming Galaxies with an Extended Rotating Disk at z ~ 2. Astrophys. J. 2017, 834, 135. [Google Scholar] [CrossRef]
- Tadaki, K.I.; Kodama, T.; Nelson, E.J.; Belli, S.; Förster Schreiber, N.M.; Genzel, R.; Hayashi, M.; Herrera-Camus, R.; Koyama, Y.; Lang, P.; et al. Rotating Starburst Cores in Massive Galaxies at z = 2.5. Astrophys. J. 2017, 841, L25. [Google Scholar] [CrossRef]
- Talia, M.; Pozzi, F.; Vallini, L.; Cimatti, A.; Cassata, P.; Fraternali, F.; Brusa, M.; Daddi, E.; Delvecchio, I.; Ibar, E.; et al. ALMA view of a massive spheroid progenitor: A compact rotating core of molecular gas in an AGN host at z = 2.226. Mon. Not. R. Astron. Soc. 2018, 476, 3956–3963. [Google Scholar] [CrossRef]
- Nelson, E.J.; Tadaki, K.I.; Tacconi, L.J.; Lutz, D.; Förster Schreiber, N.M.; Cibinel, A.; Wuyts, S.; Lang, P.; Leja, J.; Montes, M.; et al. Millimeter Mapping at z ∼ 1: Dust-obscured Bulge Building and Disk Growth. Astrophys. J. 2019, 870, 130. [Google Scholar] [CrossRef]
- Pantoni, L.; Massardi, M.; Lapi, A.; Donevski, D.; D’Amato, Q.; Giulietti, M.; Pozzi, F.; Talia, M.; Vignali, C.; Cimatti, A.; et al. An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history. Mon. Not. R. Astron. Soc. 2021, 507, 3998–4015. [Google Scholar] [CrossRef]
- Rujopakarn, W.; Dunlop, J.S.; Rieke, G.H.; Ivison, R.J.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Silverman, J.D.; Alexander, D.M.; Biggs, A.D.; et al. VLA and ALMA Imaging of Intense Galaxy-wide Star Formation in z ∼ 2 Galaxies. Astrophys. J. 2016, 833, 12. [Google Scholar] [CrossRef]
- Franco, M.; Elbaz, D.; Béthermin, M.; Magnelli, B.; Schreiber, C.; Ciesla, L.; Dickinson, M.; Nagar, N.; Silverman, J.; Daddi, E.; et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Source catalog and optically dark galaxies. Astron. Astrophys. 2018, 620, A152. [Google Scholar] [CrossRef]
- Wang, T.; Schreiber, C.; Elbaz, D.; Yoshimura, Y.; Kohno, K.; Shu, X.; Yamaguchi, Y.; Pannella, M.; Franco, M.; Huang, J.; et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 2019, 572, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Rujopakarn, W.; Daddi, E.; Rieke, G.H.; Puglisi, A.; Schramm, M.; Pérez-González, P.G.; Magdis, G.E.; Alberts, S.; Bournaud, F.; Elbaz, D.; et al. ALMA 200 pc Resolution Imaging of Smooth Cold Dusty Disks in Typical z ∼ 3 Star-forming Galaxies. Astrophys. J. 2019, 882, 107. [Google Scholar] [CrossRef]
- Rujopakarn, W.; Williams, C.C.; Daddi, E.; Schramm, M.; Sun, F.; Alberts, S.; Rieke, G.H.; Tan, Q.H.; Tacchella, S.; Giavalisco, M.; et al. JWST and ALMA Imaging of Dust-obscured, Massive Substructures in a Typical z 3 Star-forming Disk Galaxy. Astrophys. J. 2023, 948, L8. [Google Scholar] [CrossRef]
- Hodge, J.A.; Smail, I.; Walter, F.; da Cunha, E.; Swinbank, A.M.; Rybak, M.; Venemans, B.; Brandt, W.N.; Calistro Rivera, G.; Chapman, S.C.; et al. ALMA Reveals Potential Evidence for Spiral Arms, Bars, and Rings in High-redshift Submillimeter Galaxies. Astrophys. J. 2019, 876, 130. [Google Scholar] [CrossRef]
- Hodge, J.A.; Swinbank, A.M.; Simpson, J.M.; Smail, I.; Walter, F.; Alexander, D.M.; Bertoldi, F.; Biggs, A.D.; Brandt, W.N.; Chapman, S.C.; et al. Kiloparsec-scale Dust Disks in High-redshift Luminous Submillimeter Galaxies. Astrophys. J. 2016, 833, 103. [Google Scholar] [CrossRef]
- Grillo, C.; Lombardi, M.; Bertin, G. Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies. Astron. Astrophys. 2008, 477, 397–406. [Google Scholar] [CrossRef]
- Oguri, M.; Inada, N.; Strauss, M.A.; Kochanek, C.S.; Kayo, I.; Shin, M.S.; Morokuma, T.; Richards, G.T.; Rusu, C.E.; Frieman, J.A.; et al. The Sloan Digital Sky Survey Quasar Lens Search. VI. Constraints on Dark Energy and the Evolution of Massive Galaxies. Astron. J. 2012, 143, 120. [Google Scholar] [CrossRef]
- Eales, S.A. Practical cosmology with lenses. Mon. Not. R. Astron. Soc. 2015, 446, 3224–3234. [Google Scholar] [CrossRef]
- Vegetti, S.; Koopmans, L.V.E. Statistics of mass substructure from strong gravitational lensing: Quantifying the mass fraction and mass function. Mon. Not. R. Astron. Soc. 2009, 400, 1583–1592. [Google Scholar] [CrossRef]
- Hezaveh, Y.D.; Dalal, N.; Marrone, D.P.; Mao, Y.Y.; Morningstar, W.; Wen, D.; Blandford, R.D.; Carlstrom, J.E.; Fassnacht, C.D.; Holder, G.P.; et al. Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. Astrophys. J. 2016, 823, 37. [Google Scholar] [CrossRef]
- Barone-Nugent, R.L.; Wyithe, J.S.B.; Trenti, M.; Treu, T.; Oesch, P.; Bouwens, R.; Illingworth, G.D.; Schmidt, K.B. The impact of strong gravitational lensing on observed Lyman-break galaxy numbers at 4 ≤ z ≤ 8 in the GOODS and the XDF blank fields. Mon. Not. R. Astron. Soc. 2015, 450, 1224–1236. [Google Scholar] [CrossRef]
- Partnership, A.; Vlahakis, C.; Hunter, T.R.; Hodge, J.A.; Pérez, L.M.; Andreani, P.; Brogan, C.L.; Cox, P.; Martin, S.; Zwaan, M.; et al. The 2014 ALMA Long Baseline Campaign: Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6 + 003906 at z = 3.042. Astrophys. J. 2015, 808, L4. [Google Scholar] [CrossRef]
- Rybak, M.; McKean, J.P.; Vegetti, S.; Andreani, P.; White, S.D.M. ALMA imaging of SDP.81—I. A pixelated reconstruction of the far-infrared continuum emission. Mon. Not. R. Astron. Soc. 2015, 451, L40–L44. [Google Scholar] [CrossRef]
- Rybak, M.; Vegetti, S.; McKean, J.P.; Andreani, P.; White, S.D.M. ALMA imaging of SDP.81—II. A pixelated reconstruction of the CO emission lines. Mon. Not. R. Astron. Soc. 2015, 453, L26–L30. [Google Scholar] [CrossRef]
- Swinbank, A.M.; Smail, I.; Longmore, S.; Harris, A.I.; Baker, A.J.; De Breuck, C.; Richard, J.; Edge, A.C.; Ivison, R.J.; Blundell, R.; et al. Intense star formation within resolved compact regions in a galaxy at z = 2.3. Nature 2010, 464, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Blain, A.W. Galaxy-galaxy gravitational lensing in the millimetre/submillimetre waveband. Mon. Not. R. Astron. Soc. 1996, 283, 1340–1348. [Google Scholar] [CrossRef]
- Perrotta, F.; Baccigalupi, C.; Bartelmann, M.; De Zotti, G.; Granato, G.L. Gravitational lensing of extended high-redshift sources by dark matter haloes. Mon. Not. R. Astron. Soc. 2002, 329, 445–455. [Google Scholar] [CrossRef]
- Negrello, M.; Perrotta, F.; González-Nuevo, J.; Silva, L.; de Zotti, G.; Granato, G.L.; Baccigalupi, C.; Danese, L. Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources. Mon. Not. R. Astron. Soc. 2007, 377, 1557–1568. [Google Scholar] [CrossRef]
- Negrello, M.; Hopwood, R.; De Zotti, G.; Cooray, A.; Verma, A.; Bock, J.; Frayer, D.T.; Gurwell, M.A.; Omont, A.; Neri, R.; et al. The Detection of a Population of Submillimeter-Bright, Strongly Lensed Galaxies. Science 2010, 330, 800. [Google Scholar] [CrossRef]
- Negrello, M.; Hopwood, R.; Dye, S.; da Cunha, E.; Serjeant, S.; Fritz, J.; Rowlands, K.; Fleuren, S.; Bussmann, R.S.; Cooray, A.; et al. Herschel*-ATLAS: Deep HST/WFC3 imaging of strongly lensed submillimetre galaxies. Mon. Not. R. Astron. Soc. 2014, 440, 1999–2012. [Google Scholar] [CrossRef]
- Giulietti, M.; Lapi, A.; Massardi, M.; Behiri, M.; Torsello, M.; D’Amato, Q.; Ronconi, T.; Perrotta, F.; Bressan, A. ALMA Resolves the First Strongly Lensed Optical/Near-IR-dark Galaxy. Astrophys. J. 2023, 943, 151. [Google Scholar] [CrossRef]
- Perrotta, F.; Giulietti, M.; Massardi, M.; Gandolfi, G.; Ronconi, T.; Zanchettin, M.V.; Amato, Q.D.; Behiri, M.; Torsello, M.; Gabrielli, F.; et al. The Way of Water: ALMA Resolves H2O Emission Lines in a Strongly Lensed Dusty Star-forming Galaxy at z 3.1. Astrophys. J. 2023, 952, 90. [Google Scholar] [CrossRef]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef]
- Cañameras, R.; Nesvadba, N.P.H.; Guery, D.; McKenzie, T.; König, S.; Petitpas, G.; Dole, H.; Frye, B.; Flores-Cacho, I.; Montier, L.; et al. Planck’s dusty GEMS: The brightest gravitationally lensed galaxies discovered with the Planck all-sky survey. Astron. Astrophys. 2015, 581, A105. [Google Scholar] [CrossRef]
- Vieira, J.D.; Crawford, T.M.; Switzer, E.R.; Ade, P.A.R.; Aird, K.A.; Ashby, M.L.N.; Benson, B.A.; Bleem, L.E.; Brodwin, M.; Carlstrom, J.E.; et al. Extragalactic Millimeter-wave Sources in South Pole Telescope Survey Data: Source Counts, Catalog, and Statistics for an 87 Square-degree Field. Astrophys. J. 2010, 719, 763–783. [Google Scholar] [CrossRef]
- Carlstrom, J.E.; Ade, P.A.R.; Aird, K.A.; Benson, B.A.; Bleem, L.E.; Busetti, S.; Chang, C.L.; Chauvin, E.; Cho, H.M.; Crawford, T.M.; et al. The 10 Meter South Pole Telescope. Publ. Astron. Soc. Pac. 2011, 123, 568. [Google Scholar] [CrossRef]
- Swetz, D.S.; Ade, P.A.R.; Amiri, M.; Appel, J.W.; Battistelli, E.S.; Burger, B.; Chervenak, J.; Devlin, M.J.; Dicker, S.R.; Doriese, W.B.; et al. Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems. Astrophys. J. Suppl. Ser. 2011, 194, 41. [Google Scholar] [CrossRef]
- Marsden, D.; Gralla, M.; Marriage, T.A.; Switzer, E.R.; Partridge, B.; Massardi, M.; Morales, G.; Addison, G.; Bond, J.R.; Crichton, D.; et al. The Atacama Cosmology Telescope: Dusty star-forming galaxies and active galactic nuclei in the Southern survey. Mon. Not. R. Astron. Soc. 2014, 439, 1556–1574. [Google Scholar] [CrossRef]
- Rivera, J.; Baker, A.J.; Gallardo, P.A.; Gralla, M.B.; Harris, A.I.; Huffenberger, K.M.; Hughes, J.P.; Keeton, C.R.; López-Caraballo, C.H.; Marriage, T.A.; et al. The Atacama Cosmology Telescope: CO (J = 3 − 2) Mapping and Lens Modeling of an ACT-selected Dusty Star-forming Galaxy. Astrophys. J. 2019, 879, 95. [Google Scholar] [CrossRef]
- Oliver, S.J.; Bock, J.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Beelen, A.; Béthermin, M.; Blain, A.; et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 2012, 424, 1614–1635. [Google Scholar] [CrossRef]
- Wardlow, J.L.; Cooray, A.; De Bernardis, F.; Amblard, A.; Arumugam, V.; Aussel, H.; Baker, A.J.; Béthermin, M.; Blundell, R.; Bock, J.; et al. HerMES: Candidate Gravitationally Lensed Galaxies and Lensing Statistics at Submillimeter Wavelengths. Astrophys. J. 2013, 762, 59. [Google Scholar] [CrossRef]
- Nayyeri, H.; Keele, M.; Cooray, A.; Riechers, D.A.; Ivison, R.J.; Harris, A.I.; Frayer, D.T.; Baker, A.J.; Chapman, S.C.; Eales, S.; et al. Candidate Gravitationally Lensed Dusty Star-forming Galaxies in the Herschel Wide Area Surveys. Astrophys. J. 2016, 823, 17. [Google Scholar] [CrossRef]
- Viero, M.P.; Asboth, V.; Roseboom, I.G.; Moncelsi, L.; Marsden, G.; Mentuch Cooper, E.; Zemcov, M.; Addison, G.; Baker, A.J.; Beelen, A.; et al. The Herschel Stripe 82 Survey (HerS): Maps and Early Catalog. Astrophys. J. Suppl. Ser. 2014, 210, 22. [Google Scholar] [CrossRef]
- Negrello, M.; Amber, S.; Amvrosiadis, A.; Cai, Z.Y.; Lapi, A.; Gonzalez-Nuevo, J.; De Zotti, G.; Furlanetto, C.; Maddox, S.J.; Allen, M.; et al. The Herschel-ATLAS: A sample of 500 μm-selected lensed galaxies over 600 deg2. Mon. Not. R. Astron. Soc. 2017, 465, 3558–3580. [Google Scholar] [CrossRef]
- Ward, B.A.; Eales, S.A.; Pons, E.; Smith, M.W.L.; McMahon, R.G.; Dunne, L.; Ivison, R.J.; Maddox, S.J.; Negrello, M. Herschel-ATLAS Data Release III: Near-Infrared counterparts in the South Galactic Pole field—Another 100,000 submillimetre galaxies. Mon. Not. R. Astron. Soc. 2022, 510, 2261–2276. [Google Scholar] [CrossRef]
- Harrington, K.C.; Yun, M.S.; Cybulski, R.; Wilson, G.W.; Aretxaga, I.; Chavez, M.; De la Luz, V.; Erickson, N.; Ferrusca, D.; Gallup, A.D.; et al. Early science with the Large Millimeter Telescope: Observations of extremely luminous high-z sources identified by Planck. Mon. Not. R. Astron. Soc. 2016, 458, 4383–4399. [Google Scholar] [CrossRef]
- Berman, D.A.; Yun, M.S.; Harrington, K.C.; Kamieneski, P.; Lowenthal, J.; Frye, B.L.; Wang, Q.D.; Wilson, G.W.; Aretxaga, I.; Chavez, M.; et al. PASSAGES: The Large Millimeter Telescope and ALMA observations of extremely luminous high-redshift galaxies identified by the Planck. Mon. Not. R. Astron. Soc. 2022, 515, 3911–3937. [Google Scholar] [CrossRef]
- Kamieneski, P.S.; Yun, M.S.; Harrington, K.C.; Lowenthal, J.D.; Wang, Q.D.; Frye, B.L.; Jiménez-Andrade, E.F.; Vishwas, A.; Cooper, O.; Pascale, M.; et al. PASSAGES: The Wide-ranging, Extreme Intrinsic Properties of Planck-selected, Lensed Dusty Star-forming Galaxies. Astrophys. J. 2024, 961, 2. [Google Scholar] [CrossRef]
- Mocanu, L.M.; Crawford, T.M.; Vieira, J.D.; Aird, K.A.; Aravena, M.; Austermann, J.E.; Benson, B.A.; Béthermin, M.; Bleem, L.E.; Bothwell, M.; et al. Extragalactic Millimeter-wave Point-source Catalog, Number Counts and Statistics from 771 deg2 of the SPT-SZ Survey. Astrophys. J. 2013, 779, 61. [Google Scholar] [CrossRef]
- Vieira, J.D.; Marrone, D.P.; Chapman, S.C.; De Breuck, C.; Hezaveh, Y.D.; Weiß, A.; Aguirre, J.E.; Aird, K.A.; Aravena, M.; Ashby, M.L.N.; et al. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature 2013, 495, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Weiß, A.; De Breuck, C.; Marrone, D.P.; Vieira, J.D.; Aguirre, J.E.; Aird, K.A.; Aravena, M.; Ashby, M.L.N.; Bayliss, M.; Benson, B.A.; et al. ALMA Redshifts of Millimeter-selected Galaxies from the SPT Survey: The Redshift Distribution of Dusty Star-forming Galaxies. Astrophys. J. 2013, 767, 88. [Google Scholar] [CrossRef]
- Spilker, J.S.; Marrone, D.P.; Aravena, M.; Béthermin, M.; Bothwell, M.S.; Carlstrom, J.E.; Chapman, S.C.; Crawford, T.M.; de Breuck, C.; Fassnacht, C.D.; et al. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts. Astrophys. J. 2016, 826, 112. [Google Scholar] [CrossRef]
- Everett, W.B.; Zhang, L.; Crawford, T.M.; Vieira, J.D.; Aravena, M.; Archipley, M.A.; Austermann, J.E.; Benson, B.A.; Bleem, L.E.; Carlstrom, J.E.; et al. Millimeter-wave Point Sources from the 2500 Square Degree SPT-SZ Survey: Catalog and Population Statistics. Astrophys. J. 2020, 900, 55. [Google Scholar] [CrossRef]
- Reuter, C.; Vieira, J.D.; Spilker, J.S.; Weiss, A.; Aravena, M.; Archipley, M.; Béthermin, M.; Chapman, S.C.; De Breuck, C.; Dong, C.; et al. The Complete Redshift Distribution of Dusty Star-forming Galaxies from the SPT-SZ Survey. Astrophys. J. 2020, 902, 78. [Google Scholar] [CrossRef]
- Béthermin, M.; De Breuck, C.; Sargent, M.; Daddi, E. The influence of wavelength, flux, and lensing selection effects on the redshift distribution of dusty, star-forming galaxies. Astron. Astrophys. 2015, 576, L9. [Google Scholar] [CrossRef]
- Su, T.; Marriage, T.A.; Asboth, V.; Baker, A.J.; Bond, J.R.; Crichton, D.; Devlin, M.J.; Dünner, R.; Farrah, D.; Frayer, D.T.; et al. On the redshift distribution and physical properties of ACT-selected DSFGs. Mon. Not. R. Astron. Soc. 2017, 464, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Dye, S.; Furlanetto, C.; Swinbank, A.M.; Vlahakis, C.; Nightingale, J.W.; Dunne, L.; Eales, S.A.; Smail, I.; Oteo, I.; Hunter, T.; et al. Revealing the complex nature of the strong gravitationally lensed system H-ATLAS J090311.6 + 003906 using ALMA. Mon. Not. R. Astron. Soc. 2015, 452, 2258–2268. [Google Scholar] [CrossRef]
- Dye, S.; Eales, S.A.; Gomez, H.L.; Jones, G.C.; Smith, M.W.L.; Borsato, E.; Moss, A.; Dunne, L.; Maresca, J.; Amvrosiadis, A.; et al. A high-resolution investigation of the multiphase ISM in a galaxy during the first two billion years. Mon. Not. R. Astron. Soc. 2022, 510, 3734–3757. [Google Scholar] [CrossRef]
- Massardi, M.; Enia, A.F.M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; De Zotti, G. Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies. Astron. Astrophys. 2017, 610, A53. [Google Scholar] [CrossRef]
- Kamieneski, P.S.; Frye, B.L.; Pascale, M.; Cohen, S.H.; Windhorst, R.A.; Jansen, R.A.; Yun, M.S.; Cheng, C.; Summers, J.S.; Carleton, T.; et al. Are JWST/NIRCam Color Gradients in the Lensed z = 2.3 Dusty Star-forming Galaxy El Anzuelo Due to Central Dust Attenuation or Inside-out Galaxy Growth? Astrophys. J. 2023, 955, 91. [Google Scholar] [CrossRef]
- Borsato, E.; Marchetti, L.; Negrello, M.; Corsini, E.M.; Wake, D.; Amvrosiadis, A.; Baker, A.J.; Bakx, T.J.L.C.; Beelen, A.; Berta, S.; et al. Characterisation of Herschel-selected strong lens candidates through HST and sub-mm/mm observations. Mon. Not. R. Astron. Soc. 2023. [Google Scholar] [CrossRef]
- Dye, S.; Negrello, M.; Hopwood, R.; Nightingale, J.W.; Bussmann, R.S.; Amber, S.; Bourne, N.; Cooray, A.; Dariush, A.; Dunne, L.; et al. Herschel-ATLAS: Modelling the first strong gravitational lenses. Mon. Not. R. Astron. Soc. 2014, 440, 2013–2025. [Google Scholar] [CrossRef]
- Rizzo, F.; Vegetti, S.; Fraternali, F.; Stacey, H.R.; Powell, D. Dynamical properties of z 4.5 dusty star-forming galaxies and their connection with local early-type galaxies. Mon. Not. R. Astron. Soc. 2021, 507, 3952–3984. [Google Scholar] [CrossRef]
- Tadaki, K.I.; Kohno, K.; Kodama, T.; Ikarashi, S.; Aretxaga, I.; Berta, S.; Caputi, K.I.; Dunlop, J.S.; Hatsukade, B.; Hayashi, M.; et al. SXDF-ALMA 1.5 arcmin2 Deep Survey: A Compact Dusty Star-forming Galaxy at z = 2.5. Astrophys. J. 2015, 811, L3. [Google Scholar] [CrossRef]
- Barro, G.; Kriek, M.; Pérez-González, P.G.; Trump, J.R.; Koo, D.C.; Faber, S.M.; Dekel, A.; Primack, J.R.; Guo, Y.; Kocevski, D.D.; et al. Sub-kiloparsec ALMA Imaging of Compact Star-forming Galaxies at z ~ 2.5: Revealing the Formation of Dense Galactic Cores in the Progenitors of Compact Quiescent Galaxies. Astrophys. J. 2016, 827, L32. [Google Scholar] [CrossRef]
- Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Elbaz, D.; Riechers, D.; Smail, I.; et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies. Astrophys. J. 2016, 833, 70. [Google Scholar] [CrossRef]
- Rizzo, F.; Vegetti, S.; Powell, D.; Fraternali, F.; McKean, J.P.; Stacey, H.R.; White, S.D.M. A dynamically cold disk galaxy in the early Universe. Nature 2020, 584, 201–204. [Google Scholar] [CrossRef]
- Rizzo, F.; Kohandel, M.; Pallottini, A.; Zanella, A.; Ferrara, A.; Vallini, L.; Toft, S. Dynamical characterization of galaxies up to z ∼ 7. Astron. Astrophys. 2022, 667, A5. [Google Scholar] [CrossRef]
- Neri, R.; Cox, P.; Omont, A.; Beelen, A.; Berta, S.; Bakx, T.; Lehnert, M.; Baker, A.J.; Buat, V.; Cooray, A.; et al. NOEMA redshift measurements of bright Herschel galaxies. Astron. Astrophys. 2020, 635, A7. [Google Scholar] [CrossRef]
- Cox, P.; Neri, R.; Berta, S.; Ismail, D.; Stanley, F.; Young, A.; Jin, S.; Bakx, T.; Beelen, A.; Dannerbauer, H.; et al. z-GAL—A NOEMA spectroscopic redshift survey of bright Herschel galaxies: [I] Overview. arXiv 2023, arXiv:2307.15732. [Google Scholar] [CrossRef]
- Urquhart, S.A.; Bendo, G.J.; Serjeant, S.; Bakx, T.; Hagimoto, M.; Cox, P.; Neri, R.; Lehnert, M.; Sedgwick, C.; Weiner, C.; et al. The bright extragalactic ALMA redshift survey (BEARS) I: Redshifts of bright gravitationally lensed galaxies from the Herschel ATLAS. Mon. Not. R. Astron. Soc. 2022, 511, 3017–3033. [Google Scholar] [CrossRef]
- Bendo, G.J.; Urquhart, S.A.; Serjeant, S.; Bakx, T.; Hagimoto, M.; Cox, P.; Neri, R.; Lehnert, M.D.; Dannerbauer, H.; Amvrosiadis, A.; et al. The bright extragalactic ALMA redshift survey (BEARS)—II. Millimetre photometry of gravitational lens candidates. Mon. Not. R. Astron. Soc. 2023, 522, 2995–3017. [Google Scholar] [CrossRef]
- Hagimoto, M.; Bakx, T.J.L.C.; Serjeant, S.; Bendo, G.J.; Urquhart, S.A.; Eales, S.; Harrington, K.C.; Tamura, Y.; Umehata, H.; Berta, S.; et al. Bright extragalactic ALMA redshift survey (BEARS) III: Detailed study of emission lines from 71 Herschel targets. Mon. Not. R. Astron. Soc. 2023, 521, 5508–5535. [Google Scholar] [CrossRef]
- Stacey, H.R.; McKean, J.P.; Robertson, N.C.; Ivison, R.J.; Isaak, K.G.; Schleicher, D.R.G.; van der Werf, P.P.; Baan, W.A.; Berciano Alba, A.; Garrett, M.A.; et al. Gravitational lensing reveals extreme dust-obscured star formation in quasar host galaxies. Mon. Not. R. Astron. Soc. 2018, 476, 5075–5114. [Google Scholar] [CrossRef]
- Stacey, H.R.; McKean, J.P.; Jackson, N.J.; Best, P.N.; Calistro Rivera, G.; Callingham, J.R.; Duncan, K.J.; Gürkan, G.; Hardcastle, M.J.; Iacobelli, M.; et al. LoTSS/HETDEX: Disentangling star formation and AGN activity in gravitationally lensed radio-quiet quasars. Astron. Astrophys. 2019, 622, A18. [Google Scholar] [CrossRef]
- Giulietti, M.; Massardi, M.; Lapi, A.; Bonato, M.; Enia, A.F.M.; Negrello, M.; D’Amato, Q.; Behiri, M.; De Zotti, G. The far-infrared/radio correlation for a sample of strongly lensed dusty star-forming galaxies detected by Herschel. Mon. Not. R. Astron. Soc. 2022, 511, 1408–1419. [Google Scholar] [CrossRef]
- Gururajan, G.; Bethermin, M.; Sulzenauer, N.; Theulé, P.; Spilker, J.S.; Aravena, M.; Chapman, S.C.; Gonzalez, A.; Greve, T.R.; Narayanan, D.; et al. Observations of neutral carbon in 29 high-z lensed dusty star-forming galaxies and the comparison of gas mass tracers. Astron. Astrophys. 2023, 676, A89. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Martini, P.; Robertson, B.; Springel, V. Black Holes in Galaxy Mergers: Evolution of Quasars. Astrophys. J. 2005, 630, 705–715. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef]
- Mignano, A.; Prandoni, I.; Gregorini, L.; Parma, P.; de Ruiter, H.R.; Wieringa, M.H.; Vettolani, G.; Ekers, R.D. The ATESP 5 GHz radio survey*—II. Physical properties of the faint radio population. Astron. Astrophys. 2008, 477, 459–471. [Google Scholar] [CrossRef]
- Simpson, C.; Martínez-Sansigre, A.; Rawlings, S.; Ivison, R.; Akiyama, M.; Sekiguchi, K.; Takata, T.; Ueda, Y.; Watson, M. Radio imaging of the Subaru/XMM-Newton Deep Field—I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population. Mon. Not. R. Astron. Soc. 2006, 372, 741–757. [Google Scholar] [CrossRef]
- Seymour, N.; Dwelly, T.; Moss, D.; McHardy, I.; Zoghbi, A.; Rieke, G.; Page, M.; Hopkins, A.; Loaring, N. The star formation history of the Universe as revealed by deep radio observations. Mon. Not. R. Astron. Soc. 2008, 386, 1695–1708. [Google Scholar] [CrossRef]
- Smolčić, V.; Schinnerer, E.; Scodeggio, M.; Franzetti, P.; Aussel, H.; Bondi, M.; Brusa, M.; Carilli, C.L.; Capak, P.; Charlot, S.; et al. A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey. Astrophys. J. Suppl. Ser. 2008, 177, 14–38. [Google Scholar] [CrossRef]
- Barthel, P.D. Star-forming QSO host galaxies. Astron. Astrophys. 2006, 458, 107–111. [Google Scholar] [CrossRef]
- Kimball, A.E.; Ivezić, Ž.; Wiita, P.J.; Schneider, D.P. Correlations of Quasar Optical Spectra with Radio Morphology. Astron. J. 2011, 141, 182. [Google Scholar] [CrossRef]
- Padovani, P.; Miller, N.; Kellermann, K.I.; Mainieri, V.; Rosati, P.; Tozzi, P. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei. Astrophys. J. 2011, 740, 20. [Google Scholar] [CrossRef]
- Condon, J.J.; Kellermann, K.I.; Kimball, A.E.; Ivezić, Ž.; Perley, R.A. Active Galactic Nucleus and Starburst Radio Emission from Optically Selected Quasi-stellar Objects. Astrophys. J. 2013, 768, 37. [Google Scholar] [CrossRef]
- White, S.V.; Jarvis, M.J.; Häußler, B.; Maddox, N. Radio-quiet quasars in the VIDEO survey: Evidence for AGN-powered radio emission at S_{1.4 GHz < 1} mJy. Mon. Not. R. Astron. Soc. 2015, 448, 2665–2686. [Google Scholar] [CrossRef]
- Herrera Ruiz, N.; Middelberg, E.; Norris, R.P.; Maini, A. Unveiling the origin of the radio emission in radio-quiet quasars. Astron. Astrophys. 2016, 589, L2. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Condon, J.J.; Kimball, A.E.; Perley, R.A.; Ivezić, Ž. Radio-loud and Radio-quiet QSOs. Astrophys. J. 2016, 831, 168. [Google Scholar] [CrossRef]
- Herrera Ruiz, N.; Middelberg, E.; Deller, A.; Norris, R.P.; Best, P.N.; Brisken, W.; Schinnerer, E.; Smolčić, V.; Delvecchio, I.; Momjian, E.; et al. The faint radio sky: VLBA observations of the COSMOS field. Astron. Astrophys. 2017, 607, A132. [Google Scholar] [CrossRef]
- White, S.V.; Jarvis, M.J.; Kalfountzou, E.; Hardcastle, M.J.; Verma, A.; Cao Orjales, J.M.; Stevens, J. Evidence that the AGN dominates the radio emission in z ∼ 1 radio-quiet quasars. Mon. Not. R. Astron. Soc. 2017, 468, 217–238. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Prandoni, I.; Obi, I.; Gonzalez-Nuevo, J.; Perrotta, F.; Bressan, A.; Celotti, A.; Danese, L. Galaxy Evolution in the Radio Band: The Role of Star-forming Galaxies and Active Galactic Nuclei. Astrophys. J. 2017, 842, 95. [Google Scholar] [CrossRef]
- Becker, R.H.; White, R.L.; Helfand, D.J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters. Astrophys. J. 1995, 450, 559. [Google Scholar] [CrossRef]
- Lacy, M.; Baum, S.A.; Chandler, C.J.; Chatterjee, S.; Clarke, T.E.; Deustua, S.; English, J.; Farnes, J.; Gaensler, B.M.; Gugliucci, N.; et al. The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publ. Astron. Soc. Pac. 2020, 132, 035001. [Google Scholar] [CrossRef]
- Norris, R.P.; Afonso, J.; Bacon, D.; Beck, R.; Bell, M.; Beswick, R.J.; Best, P.; Bhatnagar, S.; Bonafede, A.; Brunetti, G.; et al. Radio Continuum Surveys with Square Kilometre Array Pathfinders. Publ. Astron. Soc. Aust 2013, 30, e020. [Google Scholar] [CrossRef]
- Prandoni, I.; Seymour, N. Revealing the Physics and Evolution of Galaxies and Galaxy Clusters with SKA Continuum Surveys. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2014; p. 67. [Google Scholar] [CrossRef]
- Bonato, M.; Prandoni, I.; Zotti, G.D.; Best, P.N.; Bondi, M.; Rivera, G.C.; Cochrane, R.K.; Gürkan, G.; Haskell, P.; Kondapally, R.; et al. The LOFAR Two-metre Sky Survey Deep fields: A new analysis of low-frequency radio luminosity as a star-formation tracer in the Lockman Hole region. Astron. Astrophys. 2021, 656, A48. [Google Scholar] [CrossRef]
- Prandoni, I.; Guglielmino, G.; Morganti, R.; Vaccari, M.; Maini, A.; Röttgering, H.J.A.; Jarvis, M.J.; Garrett, M.A. The Lockman Hole Project: New constraints on the sub-mJy source counts from a wide-area 1.4 GHz mosaic. Mon. Not. R. Astron. Soc. 2018, 481, 4548–4565. [Google Scholar] [CrossRef]
- Van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.T.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef]
- Norris, R.P.; Hopkins, A.M.; Afonso, J.; Brown, S.; Condon, J.J.; Dunne, L.; Feain, I.; Hollow, R.; Jarvis, M.; Johnston-Hollitt, M.; et al. EMU: Evolutionary Map of the Universe. Publ. Astron. Soc. Aust 2011, 28, 215–248. [Google Scholar] [CrossRef]
- Norris, R.P. Extragalactic radio continuum surveys and the transformation of radio astronomy. Nat. Astron. 2017, 1, 671–678. [Google Scholar] [CrossRef]
- Norris, R.P.; Marvil, J.; Collier, J.D.; Kapińska, A.D.; O’Brien, A.N.; Rudnick, L.; Andernach, H.; Asorey, J.; Brown, M.J.I.; Brüggen, M.; et al. The Evolutionary Map of the Universe pilot survey. Publ. Astron. Soc. Aust 2021, 38, e046. [Google Scholar] [CrossRef]
- Bonaldi, A.; An, T.; Brüggen, M.; Burkutean, S.; Coelho, B.; Goodarzi, H.; Hartley, P.; Sandhu, P.K.; Wu, C.; Yu, L.; et al. Square Kilometre Array Science Data Challenge 1: Analysis and results. Mon. Not. R. Astron. Soc. 2021, 500, 3821–3837. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Cai, Z.Y.; Negrello, M.; De Zotti, G.; Bressan, A.; Bonato, M.; Perrotta, F.; Danese, L. Predictions for Ultra-deep Radio Counts of Star-forming Galaxies. Astrophys. J. 2015, 810, 72. [Google Scholar] [CrossRef]
- Bradley, L.D.; Coe, D.; Brammer, G.; Furtak, L.J.; Larson, R.L.; Kokorev, V.; Andrade-Santos, F.; Bhatawdekar, R.; Bradac, M.; Broadhurst, T.; et al. High-Redshift Galaxy Candidates at z = 9–10 as Revealed by JWST Observations of WHL0137-08. arXiv 2022, arXiv:2210.01777. [Google Scholar] [CrossRef]
- Castellano, M.; Fontana, A.; Treu, T.; Santini, P.; Merlin, E.; Leethochawalit, N.; Trenti, M.; Vanzella, E.; Mestric, U.; Bonchi, A.; et al. Early Results from GLASS-JWST. III. Galaxy Candidates at z 9–15. Astrophys. J. 2022, 938, L15. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Bagley, M.B.; Arrabal Haro, P.; Dickinson, M.; Ferguson, H.C.; Kartaltepe, J.S.; Papovich, C.; Burgarella, D.; Kocevski, D.D.; Huertas-Company, M.; et al. A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging. Astrophys. J. 2022, 940, L55. [Google Scholar] [CrossRef]
- Naidu, R.P.; Oesch, P.A.; van Dokkum, P.; Nelson, E.J.; Suess, K.A.; Brammer, G.; Whitaker, K.E.; Illingworth, G.; Bouwens, R.; Tacchella, S.; et al. Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST. Astrophys. J. 2022, 940, L14. [Google Scholar] [CrossRef]
- Adams, N.J.; Conselice, C.J.; Ferreira, L.; Austin, D.; Trussler, J.A.A.; Juodžbalis, I.; Wilkins, S.M.; Caruana, J.; Dayal, P.; Verma, A.; et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field. Mon. Not. R. Astron. Soc. 2023, 518, 4755–4766. [Google Scholar] [CrossRef]
- Atek, H.; Shuntov, M.; Furtak, L.J.; Richard, J.; Kneib, J.P.; Mahler, G.; Zitrin, A.; McCracken, H.J.; Charlot, S.; Chevallard, J.; et al. Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 2023, 519, 1201–1220. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Stefanon, M.; Brammer, G.; Oesch, P.A.; Herard-Demanche, T.; Illingworth, G.D.; Matthee, J.; Naidu, R.P.; van Dokkum, P.G.; van Leeuwen, I.F. Evolution of the UV LF from z 15 to z 8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Mon. Not. R. Astron. Soc. 2023, 523, 1036–1055. [Google Scholar] [CrossRef]
- Donnan, C.T.; McLeod, D.J.; McLure, R.J.; Dunlop, J.S.; Carnall, A.C.; Cullen, F.; Magee, D. The abundance of z ≳ 10 galaxy candidates in the HUDF using deep JWST NIRCam medium-band imaging. Mon. Not. R. Astron. Soc. 2023, 520, 4554–4561. [Google Scholar] [CrossRef]
- Finkelstein, S.L.; Bagley, M.B.; Ferguson, H.C.; Wilkins, S.M.; Kartaltepe, J.S.; Papovich, C.; Yung, L.Y.A.; Haro, P.A.; Behroozi, P.; Dickinson, M.; et al. CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST. Astrophys. J. 2023, 946, L13. [Google Scholar] [CrossRef]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 2023, 616, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Stiavelli, M. Physical Characterization of Early Galaxies in the Webb’s First Deep Field SMACS J0723.3–7323. Astrophys. J. 2023, 946, L35. [Google Scholar] [CrossRef]
- Rodighiero, G.; Bisigello, L.; Iani, E.; Marasco, A.; Grazian, A.; Sinigaglia, F.; Cassata, P.; Gruppioni, C. JWST unveils heavily obscured (active and passive) sources up to z 13. Mon. Not. R. Astron. Soc. 2023, 518, L19–L24. [Google Scholar] [CrossRef]
- Yan, H.; Ma, Z.; Ling, C.; Cheng, C.; Huang, J.S. First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723–73. Astrophys. J. 2023, 942, L9. [Google Scholar] [CrossRef]
- Robertson, B.E. Galaxy Formation and Reionization: Key Unknowns and Expected Breakthroughs by the James Webb Space Telescope. Annu. Rev. Astron. Astrophys. 2022, 60, 121–158. [Google Scholar] [CrossRef]
- Curtis-Lake, E.; Carniani, S.; Cameron, A.; Charlot, S.; Jakobsen, P.; Maiolino, R.; Bunker, A.; Witstok, J.; Smit, R.; Chevallard, J.; et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 2023, 7, 622–632. [Google Scholar] [CrossRef]
- Mancuso, C.; Lapi, A.; Shi, J.; Cai, Z.Y.; Gonzalez-Nuevo, J.; Béthermin, M.; Danese, L. The Main Sequences of Star-forming Galaxies and Active Galactic Nuclei at High Redshift. Astrophys. J. 2016, 833, 152. [Google Scholar] [CrossRef]
- Álvarez-Márquez, J.; Crespo Gómez, A.; Colina, L.; Neeleman, M.; Walter, F.; Labiano, A.; Pérez-González, P.; Bik, A.; Noorgaard-Nielsen, H.U.; Ostlin, G.; et al. MIRI/JWST observations reveal an extremely obscured starburst in the z = 6.9 system SPT0311-58. Astron. Astrophys. 2023, 671, A105. [Google Scholar] [CrossRef]
- Peng, B.; Vishwas, A.; Stacey, G.; Nikola, T.; Lamarche, C.; Rooney, C.; Ball, C.; Ferkinhoff, C.; Spoon, H. Discovery of a Dusty, Chemically Mature Companion to a z 4 Starburst Galaxy in JWST ERS Data. Astrophys. J. 2023, 944, L36. [Google Scholar] [CrossRef]
- Lyu, J.; Alberts, S.; Rieke, G.H.; Shivaei, I.; Perez-Gonzalez, P.G.; Sun, F.; Hainline, K.N.; Baum, S.; Bonaventura, N.; Bunker, A.J.; et al. AGN Selection and Demographics: A New Age with JWST/MIRI. arXiv 2023, arXiv.2310.12330. [Google Scholar] [CrossRef]
- Carpenter, J.; Brogan, C.; Iono, D.; Mroczkowski, T. The ALMA Wideband Sensitivity Upgrade. In Proceedings of the Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales, Puerto Varas, Chile, 26–30 September 2022; p. 304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giulietti, M.; Gandolfi, G.; Massardi, M.; Behiri, M.; Lapi, A. Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes. Galaxies 2024, 12, 9. https://doi.org/10.3390/galaxies12020009
Giulietti M, Gandolfi G, Massardi M, Behiri M, Lapi A. Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes. Galaxies. 2024; 12(2):9. https://doi.org/10.3390/galaxies12020009
Chicago/Turabian StyleGiulietti, Marika, Giovanni Gandolfi, Marcella Massardi, Meriem Behiri, and Andrea Lapi. 2024. "Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes" Galaxies 12, no. 2: 9. https://doi.org/10.3390/galaxies12020009
APA StyleGiulietti, M., Gandolfi, G., Massardi, M., Behiri, M., & Lapi, A. (2024). Observing Dusty Star-Forming Galaxies at the Cosmic Noon through Gravitational Lensing: Perspectives from New-Generation Telescopes. Galaxies, 12(2), 9. https://doi.org/10.3390/galaxies12020009