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Abstract: Using multifrequency observations, from radio to γ-rays of the blazar Mrk 501, we con-
structed their corresponding light curves and built periodograms using RobPer and Lomb–Scargle
algorithms. Long-term variability was also studied using the power density spectrum and the
detrended function analysis. Using the software VARTOOLS Version 1.40, we also computed the
analysis of variance, box-least squares and discrete fourier transform. The result of these techniques
showed an achromatic periodicity ≲229 d. This, combined with the result of pink-color noise in the
spectra, led us to propose that the periodicity was produced via a secondary eclipsing supermassive
binary black hole orbiting the primary one locked inside the central engine of Mrk 501. We built a
relativistic eclipsing model of this phenomenon using Jacobi elliptical functions, finding a periodic
relativistic eclipse occurring every ∼224 d in all the studied wavebands. This implies that the fre-
quency of the emitted gravitational waves falls slightly above 0.1 mHz, well within the operational
range of the upcoming LISA space-based interferometer, and as such, these gravitational waves must
be considered as a prime science target for future LISA observations.

Keywords: galaxies; quasars; individual; Mrk 501—galaxies; quasars; supermassive black holes

1. Introduction

Among active galactic nuclei (AGN), blazars are objects that emit variable non-thermal
radiation throughout the electromagnetic (EM) spectrum [1] with their jets pointing at an
angle of no more than ∼30◦ from the observer’s line of sight [2]. These extragalactic sources
present total luminosities in the range of 1041–1047 ergs/s (see, e.g., [3]).

The light curve variabilities in blazars are commonly classified as follows: (a) intraday
variability (IDV), corresponding to periods of over a day or less [4]—they are also called
intra-night variability or micro-variability [5]; (b) short-term variability (STV), which
corresponds to variability over days to several weeks; and (c) long-term variability (LTV)
that takes place on timescales of months to years [6].

These variabilities have many explanations that are related to whether the source is
jet-dominated or not. In the first case, Marscher and Travis [7] suggest that the variability in
compact jets is justified because of the non-thermal emission in blazars. Furthermore, vari-
ability studies in the radio and optical wave bands by Camenzind and Krockenberger [8]
conclude that shock waves in relativistic collimated flows are responsible for the observa-
tions. This idea was further studied by Mohan and Mangalam [9], proposing a general
relativistic model of jet variability in AGN, incorporating orbiting blobs in a helical motion
along a magnetic surface near the black hole. In this direction, de la Cruz-Hernández and
Mendoza [10] interpreted that shock wave emissions inside the jet are caused by a periodic
injection velocity of the flow at the base of the jet.

For non-jet-dominated sources, McHardy et al. [11] suggest that the differences in
lag between different bands indicate that the variability is produced by the disk. Also,
Edelson et al. [12]’s account of rapid luminosity changes that indicates emission regions
confined to the inner disk or corona. In this sense, Uttley et al. [13] suggest that the
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variability is due to processes and accretion rate variations. Also, Stella and Vietri [14]
explain that the variability can be attributed to the relativistic dragging of inertial frames
around a rapidly rotating disk.

A famous example of a non-jet-dominated source is represented by the quasar OJ 287,
which was extensively studied by Lehto and Valtonen [15], who found sharp flares within
major outbursts of the optical light curve. The authors proposed a model in which a smaller
black hole crosses the accretion disk of a larger black hole during its binary orbit. An
extensive analysis of its optical light curve was used to infer this supermassive black hole
binary system [16]. The periodicity of this blazar was discovered by analyzing its historical
optical light curve, which contains data from more than 100 years, showing repeated bursts
at intervals of about 11.65 y. The best-known model of this periodicity was constructed
by Lehto and Valtonen [15], and it consists of a primary black hole—the central engine,
with a mass of ∼17 × 109 M⊙, surrounded by an accretion disk and a secondary black hole
with a mass of ∼108 M⊙, orbiting the primary and intersecting the accretion disk on each
orbit, causing tidally induced mass fluxes from the accretion disk to the primary black hole.

Of particular relevance to the studies carried out in the present article is the case for
postulating the existence of a secondary supermassive black hole orbiting a primary one.
The first proposal of this kind was made by Begelman et al. [17] in order to account for
periodic or quasi-periodic oscillations.

An extensive survey to find periodic light curves in optical light was carried out
by Graham et al. [18]. Of the 247, 000 studied light curves, it was found that the one
corresponding to PG 1302-102 shows a periodicity of 1884 ± 88 d. The authors assumed
that this was due to the existence of a secondary black hole “eclipsing” the primary one,
and they concluded that the system is separated by less than a parsec. More recently,
Tavani et al. [19] found 2.2 yr QPOs in the γ-rays band of the blazar PG 1553+113 and once
again proposed it as a supermassive black hole binary system.

Relevant periodicities of other AGN appear in the literature. Quite important to
mention is the work by Li et al. [20], who report long-term variability of ∼14 yr in the
optical continuum of the nucleus of NGC 5548. For this same object, Bon et al. [21] found
a periodicity ∼43 yr. Also, Li et al. [22] studied a possible ∼20 yr periodicity in long-
term optical photometric and spectral variations of the nearby radio-quiet Active Galactic
Nucleus Ark 120, and Chen et al. [23] published a sample of quasar candidates with periodic
variations from the Zwicky Transient Facility.

A very interesting and quite well studied blazar is Markarian 501 (Mrk 501). It is a
BL Lac object with several periodicities reported in the literature: (1) A periodicity of 23 d
was reported during a flare detected in X-rays and γ-rays and modeled as a supermassive
binary black hole (see, e.g., [24] and references therein). (2) In the same frequencies, a
periodicity of 72 d was found by Rödig et al. [25]. (3) A periodicity of 630 d was discovered
by Wang et al. [26] in X-rays. (4) Finally, Bhatta [27] found a 332 d periodicity in the
Fermi-LAT γ-rays light curve. All of these reported periodicities are not achromatic, and
they represent different databases in time. Although interesting, they are not relevant
to the study presented in this article, which used long-term databases in four different
frequencies.

Mrk 501 has a redshift of z = 0.034 (∼456 Mly∼140 Mpc) with R.A. = 16h 53m 52.2s,
Dec. = +39◦ 45′ 37′′. It was discovered by Quinn et al. [28] using the Whipple Imaging
Atmospheric Cherenkov Telescope (IACT). It has been monitored since 1996 in various
frequencies: radio [29], optical [30], and γ-rays [31,32].

In this article, we report a mean periodicity of 224.07 ± 0.22 d in multi-frequency
observations of Mrk 501. The dataset in radio was obtained from the Owens Valley
Radio Observatory (OVRO) (https://sites.astro.caltech.edu/ovroblazars/, accessed on
27 June 2020), the optical dataset from the American Association of Variable Star Observers
(AAVSO) (https://www.aavso.org/, accessed on 12 September 2021), the X-rays dataset is
from the Neil Gehrels Swift Observatory (Swift) (https://swift.gsfc.nasa.gov/, accessed
on 8 October 2021) and for γ-rays, the data were taken from the Fermi Gamma-Rays Space
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Telescope (FGST, also FGRST) (https://fermi.gsfc.nasa.gov/, accessed on 13 March 2020).
These datasets and their corresponding processing (reduction) is explained in Section 2.
In Section 3, we describe different methods to find this multifrequency periodicity, and in
Section 3.4, we model this periodic behavior, assuming a supermassive binary black hole
using Jacobi elliptical functions, which offer good representations of eclipses that produce
occultations (as they occur for binary stars or exoplanets eclipsing their central star) and
magnifications (such as the ones that are produced by massive relativistic objects that bend
light and magnify its intensity). Finally, in Section 4, we discuss our results.

2. Data and Light Curves

The radio dataset from 22 January 2009 to 27 June 2020 was obtained from the OVRO
database. OVRO consists of a 40 m telescope with a cryogenic receiver at a central 15 GHz
frequency, a 3 GHz bandwidth and two symmetric off-axis beams. This observatory has
been monitoring blazars since 2008 [29], and one of its main targets is the search for QPOs
and correlations between radio and γ-rays in blazars [33,34]. The signal-to-noise level
reported by the OVRO database is such that it produces a systematic flux uncertainty of
about 5%.

The optical AAVSO database is public, and it offers long-term datasets. The institution
is an international organization of variable star observers who participate in scientific
discovery through variable-star astronomy. It was founded in 1910, and its observations
of variable stars are collected and archived for worldwide access in collaboration with
amateur and professional astronomers. Observations with errors of ≥1.0 magnitudes are
rejected by the AAVSO community. An error of 1.0 magnitude represents a signal-to-noise
ratio of 1, making it statistically insignificant. The light curve of Mrk 501 was built using
the database from 24 June 1998 to 12 September 2021.

The optical and radio data reductions were processed via AAVSO and OVRO, respec-
tively. The data were obtained by consulting the public databases of both observatories.
For details of the reduction, calibration, correlation processes, etc., of the radio database,
see Richards et al. [29], and for AAVSO, see Kinne [35].

For the X-ray light curve, we used the Swift database from 2 October 2008 to 8 October
2021. This dataset contains energies in the range of 0.3–10 keV. Swift has an X-ray telescope
(XRT) with two important characteristics that makes it important for observations: a low
background and a constant point spread function across the field of view [36].

The bin size used for obtaining the data was the default time of 5 s, and the command
line interface used was xselect, which works in conjunction with the Fermitools software
version v11r5p3, specifically designed for astrophysical X-ray analysis. It offers convenient
functions to organize input data using the observation catalog, applies various filters to the
event data (such as intensity, phase, region, etc.) and creates good time intervals based on a
chosen selection criteria. It serves as a valuable tool to work with X-ray data, providing an
efficient and customizable way to manage and analyze astrophysical data.

In addition to its major functions, xselect also provides three commands that corre-
spond to different time systems: universal time (UT), modified Julian days (MJD), and the
SpaceCraft Clock. We constructed the X-ray light curve using MJD.

The Fermi public database of γ-rays has fluxes in the range of 100 MeV–300 GeV. For
Mrk 501, it covers a time interval from 4 August 2008 up to 13 March 2020. The analysis
was performed using the public Fermi/LAT data corresponding to the P8R3 SOURCE
γ-ray event selection within a 15-degree range of search. To ensure data quality, only events
corresponding to good time intervals with DATA_QUAL > 0 and LAT_CONFIG == 1 were
retained, and a maximal telescope zenith angle of 90 degrees was applied. Data reduction
was performed using the Fermitools package v2.0.8. Galactic and extragalactic diffuse emis-
sion was taken into account using the gll_iem_v07.fits and iso_P8R3_SOURCE_V2_v1.txt
models, respectively. The spectral shape was assumed to follow a LogParabola model
(https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html, accessed
on 13 March 2020).

https://fermi.gsfc.nasa.gov/
https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
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The data from the Swift and Fermi observatories were reduced by processing the
files corresponding to both the photons and the position and the orientation of the satel-
lite on Flexible Image Transport System-format files (FITS) with HEASoft version 6.26.1
(https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/, accessed on 13 March 2020) and
Fermitools version v11r5p3 (https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/,
accessed on 13 March 2020) software. In both cases, it is necessary to know the relevant
parameters of the object in question, such as the right ascension, declination, energy in-
terval, and starting and ending times of the data processing (see, e.g., [37]). The satellite
information was reviewed to make various time and position corrections, and with this,
the analysis of the maximum likelihood estimation was carried out, in which the FITS
files were used (see, e.g., [38]). Finally, a table was built that contains the light curve
information, i.e., a file that contains discrete data of time, luminosity and its uncertainty
with a signal-to-noise ratio <2σ.

The multifrequency light curves in Figure 1 are the result of processing the obtained
data described above at a 3σ confidence level; thus, the accepted total fraction of bins is
99.7%. Table 1 shows the processed data in a synthesized way for all the electromagnetic
frequencies studied for Mrk 501.
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Figure 1. Multifrequency light curves of the blazar Mrk 501. From left to right and top to bottom, the
panels represent radio, optical, X- and γ-rays at a 3σ confidence level for light curves, as described in
the text.

Table 1. The table shows each electromagnetic band studied for Mrk 501: the number of observations,
the duration in years, months and days (y, m, d), and the total days for which at least a measurement
was obtained (d).

Band Observations Duration Total
(y, m, d) (d)

Radio 615 11, 5, 5 4174
Optical 11,849 23, 2, 17 8441
X-rays 28,000 12, 7, 9 4607
γ-rays 4199 11, 7, 9 4239

https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/
https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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3. Methods
3.1. Periodograms and Window Functions

With the data processed, the search for periodicities was carried out. For this, the R-
package RobPer version 1.2.3 was useful to analyze the associated periodograms on scales of
a time of several years. This package was built for the analysis of time series in astrophysics,
in which there is the possibility of having data that are not necessarily equidistant in
time [39]. It is based on robustly fitting periodic functions of the time-series (light curves)
in question and calculates periodograms with irregular (non-equidistant) observations on
the time scale. The RobPer routines report significant peaks on the periodograms based
on different statistical techniques (see [39] and references therein), with regression options
such as least squares, least absolute deviations, least trimmed squares, and M-, S- and
τ-regression while accounting for measurement accuracies with weights. RobPer covers
previous approaches and introduces model-regression combinations. Instead of relying
on fixed critical values, it employs an outlier search on the periodogram to identify valid
periods, considering that the traditional assumptions might not hold. RobPer, being a
robust technique, is less sensitive to drastic changes in small portions of the data, making it
more robust to outliers.

To support the RobPer periodogram analysis, a Lomb–Scargle (L-S) periodogram
was also used, applying the lomb statistical routine in R and the LombScargle class of
the astropy.timeseries routine in Python. This algorithm was proposed by Lomb [40]
and Scargle [41], and to date, it is the most-used method for detecting periodicities in
unevenly sampled light curves. The L-S technique is based on Fourier methods, phase-
folding methods, least squares methods and Bayesian approaches [42]. Despite the success
of the L-S routine, it is well known that it fails in some cases where eclipses are to be
detected as periodicities (see, e.g., [43]). This means that one has to proceed with care when
studying the L-S periodogram. In any case, not a single statistical method presented in this
article can, in general, serve as a unique tool for the detection of periods on a time series.
This is the reason why we studied the problem using different statistical techniques.

To avoid false positives in the detected periods with the RobPer and L-S routines, we
built a windowing program following the work of Dawson and Fabrycky [44] and applied
it to all the electromagnetic bands studied.

This method effectively distinguishes between aliases and true frequencies. Aliases
occur at | f ± fs|, where f represents the frequency, and fs is a feature in the window
function. By comparing the phase and amplitude of predicted aliases, derived from a
sinusoidal waveform with the candidate frequency and the actual data, it is possible to
determine whether the predicted aliases align with the data. When all aliases match in
terms of amplitude, phase and pattern, we can confidently conclude that the true period
has been found.

Thus, the spectral window function of an evenly sampled time series is

W(ν) =
1
N

N

∑
r=1

e−2πiνtr (1)

with N as the number of data points, m is an integer and tr is the time of the rth data point.
The peak in the spectral window function occurs at m fs.

Under this method, false positives are ruled out via a direct comparison of a W(ν)
vs. ν diagram and the periodograms obtained with RobPer and L-S. In this way, if there
is a false positive periodicity in the data collection (such as, e.g., an annual period of time
due to vacation days in which no observations were taken), it will be presented as a peak
in the window function (WF). The peaks that result as true positives in a periodogram
are, thus, compared with their respective WF troughs in all the electromagnetic bands
analyzed. Figure 2 shows the periodograms obtained with RobPer and L-S with the
corresponding time, WF. The true mean peak in each periodogram is shown with a vertical
dotted line. These mean periodicities are reinforced by the fact that the true mean peaks do
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not coincide with any peak in the WF. Figure 2 only shows a zoom into the relevant part of
the periodogram, where a peak on it approximately coincides in all studied frequencies.
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Figure 2. RobPer (magenta) and L-S (teal) periodograms (represented by their normalized coefficient
of determination -NCoD), together with their corresponding window function (blue) for radio-,
optical-, X- and γ-ray observations of Mrk 501 are shown from left to right, top to bottom panels. The
black dotted vertical line shows the mean periodicity between the RobPer and L-S peaks that are
common in all frequencies (radio: 228.03 d; optical: 226.77 d; X-rays: 223.20 d; and γ-rays: 238.90 d).
Table 2 shows the periods obtained for the periodograms presented in the figure. The fact that
these mean periodicities do not coincide with peaks in the window function reinforces their true
periodic character.

Table 2. The table shows the time in days (d) for the peaks and their mean values for the RobPer and
Lomb–Scargle algorithms in each electromagnetic band studied for Mrk 501.

Band RobPer L-S Mean
(d) (d) (d)

Radio 228 228.06 228.03
Optical 228 225.54 226.77
X-rays 223 223.40 223.20
γ-rays 237 240.80 238.90

3.2. VARTOOLS

VARTOOLS (The VARTOOLS free GNU General Public License software is available at:
https://www.astro.princeton.edu/~jhartman/vartools.html, accessed on 6 August 2023) is
an open-source command-line utility for analyzing light curves developed by Hartman
and Bakos [45]. It is written in the C programming language, and it provides a set of tools
for processing, manipulating and studying light curves. The routines implemented in
VARTOOLS for studying Mrk 501 were the L-S periodogram, the box-least squares (bls),
the analysis of variance (aov) and the discrete Fourier transform (DFT).

https://www.astro.princeton.edu/~jhartman/vartools.html
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AoV is a VARTOOLS routine for the detection of sharp (or statistically significant)
periodic signals based on the code developed by Devor [46]. This method consists of
folding and binning data with a trial period. It has also been used by Schwarzenberg-
Czerny [47] for identifying and studying eclipsing binaries within large data sets of light
curves. This routine customizes the process with a minimum period (minp option) and
a maximum period (maxp option) to define the search range. The initial search uses a
frequency resolution of the subsample, and the refined peak periods utilize a finetuned
resolution. The program outputs the highest peaks in the periodogram.

The AoV-h VARTOOLS routine consists of the analysis variance using a multi-harmonic
model. This method uses periodic orthogonal polynomials to fit the observations and the
analysis of the statistical variance to evaluate the quality of the fit [48]. The parameters and
behavior are as for the AOV routine.

The plots of the AoV and AoV-h of Mrk 501 are shown in Figure 3, which result in an
average periodicity of 227.55 d for the AoV and 224.64 d for the AoV-h. The gray vertical
zone represents the statistical range of these peaks.
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Figure 3. The figure shows the analysis of variance (AoV) for Mrk 501 using VARTOOLS. The left
panel is the AoV for all frequencies: radio is in magenta with a periodicity of 227.2 d, optical is in blue
with a periodicity of 226.73 d, X-rays, in teal, have a periodicity of 227.1 d and γ-rays, in yellow with
a periodicity of 229.2 d. The mean value of 227.55 d is represented with a dashed vertical line. The
gray vertical band zone represents the statistical range of these peaks. The right panel uses the same
coloring scheme as the left one but for the harmonic analysis of variance (AoV-h) of the VARTOOLS
software version 1.40. The periodicity of radio, optical, X- and γ-rays are given via the following:
228.06 d, 227.4 d, 223.4 d and 219.7 d, respectively, yielding an average value of 224.64 d, shown with
the vertical dashed line. The vertical values on both panels were normalized to the maximum.

The VARTOOLS BLS routine is commonly used in studies of stellar photometric time
series in the search for periodic transits of exoplanets [49]. This algorithm uses the minimum
and maximum values (the fraction of orbit in transit), and the search for periodicities
operates within specified minimum and maximum periods (minper and maxper commands,
respectively) and uses a specified number of trial frequencies. Additionally, the command
allows the number of peaks to be reported. Using this routine for Mrk 501, we found a
mean periodicity in all frequencies of 229.484 d—see Figure 4.

The VARTOOLS Discrete Fourier Transform (DFT) algorithm calculates the power spec-
trum of the time series [50]. The routine to compute the DFT was developed by Kurtz [51].
The computation of the light curves is sampled using points per frequency and set to the
maximum frequency (with maxfreq option), with a default value based on the minimum
time separation. The DFT also allows researchers to find the highest peaks in the clean
power spectrum. The average periodicity value obtained with this tool is 229.95 d for
Mrk 501 in all studied frequencies—see Figure 4. Table 3 summarizes the the periodicity
results of VARTOOLS for Mrk 501.
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Figure 4. The left panel shows the B-L Square algorithm of VARTOOLS used in all wavebands,
applying the same coloring scheme of Figure 3, with the following periodicities in radio, optical, X-
and γ-rays: 220.96 d, 224.141 d, 220.96 d, 240.404 d, with a mean value of 226.616 d represented using
a dashed horizontal line. The right panel, with the same coloring scheme, uses the DFT VARTOOLS
algorithm with resulting periodicities of 228.737 d, 225.909 d, 222.374 d and 242.818 d and an average
value of 229.959 d. The vertical values on both panels were normalized to the maximum. The gray
vertical band zone represents the statistical range of these peaks.

Table 3. The table shows the mean periodicity value of the AoV, AoV-h, BLS and DFT obtained with
VARTOOLS for Mrk 501.

Band AoV AoV-h BLS DFT
(d) (d) (d) (d)

Radio 227.20 228.06 220.960 228.737
Optical 226.73 227.40 224.141 225.909
X-rays 227.10 223.40 220.960 222.374
γ-rays 229.20 219.70 240.404 242.818

Averages 227.55 224.64 226.616 229.959

3.3. Power Spectrum Density, Detrended Fluctuation Analysis, and the Colors of Noise

The study of time series or light curves, f (t), in the study of this article, with sample
length n, can be analyzed using the Fourier transform P(ν) given via (see, e.g., [52]):

P(ν) =
1
n

n−1

∑
t=0

f (t)e(−
2πiνt

n ). (2)

With this transformation, it is possible to obtain specific periodic pulses in the light curve,
even with excessive noise (see, e.g., [53]). If there are multiple periodic fluctuations present
in the light curve, then the power spectral density (PSD) will reveal each one with a peak
in the power spectrum at the particular periodicity or frequency.

The PSD function approaches a power law at a particular frequency, ν, given via
the following:

P(ν) = ν−α, (3)

for a fixed exponent, α. The spectral noise of the signal can be represented with its color
of noise [53], depending on the value of α. For astrophysical phenomena, it is commonly
denoted as white, pink and Brownian according to the values of Table 4 (see, e.g., [54] and
references therein).

A given color of noise has statistical and correlation characteristics. When white noise
predominates in the signal, it means that there is no temporal correlation in a specific time
series, and the case of Brownian noise is obtained when a temporal correlation in the signal
is significant [55]. Pink noise corresponds to the statistical case of phase change, in which
there is a transition from a random process to a predictive one [56]. The colors of noise
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analysis has been performed in the literature for time series of solar bursts, magnetospheric
physics, binary black holes and other astrophysical phenomena [54].

Table 4. The table shows the intervals of the power spectrum density (PSD) exponent α of Equation (3)
and its associated color of noise.

PSD Exponent Colors of Noise

0.0 ≲ α ≲ 0.5 white
0.5 ≲ α ≲ 1.5 pink
1.5 ≲ α ≲ 2.5 Brownian

To support the PSD results, a detrended fluctuation analysis (DFA) method [57] with
the time series can be computed to determine the statistical self-affinity in each frequency.
DFA is also useful in the analysis of time series that appear to show long-memory processes.
It is useful in the study of chaos theory, stochastic processes and time series analysis. The
fluctuation, F(n), is calculated for different window sizes, n, as follows:

F(n) =

√√√√ 1
N

N

∑
t=1

(Xt − Yt)2, (4)

where N is time series length, Xt is the cumulative sum or profile of the time series and
Yt is the resulting piecewise sequence of straight-line fits (see, e.g., [58]). The resulting
log F(n) vs. log n measures the statistical self-affinity of the time series, expressed through
a fixed β exponent from the following relation:

F(n) ∝ nβ. (5)

Table 5 shows that the application of a PSD and a DFA to the multi-frequency light
curves of Mrk 501 results in pink noise. For completeness, Figure 5 shows the PSD plots in
all studied wavelengths. The PSD and DFA analyses were performed using VARTOOLS,
and the fitting of the corresponding α and β exponents were calculated using our own C
program with the aid of the GNU Scientific Library (https://www.gnu.org/software/gsl,
accessed on 18 January 2024) routines.

Table 5. The table shows the obtained values for the exponents α and β resulting from the PSD and
DFA color of noise analysis to the multi-frequency observations of Mrk 501. In all cases, the resulting
color of noise is pink, according to the classification presented in Table 4, which implies that the light
curves present temporal correlations with random fluctuations.

Band α β

Radio 1.24 ± 0.020 1.287 ± 0.0035
Optical 1.16 ± 0.030 0.869 ± 0.0045
X-rays 0.61 ± 0.005 1.019 ± 0.0045
γ-rays 0.87 ± 0.035 0.853 ± 0.0015

The power spectrum density and the detrended fluctuation analysis complement the
methods used to search for periodicities. Nevertheless, the variations in the emission
of blazars are more complex. For example, Vaughan et al. [59] mention that periodic
variations in quasar light curves have raised the possibility of close binary supermassive
black holes. However, quasars typically display stochastic variability, making it challenging
to identify true periodic candidates. Methods like Bayesian analysis light curves favors a
stochastic process over sinusoidal variation, though simulations of the quasar PG 1302-102
light curves demonstrate the occurrence of periodicity in stochastic processes, which is
crucial to calibrate false positive rates when searching for periodic signals among numerous
targets. The studied X-ray observations of PG 1211+143 [60] showed time lags where strong

https://www.gnu.org/software/gsl 
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correlations were observed, including complex variability patterns. This phenomenon was
studied as well by Vaughan [61], analyzing X-ray variability in black hole sources including
AGN, X-ray binaries and UltraLuminous X-ray objects, finding the accretion flow as the
source of the observed X-ray variations.
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Figure 5. From left to right and top to bottom, the panels in the figure correspond to radio, optical, X-
and γ-rays’ power spectrum density (PSD) for the blazar Mrk 501. In all cases, the color of the noise
of the signal is pink, according to the results in Table 5.

3.4. Data Fitting via a Jacobi Elliptical Function

The achromatic periodicity, from radio to γ-rays, of ≲229 d detected in the previous
sections, combined with the pink noise color, implies that a correlated phenomenon is
producing it. The simplest way in which such a phenomenon may occur is with an eclipse,
as shown in Figure 6, since an orbiting massive object partially covering the radiation from
the central parts of Mrk 501 will do so in a periodic way. In what follows, we denote the
central supermassive black hole as the primary black hole and the eclipsing massive object
as the secondary object. When light is obscured due to a non-relativistic massive object, it
gets dimmed, as happens in a standard eclipse of, say, an exoplanet when it passes through
the central star of its planetary system [62]. However, light is magnified if a relativistic
object passes through light beams produced by a primary source of light (see, e.g., [63] and
references therein). The following eclipse function, e(t), serves as a good empirical way to
model an eclipse:

e(t) = ±
{

Θ(t)− Θ(t − π)

}
sn2
(

2K(m)t
π

)
(6)

where Θ represents the heaviside step function, sn is the elliptic sine or sinus amplitudinis
Jacobi function with module m, such that 0 ≤ m ≤ 1, and K(m) is the complete elliptic
integral of the first kind given via (see, e.g., [64]):

K(m) =
∫ π/2

0

dζ√
1 − m sin2 ζ

. (7)
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The ± sign on the right-hand side of Equation (6) represents a standard non-relativistic
eclipse, i.e., an eclipse that diminishes the amount of received radiation, for the minus sign
and a magnification relativistic eclipse for the plus sign. In the limit that occurs when the
module m → 1, a single squared pulse is obtained, and when m → 0 occurs, a sinusoidal
curved profile is obtained.

To model the obtained periodicity on the light curves of Mrk 501 shown in the previous
sections, we built a C program capable of dealing with the expectations of an eclipse
fingerprint produced on a long-term light curve based on a modification of Equation (6).
The program has as free parameters, the amplitude, A, of the eclipse, the duration time, te,
of the eclipse, the quiescent duration time, tq, when the eclipse is not occurring and the
number of occurrences of the eclipse, n. We chose the statistical average ⟨ f ⟩ as the zero or
quiescent flux of the light curve. A set of artificial examples of these eclipses is presented
in Figure 7.

F
lu
x

Time

Figure 6. The illustration shows a black hole orbiting a central spherical source of light that eclipses
the radiation detected by an observer. For simplicity, and in order to amplify the magnification effect
detected by the observer, the example shown in the figure has the line of sight of the observer within
the plane of orbit. The right plot shows the radiation flux detected by the observer. It consists of a
numerical simulation of a Schwarzschild black hole orbiting a fixed, spherical source of light. Over an
orbital period, the passage of the black hole through the line of sight of the observer magnifies the flux
detected. The plotted flux and time are normalized to numerical units for a spherical source of radius
five emitting isotropic radiation, a Schwarzschild radius of the black hole of one and an orbit of radius
thirty. The ray-tracing technique used for this simulation was performed using a squared screen
normal to the line of sight at a distance of one thousand. A video of this numerical simulation can be
found at https://archive.org/details/blackhole_magnification, accessed on 15 March 2024, and it was
produced using a GNU General Public License (GPL) code named aztekas-shadows, which is under
development and will eventually be available at https://aztekas.org, accessed on 15 March 2024,
copyright ©2020 Gustavo Magallanes-Guijón, Sergio Mendoza and Milton Jair Santibañez-Armenta.

The data fitting for Mrk 501 was performed using a Monte Carlo method, based on the
program mentioned in the previous paragraph. Random seeds were used for the unknown
parameters of the program, using 106 attempts for each light curve for Gaussian noise.
Table 6 shows the results of the fit for each waveband.

Table 6. The table shows the best fit of the eclipse model using a Monte Carlo method for the
multiwavelength data of Mrk 501. The columns represent electromagnetic wavebands, the eclipse
amplitude, A, the elliptic Jacobi function module, m, the duration time of the eclipse, te, the interval of
time where the eclipse is not occurring, i.e., the quiescent time, tq, the number of times, n, the eclipse
occurred, the total periodicity, p := te + tq, the mean value of the flux, ⟨ f ⟩, and the dimensionless
brightness magnification produced via the eclipse A/⟨ f ⟩.

Band A m te tq n p ⟨ f ⟩ A/⟨ f ⟩
Days Days Days

Radio 0.09 ± 0.04 0.85 ± 0.2 88.33 ± 2.83 130.20 ± 12.77 16.43 ± 1.80 218.53 ± 15.6 1.11 ± 0.022 0.08 ± 0.04
Optical 1.18 ± 0.02 0.14 ± 0.21 89.76 ± 3.60 133.18 ± 0.09 35.03 ± 0.43 222.94 ± 3.69 13.48 ± 1.34 0.08 ± 0.01
X-rays 0.99 ± 0.44 0.82 ± 0.02 89.37 ± 0.27 137.05 ± 3.61 19.96 ± 0.51 226.43 ± 0.41 2.46 ± 0.68 0.40 ± 0.29
γ-rays 0.99 ± 0.07 0.20 ± 0.17 86.25 ± 0.32 142.10 ± 4.45 17.69 ± 0.41 228.36 ± 4.77 0.13 ± 0.48 7.30 ± 26.65

https://archive.org/details/blackhole_magnification
https://aztekas.org
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Figure 7. The figure shows plots of an artificial eclipse that occurs two times. The software that
produced them is described in Section 3.4 and bears the copyright ©2022 Gustavo Magallanes-
Guijón and Sergio Mendoza. From top to bottom, different values of the Jacobi elliptic function
m = 0.9, 0.999, 0.99999 were chosen and for all plots with the duration time of the eclipse, te = 2,
for a quiescent time, tq = 3, and an amplitude, A = 1. The left column shows relativistic eclipses
that produce magnification, which correspond to a plus sign in the simplified Equation (6), and the
right column represents a standard, non-relativistic eclipse, showing the diminishing of the radiation
represented by a minus sign in the same equation.

4. Discussion

A different analysis of the long-term multiwavelength (from radio to γ-rays) light
curves of Mrk 501 show a common achromatic periodicity of ≲229 d. The Monte Carlo
fitting technique, assuming a relativistic eclipse as the cause of this periodicity, shows a
periodicity of ∼224 d. The eclipse is produced by a secondary supermassive black hole
orbiting the primary supermassive black hole, i.e., about the central engine of Mrk 501. The
reasoning for this conclusion is summarized in the following paragraphs.

The periodicities found with the RobPer and L-S algorithms described in Section 3.1
are all consistent in all frequencies of Mrk 501 with average values in radio, optical, X-rays
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and γ-rays, respectively, given via 228.03, 226.77, 223.20 and 238.90 days, according to the
results of Table 2. The mean value for these periodicities is 229.225 d.

With the use of the VARTOOLS software described in Section 3.2, we found that, for the
AoV, AoV-h, BLS and DFT routines, the periodicity value lies in the intervals 226.73–229.2,
219.7–228, 220.960–240.404 and 222.374–242.818 days, respectively, according to the results
presented in Figures 3 and 4.

The fact that the color of the signal noise in the light curves of Mrk 501 presented
in Section 3.3 is pink means that, for each particular waveband, there is a robust oscilla-
tion (Brownian noise color) with a periodicity accompanied by a random signal (white
noise color).

Due to the achromatic nature of the found periodicity of ≲229 d, we modeled this
periodicity as a relativistic eclipse caused by an orbiting supermassive black hole about
the central engine of Mrk 501. The results of Table 6 show that this model is quite coherent
in the fitting of the long-term multi-frequency light curves. The only small inconsistency
found is with the dimensionless brightness magnification A/⟨ f ⟩ presented in X-rays and
more prominent in γ-rays. This is most probably due to the large errors reported in γ-rays
and the large gaps that appear in the X-ray light curve. Figure 8 shows a time-folding
of the multi-frequency light curves with the corresponding eclipse function using the
results of Table 6. The shaded region represents the time duration, te, of the eclipse. The
dotted horizontal lines represent a 1σ significance level. It is important to note that the
radio, optical and X-ray panels in Figure 8 do not contain all the used data points at a 3σ
confidence level. In other words, they represent zooming in to the light curves in order to
emphasize the detected eclipse. The large error bars in the γ-ray make the bump on the
eclipse function cross the 3σ confidence level.

As mentioned in the introduction, shockwave interactions and motions inside the jet
could cause periodic oscillations on the light curves, and although the periodicity in this
case may appear, in principle, as an achromatic effect, it is extremely unlikely that this is
the case for Mrk 501 since the reported amplitudes, A, in Table 6 are quite similar to one
another, a property unlikely to occur in periodic shock wave formation and interactions
due to the complexity of the radiation produced at each particular frequency.

In this article, we found an achromatic periodicity of ∼224 d in the radio, optical, X-
and γ-rays light curves of Mrk 501, which we modeled as an eclipsing event produced by a
massive (secondary) supermassive black hole orbiting the (primary) supermassive black
hole of Mrk 501. Since the eclipse is produced by a relativistic object (the secondary black
hole), the radiation brightness is magnified (contrary to what occurs in, e.g., a solar eclipse
on Earth).

Using the results of our eclipse model in Table 6 and Kepler’s third law for a circular
orbit given via

v =
rorbit

p
=

√
GMprim

rorbit
, (8)

where v is the velocity of the orbiting test mass (secondary black hole), rorbit and p are the
radius and period of the orbit, Mprim is the mass of the central supermassive black hole
and G represents Newton’s constant of gravitation, the following conclusions can be drawn
about the results obtained in this article:

• The mass of the central (primary) black hole in Mrk 501 is Mprim ∼109 M⊙ [65], which
means that its gravitational radius is rg-prim ∼20 au.

• The radius of the orbit of the eclipsing (secondary) binary black hole is rorbit ∼200 au ∼
10 rg-prim.
Using a full relativistic approach for Schwarzschild’s space–time, Equation (8) can be
written as follows [66]:

v2 =
1
2

c2(rg-prim/rorbit
)(

1 − 3rg-prim/2rorbit
)
, (9)
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The above equation is cubic for the radius rorbit, for which the only real solution is
given via the following:

rg-prim/r =
(

A
√

1 + A
)1/3

− A/
(

A
√

1 + A
)1/3

, (10)

where
A := r2

g-prim/c2 p2. (11)

By using the same input values as the ones we used for the non-relativistic Kepler
formula, we obtain rorbit ∼5rg-prim, which is of the same order of magnitude as the
10rg-prim that we obtained with the simple Kepler relation.

• The orbital period of the eclipsing binary black hole is ∼224 d.
• The orbital velocity of the eclipsing binary black hole is ∼0.3% of the speed of light,

i.e., ∼3 × 106 km/h.
• The brightness magnification of the radiation produced by an eclipse due to the

secondary black hole is ≳10%.
• The coalescence time of the binary system is approximately given via the following [67]:

tcoal ≈
1
50

c5

G3
rorbit

M2
primMsec

∼ 108yrs
(Msec/M⊙)

, (12)

where Msec ( ≪ Mprim) is the mass of the secondary or eclipsing black hole. Since
the periodicity found corresponds to a few decades of observation—meaning that the
orbit is sufficiently stable—it is reasonable to assume that tcoal ≳ 103, which means
that the mass of the secondary black hole Msec ≲ 105M⊙.

• The results of (9) imply that the orbit of the secondary black hole is half the value ob-
tained from the Newtonian calculation, and so its orbital frequency is about
23/2 = 2.83∼3 its Newtonian value. Since the frequency, f , of the of the binary’s
quadrupolar gravitational waves is about a factor of 2 larger than the orbital fre-
quency (see, e.g., [68]), then

f ∼ 6
√

GM/r3
orbit , (13)

where the total mass of the binary system is given via M = Mprim + Msec ≈ Mprim. In
other words,

f ∼ 6 × 105

(
M⊙

Mprim

)
Hz, (14)

which, for a value of Mprim∼109M⊙, yields f∼6 × 10−4 Hz. This suggests that the
frequency of the emitted gravitational waves is just above 0.1 mHz, which is within
the range of the forthcoming LISA space-based interferomenter, and as such, the
prediction of a binary black hole system in Mrk 501 should be considered a science
target for future LISA observations.

The magnification µ of the radiation is the ratio of the Einstein radius, θE, to the
distance, β, from the line of sight connecting the observer to the lens [69]. Since the
secondary eclipsing black hole mass ∼105M⊙, then θE∼10−8, and so, in order to get a
magnification of µ = 1.1, then β ⪆ 10−8. In other words, it would seem that the primary
and secondary black holes should be quite well aligned with our line of sight. However,
since Mrk 501 is a blazar, we are observing the source within an angle of no more than
30◦ from the emitted jet (in fact, for Mrk 501, the observing angle is between 15◦ and
25◦, as reported by Giroletti et al. [70]), and so the radiation would be a combination
of the radiation processes occurring close to the central engine plus the relativistic jet.
This extended emission from the relativistic jet means that the chances of having an 10%
amplification increase.
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Figure 8. From top to bottom, the figure shows 224 d folded light curves for radio, optical, X- and
γ-rays. The solid curves are the best fit eclipse model described in Section 3.4 constructed using the
results of Table 6. The shaded zone in each panel represents the duration of the eclipse. The dotted
horizontal lines represent the 1σ significance level.
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