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Abstract: The classification of variable stars is essential for understanding stellar evolution and
dynamics. With the growing volume of light curve data from extensive surveys, there is a need for
automated and accurate classification methods. Traditional methods often rely on manual feature
extraction and selection, which can be time-consuming and less adaptable to large datasets. In this
work, we present an approach using a convolutional neural network (CNN) to classify variable
stars using only raw light curve data and their known periods, without the need for manual feature
extraction or hand-selected data preprocessing. Our method utilizes phase-folding to organize the
light curves and directly learns the variability patterns crucial for classification. Trained and tested on
the Optical Gravitational Lensing Experiment (OGLE) dataset, our model demonstrates an average
accuracy of 88% and an F1 score of 0.89 across five well-known classes of variable stars. We also
compared our classification model with the Random Forest (RF) classifier and showed that our model
gives better results across all of the classification metrics. By leveraging CNN, our approach does not
need manual feature extraction and can handle diverse light curve shapes and sampling cadences.
This automated, data-driven method offers a powerful tool for classifying variable stars, enabling
efficient processing of large datasets from current and future sky surveys.

Keywords: variable star; light curve; machine learning; convolutional neural network; random forest

1. Introduction

Variable stars play a crucial role in expanding our understanding of the universe,
contributing to various fields including stellar astrophysics, galactic astrophysics, and
cosmology. They have been instrumental in key discoveries, such as determining distances
to galaxies, measuring the Hubble constant, studying stellar evolution, investigating plane-
tary formation, and studying the chemical composition of different galactic regions [1–11].
To study these stars effectively, modern astronomical surveys have provided massive
datasets. With the advent of advanced astronomical instrumentation and large-scale time-
domain surveys like the Optical Gravitational Lensing Experiment (OGLE) [12–15], the All-
Sky Automated Survey (ASAS) [16], the Catalina Real-Time Transient Survey (CRTS) [17,18],
the Zwicky Transient Facility (ZTF) [19,20], and NASA’s Kepler mission [21], the volume
of time-series data available has surged dramatically. These datasets, consisting of light
curves that capture the brightness of stars over time, are invaluable for studying variable
stars. However, the sheer quantity and complexity of these data necessitate automated
classification methods. The automatic classification of variable stars allows astronomers
to maximize the scientific return from these surveys, especially as manual classification is
impractical given the sheer volume of data.

Traditional approaches to classifying variable stars often rely on extracting features
from the light curves, such as statistical descriptors, period analysis, and Fourier decompo-
sition parameters [22]. These features condense the information of each light curve into
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into feature sets for machine learning (ML) classification. While effective, feature extraction
methods can be computationally expensive and are often tailored to specific survey data,
limiting their adaptability. Furthermore, these approaches may struggle with light curves
that are sparse, noisy, or unevenly sampled due to observational constraints, making the
classification process more complex and less reliable across different datasets.

In recent years, there has been a significant increase in the development of automated
methods for classifying variable star light curves. A prevalent strategy for automated
classification involves extracting periodic and non-periodic features from light curves and
inputting them into ML classifiers. Periodic features typically include period and Fourier
decomposition parameters, while non-periodic features are often statistical parameters.

For instance, an automated method by Debosscher et al. [23] utilized 28 features
derived from the Fourier analysis of time-series data, focusing primarily on amplitudes,
phases, and frequencies obtained from the Fourier fit, which were then fed into Gaussian
Mixture and ML classifiers for supervised learning. Similarly, Kim et al. [24] focused on
detecting Quasi-Stellar Objects (QSOs) within the MACHO [25] dataset. They found that
the Random Forest (RF) [26] classifier outperformed the Support Vector Machine (SVM) [27]
using 11 features. In the same year, Richards et al. [28] reached similar conclusions after
evaluating 53 features by combining the periodic features with the non-periodic features
proposed by Butler and Bloom [29]. They demonstrate the use of various ML-based classi-
fiers for the automatic classification of a large number of variability classes. Additionally,
they explored hierarchical classification methods, employing hierarchical single-label clas-
sification (HSC) and hierarchical multi-label classification (HMC) with RFs. Kim and
Bailer-Jones developed a package called UPSILoN, which extracts 16 features from light
curves and classifies them using the RF technique [30]. More recent studies continue to
employ these techniques to identify specific classes of variability [31,32].

Feature-based classification methods have demonstrated high accuracy but inherently
assume that a sufficient number of timestamps are available for a given light curve. For in-
stance, UPSILoN suggests that a light curve should have over 80 data points to achieve
satisfactory precision and recall. However, many light curves from astronomical surveys
are noisy and contain temporal gaps due to observational constraints and survey design.
Additionally, differences in cadence among various surveys can make the feature extraction
and classification processes heterogeneous and survey-dependent.

Instead of using hand-crafted features, recent studies have shifted focus towards lever-
aging raw time-series data within advanced deep learning (DL) frameworks. For example,
Mahabal et al. [33] processed raw light curves to generate dm − dt maps, which captured
the differences between magnitudes (dm) and corresponding time-stamps (dt) for each
pair in the light curve. These differences were binned into fixed dm and dt ranges to create
uniform attributes for each light curve, which were then mapped into a two-dimensional
image and fed into a CNN for training.

Naul et al. [34] utilized a recurrent neural network (RNN)-based autoencoder for un-
supervised feature extraction, effectively capturing essential information from light curves.
They leveraged latent features from the encoding layers as a compressed representation
with reduced dimensionality, addressing the challenge of variable light curve lengths that
many ML/DL classifiers face. They observed that working with period-folded light curves
enhances the accuracy of the encoding–decoding process, allowing for more refined feature
extraction. Consequently, they employ latent features from the folded light curves for
further classification through an Rf model.

Aguirre et al. [35] proposed generating two vectors: one for time differences and
another for magnitude differences, derived from each light curve. These vectors were
combined into a matrix, which was input into a 1D CNN for training. In this setup, the time
and magnitude vectors act as individual channels, similar to the way color channels
function in image data. Carrasco-Davis et al. [36] applied a recurrent convolutional neural
network (RCNN) to image sequences, achieving a recall of 94 percent on data from the
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High Cadence Transient Survey (HiTS). Likewise, Becker et al. [37] implemented RNNs to
classify the main types of variability, reaching an accuracy of 95%.

To address the challenge of static classification models, which require re-training
as new data become available, Zorich et al. [38] introduced a probabilistic classification
model for light curves that accommodates a continuous stream of data. They applied this
approach to data from the CoRot, OGLE, and MACHO catalogs.

In this work, we propose a neural network that can leverage the vast amount of data
available from surveys, while reducing the preprocessing needed to perform an automatic
classification of variable stars. Our approach does not require feature computation, can
scale to vast amounts of data, and only needs the known periods alongside the light curves.
We present our experimental analysis using the OGLE dataset.

The rest of the paper is organized as follows. In Section 2, we describe the data used
in this work for training and testing, the classification models, and the preprocessing steps
required for CNN implementation. Section 3 provides information about the structure of
the used neural network. In Section 4, we present and discuss results. Section 5 concludes
the article.

2. Dataset and Preprocessing
2.1. Optical Gravitational Lensing Experiment (OGLE)

We obtained the time-series data from the OGLE survey, which is one of the most
comprehensive datasets available [12–15]. It operated in its third phase from 2001 to 2009.
This phase focused on the Galactic bulge, disk, and Magellanic Clouds, classifying over
450,000 variable stars. Observations were conducted in the V and I bands, with the I band
having ten times more observations than the V band; therefore, we only used the I band.
This catalog is considered highly reliable, as all objects were confirmed by experts, and the
light curves are well defined with high signal-to-noise ratios in most observations.

We only selected a few of classes which have an adequate number of distinct light
curves (∼500 or more) for the stable training of the classification model. Rather than
attempting to compile all known variable star classes, as attempted with limited success
by [23], we focused our research on a subset of five well-studied classes. The five chosen
classes are Classical Cepheids, δ Scuti, Mira, RR Lyrae and Eclipsing Binaries. Typical
phase-folded light curves for each class are presented in Figure 1.
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Figure 1. Example of variable stars in the Classical Cepheids, δ Scuti, Mira, RR Lyrae and Eclipsing
Binaries selected in the training and testing set.



Galaxies 2024, 12, 75 4 of 13

To ensure that our network has enough data points to uncover correlations and extract
meaningful features for variability classification, we limited our selection to light curves
with at least 500 data points. From the OGLE database, which includes 165,105 light
curves for Eclipsing Binaries, we only chose 50,000 to prevent their overwhelming influence
in training and to keep computation manageable (although this class still had a larger
representation than the other four classes). Our final dataset from OGLE comprised a total
of 122,229 light curves. A breakdown of the selected light curves for each variability class
is shown in Table 1, with Figure 2 providing a visual representation to better illustrate the
dataset. Additionally, we removed single-point outliers that deviated by more than 3σ,
as these were likely due to instrumental effects.

Table 1. Total numbers of light curves per class in our dataset.

Class Representation Number
Classical Cepheids CEP 4776

δ Scuti dScuti 20,000
Mira Mira 15,701

RR Lyrae RR Lyr 31,752
Eclipsing Eclipsing 50,000

Classical Cepheids

3.9%

 Scuti

16.4%

Mira
12.8%

RR Lyrae

26.0%

Eclipsing

40.9%

Figure 2. Distribution of light curves per class in the dataset. Eclipsing variables dominate with 40.9%
of the total light curves, followed by RR Lyrae (26%), δ Scuti (16.1%), Mira (12.6%), and Classical
Cepheids (3.9%).

2.2. Padded Phase-Folded Light Curves

The primary reason for choosing a 1D CNN model is that light curves are represented
as one-dimensional sequences, and altering or reordering them can risk losing valuable
information. For periodic variability, as we observe in our dataset where periods are known,
using a phase-folded light curve offers greater insights than the raw data. This is illustrated
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in Figure 3, showing a Classical Cepheid light curve from the OGLE survey. While the left
panel displays the raw light curve without a clear pattern, the right panel presents a distinct
sinusoidal pattern, highlighting the periodic nature. Consequently, the phase-folded light
curve is more informative and enhances the model’s ability to learn meaningful patterns.

We propose a 1D CNN model that utilizes phase-folded light curves as input. However,
this classification model requires all input sequences to have uniform lengths. To achieve
this, we employed a strategy of zero-padding at the end of the light curves to standardize
their lengths. If the length of a light curve exceeded a predefined threshold, it was truncated
accordingly. Conversely, for light curves shorter than the threshold, zero-padding was
applied to extend them to the required length. This preprocessing step ensures consistency
across all phase-folded light curve inputs for the model. The next consideration was deter-
mining the appropriate threshold length for the light curves. This length must be sufficient
to preserve the critical information within the light curves, ensuring that they remain
informative for classification. Simultaneously, it should not be excessively long, as this
would increase computational complexity and processing time. Finding the right balance
between preserving information and optimizing computational efficiency is essential for
the model’s performance.
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Light Curve ID: OGLE-SMC-CEP-4998

Figure 3. Light curve for a Classical Cepheid from the OGLE survey. The left panel shows the original
light curve whereas the right panel shows the phase-folded light curve with an estimated period of
0.34 days. The light curve ID is mentioned as the title of the plot.

To determine the appropriate threshold length, we examined the distribution of
the light curve lengths in our dataset, as shown in Figure 4. The most frequent length,
representing the typical number of observations per object, is 1150. We recognize that this
length is sufficient for the model to learn meaningful patterns while being short enough to
avoid excessive computational overhead.
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Figure 4. Distribution of light curve lengths (number of observations) in the dataset. The inset
highlights the most common range of observations, with the peak occurring around 1150 observations.

3. Convolutional Neural Network

Convolutional neural networks (CNNs or ConvNets) [39–41] are widely recognized as
powerful tools for pattern recognition in various astronomical data domains [42–44]. They
have been extensively employed in astronomy for both classification and regression tasks.
Numerous studies have demonstrated that deep learning frameworks, such as CNNs, often
outperform traditional ML algorithms [45,46].

A CNN is a type of deep neural network specifically designed for feature extrac-
tion and pattern recognition in image data. It comprises an input layer, an output layer,
and several hidden layers, including convolutional, activation, pooling, fully connected,
and normalization layers. Convolutional layers apply filters to input data, generating
feature maps that are passed to subsequent layers. Pooling layers, such as MaxPooling,
reduce the dimensionality of feature maps by selecting the maximum value in a region,
thereby, aiding in generalization and accelerating the training process. Alternatively, Av-
erage Pooling uses the average value within the pooling window. Fully connected layers
interpret the extracted features from previous layers, with each neuron connected to every
activation from the preceding layer. Normalization layers help to stabilize learning by
adjusting activations, which also prevents overfitting.

In this work, we utilized the CNN architecture described in [47], as illustrated schemat-
ically in Figure 5. Our CNN model consists of seven convolutional blocks followed by two
dense layers, with a softmax activation function applied at the output layer. Each convolu-
tional block includes a 1D convolution layer with ReLU activation and a 1D MaxPooling
layer. The Conv1D layer uses a kernel size of 3, while the MaxPooling1D layer has a pool
size of 2, and both layers use the same padding. The convolutional layers are configured
sequentially with filter sizes of 128, 64, 32, 32, 32, 32, and 32. The dense layers comprise
64 neurons in the hidden layer and 5 neurons in the output layer, activated by Softmax.
This model has a total of 60,517 parameters. We implemented and trained the CNN using
TensorFlow 2.1 [48] (Google Brain, Mountain View, CA, USA), optimizing it with the Adam
optimizer [49] at a learning rate of 0.001 and a batch size of 32. Categorical cross-entropy
was chosen as the loss function. Training was conducted for 100 epochs, with each epoch
taking approximately 8 s.
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Convolution block
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Figure 5. Schematic diagram showing the architecture of CNN.

4. Results and Discussion

Our experiments aimed to evaluate the classification accuracy. We tested our model
and compared it with RF. For these models, we present the results obtained by using 80%
of the labeled set as a training set and the remaining 20% as a testing set, preserving the
percentage of samples for each class in the original labeled set. For training the classification
model described in Section 3 and RF, we use a single NVIDIA GeForce RTX 4070 Ti GPU
with 12 GB of video memory. The RF classifier wass implemented with default parameters
via the Scikit − learn library [50].
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Tables 2 and 3 list four different scores: accuracy, precision, recall, and F1 score. For an
individual class, these scores are defined as:

Accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi
(1)

Precisioni =
TPi

TPi + FPi
, (2)

Recalli =
TPi

TPi + FNi
, (3)

F1 scorei = 2 × Precisioni × Recalli
Precisioni + Recalli

, (4)

where TPi denotes the count of true positives, FPi represents the count of false positives,
and FNi indicates the count of false negatives for a specific class i. Although the labeled
dataset exhibits significant imbalance, each class is considered equally important; therefore,
we calculated averaged scores:

Accuracyaverage =
1

ncl

ncl

∑
i=1

Accuracyi, (5)

Precisionaverage =
1

ncl

ncl

∑
i=1

Precisioni, (6)

Recallaverage =
1

ncl

ncl

∑
i=1

Recalli, (7)

F1 scoreaverage =
1

ncl

ncl

∑
i=1

F1 scorei. (8)

where ncl represents the total number of classes.

Table 2. Classification metrics (mean ± standard deviation) of our CNN model. The values and
errors were obtained from 5 runs using the k-fold cross-validation method.

Class Accuracy, % Precision Recall F1 Score

CEP 81.59 ± 0.64 0.84 ± 0.01 0.82 ± 0.01 0.83 ± 0.01
RR Lyr 85.11 ± 0.89 0.87 ± 0.01 0.85 ± 0.01 0.86 ± 0.01
Mira 98.05 ± 0.38 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

dScuti 80.75 ± 1.84 0.87 ± 0.02 0.81 ± 0.02 0.84 ± 0.01
Eclipsing 94.28 ± 0.39 0.89 ± 0.01 0.94 ± 0.00 0.92 ± 0.01

Average 87.96 0.89 0.88 0.89

Table 3. Classification metrics (mean ± standard deviation) of RF. The values and errors were
obtained from 5 runs using the k-fold cross-validation method.

Class Accuracy, % Precision Recall F1 Score

CEP 70.56 ± 1.56 0.74 ± 0.02 0.71 ± 0.02 0.72 ± 0.01
RR Lyr 75.67 ± 0.29 0.77 ± 0.01 0.76 ± 0.01 0.76 ± 0.01
Mira 94.11 ± 0.43 0.98 ± 0.01 0.94 ± 0.01 0.96 ± 0.01

dScuti 58.20 ± 0.65 0.92 ± 0.01 0.58 ± 0.01 0.71 ± 0.01
Eclipsing 90.92 ± 0.19 0.77 ± 0.01 0.91 ± 0.01 0.84 ± 0.01

Average 78.69 0.84 0.78 0.80
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For the case of our classifier, the averaged accuracy, precision, recall, and F1 score have
a value of 0.88, 0.88, 0.89, and 0.89, respectively. On the other hand, for the RF classifier, the
averaged accuracy, precision, recall, and F1 score are, respectively, 0.79, 0.78, 0.84, and 0.80.
The results demonstrate that our model consistently outperforms the RF classifier across
most classes in terms of accuracy, precision, recall, and F1 score. Detailed results for each
class are presented below:

• Cepheids (CEP): Our model achieved an accuracy of 81.59%, significantly higher than
RF’s 70.56%. Precision and recall were also improved with our model at 0.84 and 0.82,
compared to 0.74 and 0.71 in RF, respectively. This led to an overall better F1 score of
0.83 versus 0.72 for RF.

• RR Lyrae (RR Lyr): For RR Lyrae, our model shows an accuracy of 85.11%, compared
to 75.67% for RF. Our model also performed better in terms of precision (0.87 vs. 0.77)
and recall (0.85 vs. 0.76), resulting in a higher F1 score of 0.86 versus 0.76 for RF.

• Mira: Both models demonstrated high performance for Mira, but our model still had
an edge with an accuracy of 98.05% compared to 94.11% for RF. Both classifiers had
similar precision (0.99 vs. 0.98), but our model showed better recall (0.98 vs. 0.94).
This led to a slightly higher F1 score of 0.98 for our model compared to 0.96 for RF.

• δ Scuti (dScuti): Our model performed significantly better for δ Scuti stars, with an
accuracy of 80.75% compared to 58.20% for RF. While RF had slightly better precision
(0.92 vs. 0.87), our model outperformed RF in recall (0.81 vs. 0.58), resulting in a higher
F1 score of 0.84 compared to 0.71 for RF.

• Eclipsing Binaries: For Eclipsing Binaries, our model achieved an accuracy of 94.28%,
higher than RF’s 90.92%. Both precision and recall were better with our model at 0.89
and 0.94, compared to RF’s 0.77 and 0.91. This led to a higher F1 score of 0.92 versus
0.84 for RF.

Figures 6 and 7 present the confusion matrices obtained from one of the runs of our
model and the RF classifier, respectively. The confusion matrix of our model demonstrates
that our classifier successfully recovered 88% of the true labels on average, with inter-class
contamination rates below 11%. The highest confusion was observed between δ Scuti and
Eclipsing variables, with 10.73% of δ Scuti stars being misclassified as Eclipsing Binaries.
The misclassification is likely due to the similarities in the light curves of δ Scuti stars and
Eclipsing Binaries, particularly in cases where their periods overlap. Both δ Scuti stars
and EW-type Eclipsing Binaries exhibit periodic variability with relatively short periods
and moderate amplitude changes. δ Scuti stars pulsate due to internal pressure-driven
mechanisms, while Eclipsing Binaries experience periodic dips in brightness due to mutual
eclipses of their stellar components. However, the smooth, sinusoidal-like light curve of δ
Scuti stars can resemble the symmetric light curves of Eclipsing Binaries, especially Contact
Binaries. This overlap in light curve features and period ranges contributes to the difficulty
in distinguishing between the two types. This finding is consistent with the results reported
by [37], where their classifier exhibited a 17.76% confusion rate between these classes.

Another notable misclassification occurred between Cepheids and RR Lyrae stars,
where our classifier showed a misclassification rate of 10.27%. This confusion can be
attributed to the similarities in the shape of their light curves, especially for short-period
Cepheids, whose variability features can resemble those of RR Lyrae stars. Both types of
stars exhibit asymmetric light curves with a sharp rise and a slower decline, which can lead
the classifier to confuse them, particularly when their periods and amplitudes overlap. One
contributing factor to this misclassification is the inclusion of all types of RR Lyrae stars
in our dataset, particularly RRc (first-overtone RR Lyrae), which are often confused with
first-overtone Cepheids. Both RRc stars and first-overtone Cepheids exhibit relatively short
periods and similar light curve shapes, increasing the likelihood of confusion. Since the
underlying pulsation mechanisms for both types are driven by the same physical processes,
distinguishing between them can be challenging for automated classification systems [51].
This misclassification pattern was also observed in the findings of [37,52], where a similar



Galaxies 2024, 12, 75 10 of 13

misclassification rate of 21% and 20% was reported. Remarkably, δ Scuti variables were
classified by our method with ∼25% higher accuracy than with the RF classifier.
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Figure 6. Classification results of our CNN model from one of the runs.
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Figure 7. Classification results of RF from one of the runs.
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For the case of RF, we obtained an average accuracy of 79%, implying significant
confusion between classes. In particular, RF missclassified 29.9% of δ Scuti and 21.31% of
RR Lyrae as Eclipsing and 18.01% of Cepheids as RR Lyrae.

The significant performance difference between our CNN model and the RF classifier
can be attributed to their distinct feature extraction methodologies. CNNs automatically
learn relevant features directly from raw light curves through convolutional layers, cap-
turing complex patterns such as local variations in flux and intricate temporal behaviors.
In contrast, RF relies on pre-defined features, limiting its ability to fully leverage the rich
temporal information. For instance, the CNN’s capacity to discern subtle differences in
variability types, such as those between δ Scuti and Eclipsing Binaries, leads to better
classification accuracy. In contrast, RF classifiers rely on manually engineered features like
period, amplitude, and basic flux variations, which limit their ability to fully leverage the
detailed temporal information contained in the light curves. This advantage reflects a more
robust understanding of stellar variability processes, suggesting that the CNN model is
better suited for this classification task.

As a future scope of this work, we will investigate the use of hierarchical classification
methods to classify variable stars into groups and subgroups. We will also test the model
on different datasets like TESS, Kepler, and WISE.

5. Conclusions

In this article, we propose a new CNN-based classifier for recognizing the type of
variable stars based on light curves. This method does not require feature computation, can
scale to vast amounts of data, and only needs the known periods alongside the light curves.
Trained and tested on the OGLE dataset, our model demonstrates an average accuracy of
88% and an F1 score of 0.89 across five well-known classes.

In addition, we compared our classification model with a state-of-the-art RF classifier
and showed that our model gives better results across all classification metrics. In particular,
the improvements in accuracy, precision, recall, and F1 score are ∼9%, 0.05, 0.10, and
0.09, respectively.
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