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Abstract: I discuss here the progress made in the last decade on a few of the key open
problems in GRB physics. These include (1) the nature of GRB progenitors, and the
outliers found to the collapsar/merger scenarios; (2) jet structures, whose existence became
evident following GRB/GW170817; (3) the great progress made in understanding the
GRB jet launching mechanisms, enabled by general-relativistic magnetohydrodynamic
(GR-MHD) codes; (4) recent studies of magnetic reconnection as a valid energy dissipation
mechanism; (5) the early afterglow, which may be highly affected by a wind bubble,
as well as recent indication that in many GRBs, the Lorentz factor is only a few tens,
rather than a few hundreds. I highlight some recent observational progress, including
the major breakthrough in detecting TeV photons and the on-going debate about their
origin, polarization measurements, as well as the pair annihilation line recently detected in
GRB 2210094, and its implications for prompt emission physics. I probe into some open
questions that I anticipate will be at the forefront of GRB research in the next decade.
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1. Introduction

Since the realization in the early 1990s that gamma-ray bursts (GRBs) are of cosmolog-
ical origin, and therefore release a huge amount of energy, typically 10°°-10% erg, in the
form of gamma rays over a duration of a few seconds, they have challenged the boundaries
of physics and have fascinated the imagination of many astronomers. They further show
an extremely rich phenomenology, with broadband spectra that extend over the entire elec-
tromagnetic spectrum—from radio to the TeV range—and with a highly variable lightcurve
(down to 0.01 s in some cases). As no two GRBs are identical, the data challenge both
observational campaigns and theoretical models (see, e.g., [1-4] for recent reviews).

Although naturally the field is maturing, interestingly many fundamental questions
about the underlying nature and physics of GRBs still remain unsolved. In fact, there are
many open problems whose answers were unknown, or at least there was not a consensus
on, 10 years ago, and still are today. Nonetheless, clearly there has been a huge volume of
works (according to NASA ADS, about 18,000 papers whose titles contain “GRB” appeared
since 2014), which have addressed some of the questions, while opening new ones. It is
therefore useful to look at the big open questions that have occupied researchers in this
field, and the progress that has been made in the past decade. This enables one to look into
the future, and foresee the progress that we hope and expect to make in the coming years.

Phenomenologically, GRBs are traditionally classified into two categories: “short”
(or short/hard) GRBs, with an average duration of a few tenths of a second; and “long”
(or long/soft) GRBs, with an average duration of 20 s. The dividing line is typically found
at ~2 s [5-9]. Furthermore, there is evidence for a sub-class of “ultra-long” GRBs [10,11],
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whose duration exceeds 10,000 s. It is unclear whether these “ultra-long” GRBs form a
separate population with distinct physical properties or not. For example, the ultra-long
GRB220627A did not show any different properties than long GRBs (in terms of jet break or
ambient density) [12], supporting the idea that its progenitor is similar in nature to other,
more standard long GRBs.

Despite this huge variation in the GRB duration, as well as the X- and gamma-ray
lightcurves, with some GRBs being very “spiky” and others show a much smoother lightcurve,
all GRBs share some common spectral features. These include a distinct observed spectral
peak in the sub-MeV energy range, and spectra that are often modeled (even if crudely, see
below) as a “broken power law” [13], with distinct low- and high-energy spectral slopes. In
recent years, there has been evidence for an additional high-energy component that extends,
in some cases, to the TeV range, e.g., [14,15]. Furthermore, clearly all GRBs are transients,
lasting a (relatively) short duration, and no repetition has ever been found.

Interestingly enough, the basic skeleton of the theoretical understanding of GRBs had not
changed: it is the famous GRB “fireball” model [16-20]; see Figure 1. According to the “fireball”
model, a vast explosion, associated with the formation of a black hole, leads to the ejection
of material that forms a relativistic jet. There is still a debate about the role played by the
magnetic field in the jet acceleration process (see below). At a second stage, some of the jet
kinetic energy is dissipated, e.g., by internal shock waves ([20-24], and many others), magnetic
reconnection (e.g., [25-29], and many more), or other unspecified mechanisms, producing the
observed prompt emission signal. Following the dissipation, the material in the jet continues
to expand relativistically into the interstellar medium (ISM), driving a relativistic shock wave.
This shock wave, in turn, heats the ISM material, generates a magnetic field, and accelerates a
substantial fraction of the particles to a non-thermal distribution above the thermal peak. During
the acceleration process, these non-thermal particles acquire a power-law energy distribution.
They then radiate synchrotron emission, which is the main source of the afterglow emission [30,31].
This afterglow has been routinely detected since 1997 [30,32,33].

One of the open questions that is still debatable is the role of magnetic fields in this
process. The original “fireball” model assumed a baryon-dominated outflow [16,17,34-36],
in which the gravitational energy is converted to the jet kinetic energy via neutrino—anti-
neutrino annihilation, that produces a copious number of e* pairs. The “fireball” is thus
composed of photon pairs, as well as electrons and baryons (that carry the momentum),
relics from the explosion that initiated the process. However, already in the 1990s it was
suggested that magnetic fields may play a significant role in shaping the dynamics of the
flow [25,27,37-43]. According to the “magnetized fireball” models, most of the energy is
carried in the form of the Poynting flux, which is later used in accelerating and heating
the gas via the magnetic reconnection process. Although many details are uncertain (see
below), this model has several advantages over the classical “fireball” model, and is thus
considered by many as a viable alternative. However, this is still highly debatable.
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Figure 1. Illustration showing the basic ingredients of the GRB “fireball” model. (1) The source of
energy is the collapse of a massive star (or binary merger, not shown here). (2) Part of this energy
is used in producing the relativistic jet. This could be mediated by hot photons (“fireball”), or by a
magnetic field. (3) The thermal photons decouple at the photosphere. (4) Part of the jet kinetic energy
is dissipated (by internal collisions, in this picture) to produce the observed 7 rays. (5) The remaining
kinetic energy is deposited into the surrounding medium, heating it and producing the observed
afterglow. Figure is taken from [44].

The question of the role played by the magnetic field is related to the nature of the
explosion that triggers this chain of events. Indeed, the nature of the explosion itself is
also somewhat uncertain. The two leading models are the collapse of a massive star (the
so-called “collapsar” model; [45-47]), and the merger of binary stars [48,49], e.g., a neutron
star (NS) and a black hole (BH). Evidence for the connection of massive star collapse with
GRBs has existed for 20 years, since the discovery of absorption lines in the afterglow of
GRB030329 [50,51]. However, as I discuss below, in recent years several outliers were found
to this seemingly clear picture.

As for the origin of short GRBs, for many years only indirect evidence connected them
with the merging of binaries. Such evidence included their observed occurrence location in
the outskirts of their host galaxies [52-55], their existence in both star forming and elliptical
galaxies, lack of association with supernovae, and their tendency to trace under-luminous
locations within their host galaxies [56]; see, e.g., [57] for a review. This changed in 2017
with the discovery of gravitational waves associated with GRB170817 [58-60]. Such a
gravitational wave signal, which preceded this GRB by 1.7 s, could only originate from the
merging of two neutron stars. This discovery, thus, served as a smoking gun proving the
merger origin of this GRB. This light-shedding event triggered an enormous amount of
observations as well as theoretical modeling, significantly promoting our knowledge of
both GRB progenitors and their jet properties, as is discussed below. I point out, however,
that this GRB was peculiar in several ways, including being 10~10* times less luminous
than typical short GRBs. This may challenge the claim of universality.

A unique observational consequence of this binary merger scenario is the rapid pro-
duction of heavy nuclei. The very high temperature during the merger event, >10'3 °K,
implies the release of a huge number of neutrons and protons. These recombine into
a-particles, which merge with free neutrons to assemble heavy seed nuclei (with nuclei
larger than an iron nucleus). These heavy nuclei then radioactively decay very rapidly,
producing bright emission on a time scale of about a day, which became known as “kilo-
nova”. The origin of the name is that the events are approximately 1000 times brighter than
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regular novae [61,62]. The discovery of a kilonova was a major success of this model [63].
Nonetheless, here too several outliers were recently found, whose origin is still a mystery. I
briefly discuss these below.

Although the basic picture of GRB formation and evolution, namely, the ‘skeleton” of
the fireball model, is well accepted by the community, many, possibly most, of the details
remain open questions, even after three decades of extensive research. GRBs represent a
very complicated environment, in which several independent processes of energy exchange
exist: from gravitational energy release that leads to an explosion, through conversion of
the explosion energy to kinetic energy in the form of a relativistic jet, and finally kinetic
energy dissipation leading to the observed radiative signal. Many of the details of each of
these processes are still actively debated in the literature. The main reason for this is that
we only see the final outcome of this complicated chain of processes —the radiative signal
(spectra and lightcurve), which varies from burst to burst, from which we try to deduce the
full physics of the entire chain.

In the past decade, a plethora of continuous streams of data have been collected, due to
a large number of telescopes that are active at all wavelengths. One interesting consequence
is that in recent years several unique bursts have been detected which challenge what is
already considered as “common knowledge” in this field. Furthermore, the continuous
flow of data serves as a great platform on which new theoretical ideas flourish.

Here, I highlight some of the big open questions, and discuss the progress made in
the past decade, with a view into the next decade. Clearly, any such list is subjective;
nonetheless, I believe that the questions I highlight here are representatives of at least the
main stream in this field today. The big problems that I would like to highlight can be
summarized as follows.

1. Thenature of the progenitor: What causes a GRB in the first place? As discussed above,
both the “collapsar” and binary merger are considered valid scenarios. However,
many of the details of the processes are still unknown, as well as the basic question of
why two such different scenarios lead to similar observational outcomes. Moreover,
as we have seen, in recent years several observations have challenged the simplified,
binary picture.

2. The jet composition and the origin of the magnetic field. While in the classical GRB
“fireball” model [18] the jet is accelerated by the radiative pressure, today there are
indications that the jet may be highly magnetized [64,65], in which case the Blandford-
Znajek process [66] may play a key role in the jet formation as well as its properties.

3. The geometrical jet structure, namely, its velocity profile, its dynamics, and evolution.
While early works mainly considered a "top-hat’ jet, neglecting a lateral jet profile,
in recent years it has become evident that GRB jets have a lateral structure, namely,
I' = T'(0) [67,68]. This affects the observed signal, which is different for observers
located at different angles to the jet axis. Furthermore, as of today there is still no
clear understanding of why GRB jets reach extremely high Lorentz factors, with I of
several hundreds in some cases, while other astronomical transients are “only” mildly
relativistic at most.

4. The nature of the energy dissipation mechanism that leads to the observed prompt
emission signal (flux, spectrum, and lightcurve) is unclear. Many early works considered
internal shocks as the key mechanism for kinetic energy dissipation [20,22,23]. However,
it was quickly realized that this process suffers from low energy conversion efficiency.
Therefore, alternative models were suggested, such as magnetic reconnection [28,69] or
dominant contributions from the photosphere [70].

5. The radiative processes that lead to the resulting radiative signal, as well as other
counterparts, such as cosmic rays, neutrinos, or gravitational waves are still debatable.
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Production of the observed signal is the final outcome of a chain of events, from
the dynamics through energy conversion, that accelerates particles in the radiative
process. Many details of these events are uncertain, and therefore there is a high
theoretical uncertainty in the expected signals.

6. The ambient medium density profile. The vast majority of early models considered
the relativistic jet to expand into either a “constant-density” environmental profile

(n(r) o« 1°) or, alternatively, a “wind” profile of the form n(r) o r—2

, resulting from
a stellar wind at constant velocity (e.g., [71,72]). However, in recent years there has
been increasing evidence that these approximations are too simplified. One naturally
expects a ‘'wind bubble’ structure around GRB progenitor stars [73-75]. Such ‘wind
bubbles’ result from stellar mass ejection prior to its terminal explosion that leads
to a GRB, and can clearly affect the observed signal during the early afterglow
phase [76-78].

7. Finally, I will mention as open questions the connection of GRBs with other objects of
interest, such as stellar evolution, star formation, host galaxies, supernovae, binary
stars, etc., which are not yet fully understood. Similarly, the connection between GRBs
and fundamental physics, such as the use of GRBs as cosmological probes [79,80],
Lorentz violation [81], etc., is a field that is still being explored.

Clearly, all these questions are related to each other, and answering one can provide
important clues to the nature of the others. However, interestingly enough, as of today
there is no firm answer to any of these questions. Here, I highlight some of the recent
developments that occurred in the past decade on addressing some of these questions, and
try to predict where the next steps will head.

2. The Nature of the GRB Progenitor

Already, in the mid-1990s, it was evident that GRBs are composed of two separate
populations: “short” (or short/hard) GRBs, with an average duration of a few tenths of a
second; and “long” (or long/soft) GRBs, with an average duration of 20 s. The dividing
line is typically found at ~2 s [5,6]. While initially, many theoretical ideas were proposed
to explain these results, they quickly converged to two theoretical models: collapse of a
massive star [45-47], and a merger of binary stars [48,49].

2.1. Long-GRB Progenitors: Qutliers to the “Collapsar” Model

In the early 2000s, direct evidence for the connection of massive star collapse with GRBs
emerged, with the discovery of absorption lines in the afterglow of GRB030329 [50,51]. Such
absorption lines are typical for core collapse supernova (known as SN type Ib/c '), and their
existence is a clear indication that the generation of long GRBs is associated with a core collapse
of a massive star. Following these discoveries, this became ‘common knowledge’ [82,83].

However, in recent years, evidence has been accumulating that the picture is more
complicated. Some GRBs that are clearly categorized as “long” GRBs, such as GRB211211A at
a redshift of z = 0.08 (Top~40 s) [84-86] or GRB230307A at z = 0.065 with Tgp~45 s [87,88]
(which is the second brightest GRB ever detected), are bright enough and close enough to
show evidence for a supernova. However, instead of detecting a supernova as expected, both
these GRBs show evidence for a kilonova, as expected from a binary merger.

For example, clear evidence for a kilonova emission was observed in GRB230307A,
starting 2.4 days after the burst and lasting for more than two months [89]. Such a signal is
a clear indication for a binary neutron star (BNS) merger origin, and is not expected when
the collapse of a massive star generates a GRB. Thus, this GRB challenges the accepted
division between the long and short-GRB populations, as well as the common belief that
long GRBs originate from the collapse of a single, massive star. Moreover, evidence for
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heavy elements, such as tellurium, generated by the r-process was reported in the JWST
lightcurve of this burst at late times, after 29 and 61 days [90]. These results therefore
provide a strong indication in favor of a BNS merger progenitor for this GRB.

Similar considerations led to the suggestion [91] that GRB211211A originated from a
binary merger. The evidence for a neutron star merger origin in GRB211211A was the excess
of optical and near-infrared emission, both consistent with the kilonova observed after
the gravitational wave detected, GW170817. However, it was argued [92] that an unusual
collapsar could explain both the duration of GRB 211211A and the r-process-powered
excess in its afterglow. These GRBs therefore are either outliers to the long-GRB population,
or possibly hint towards a new type of GRB progenitor.

2.2. Binary Merger as Short-GRB Progenitor: Final Word?

As opposed to the question of long-GRB progenitors, prior to 2017, evidence for the
association of short GRBs with binary mergers was only indirect. This included (1) the
association of short GRBs with elliptical galaxies [55], as opposed to long GRBs, which are
associated with star-forming galaxies; (2) the location of short GRBs within their host galaxies
are observed to be at an offset from the galactic center [52,54]; (3) the lack of evidence for a
supernova association; and (4) their location relative to the light—long GRBs are far more
concentrated in the very brightest regions of their host galaxies [93] than short ones [94].

This situation dramatically changed in August 2017 with the association of the short
GRB170817A to the gravitational wave source GW170817 [58-60,95,96]. Since gravitational
waves at the observed magnitude can only originate from binary neutron star mergers,
this discovery served as a smoking gun for the association of short GRBs with the merger
scenario. Furthermore, several hours later, an optical counterpart was discovered with a
luminosity, thermal spectrum, and rapid temporal decay consistent with those predicted
for “kilonova” (KN) emission [97-101]. This emission is powered by the radioactive decay
of heavy elements synthesized in the merger ejecta [61,62,102]. This discovery not only
confirmed the NS merger origin of this burst, but was also used to prove that the origin of
heavy elements is indeed in the mergers of binaries, as long thought.

Interestingly enough, signs of a kilonova were observed earlier, associated with the
short GRB 130603B [103,104], although no gravitational wave signal was detected from this
event as LIGO was not sensitive enough to detect a potential signal at that time. These
results clearly indicate the merger origin of at least some of the short GRBs.

The picture, though, at least to me, is not complete yet. First, GRB170817, though
clearly a light-shedding event, was a very peculiar GRB. In particular, its luminosity was
two-to-four orders of magnitude lower than typical for short GRBs [105]. Furthermore, as
of today;, this is still only a single, unique event. No other events were detected, although
the prospects for additional detection in the LIGO O3 run were good [106]. It was argued,
though, that this lack of additional detections can be used to constrain GRB jet opening
angles, which are typically a few degrees [107].

Thus, at least to my view, there is still a way to go before claiming that all short
GRBs originate from binary mergers. In fact, there is at least one reported case, namely,
GRB 200826A, with a duration (T90) of 1.14 £ 0.13 s, in the 50-300 keV energy range, which
shows clear indication for a collapsar progenitor [108]. This may very well be at the edge
of the Gaussian distribution of long-GRB duration, though its existence indicates that the
categorization of GRBs needs to be looked at on a case-by-case basis.
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Lessons from GW/GRB170817A

Despite the fact that, at least to my view, the final word on the origin of short GRBs
had not been reached yet, there is no doubt that GW/GRB170817A was a light-shedding
event. It is therefore useful to briefly summarize the key lessons learned from this event.

1.  Thereisa clear association of (at least some) short GRBs with binary neutron star mergers.

2. The detection of kilonovae: Theoretical modeling shows that the matter that is ex-
pelled in the violent merger of two neutron stars can assemble into heavy elements
such as gold and platinum in a process known as rapid neutron capture (r-process)
nucleosynthesis. The radioactive decay of isotopes of the heavy elements is pre-
dicted to power a distinctive thermal glow (a ‘kilonova’; [61,62]). The data confirm
these predictions [63].

3. Furthermore, the data constrain the maximum neutron star mass to be 2.17M, [109,110].

4.  There is clear evidence that the merger produces a relativistic jet [111], which is
detected at late times [112].

5. Late-time observations revealed that the jet associated with GRB170817A was
(i) structured, and (ii) viewed off-axis (see Section 3 below).

Thus, there is no doubt that this was the single most important event in the history of
GRBs, in terms of the information and insight it provided the community with.

2.3. Magnetar Giant Flare: A Distinct GRB Population?

While the vast majority of GRBs are associated with a one-time terminal event, it has
been suggested that some fraction may be associated with a repeated event.

Soft gamma repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration
(about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to
originate from magnetars, which are strongly magnetized neutron stars with emission
powered by the dissipation of magnetic energy. Several SGRs have been detected in our
galaxy [113-115]. Most importantly, several giant flares have been detected from these
magnetars [116-118], with isotropic energy exceeding 1046 erg [118]. If such a magnetar is
extra-galactic, the giant flare would be visible as a single flare, as lower energy flares are below
current detector limits. It was therefore proposed that some observed single-pulse short
GRBs may be associated with these extragalactic magnetar giant flares (MGFs) [119-121].

Analysis showed that these MGFs can account for a small fraction, a few %, of the
short-GRB population [122,123]. Nonetheless, as they represent an alternative channel for
producing GRBs, and the only one that can lead to a repeater, they have gained interest
in recent years. Indeed, a recent analysis identified several nearby short GRBs that are
unambiguously associated with MGFs [124]. Furthermore, this fraction depends on the
detector’s sensitivity: as MGFs are weaker than binary merger signals, yet they are more
abundant than the merger rate, this fraction is expected to grow in the future, when more
sensitive instruments become available [125].

3. Jet Structure

The fact that GRB explosions lead to the formation of jets (rather than spherical explosions)
has been well known for over 20 years, following observations of jet breaks [126-128]. Indeed,
such jet breaks are useful for GRB calorimetry [72,126,128,129], from which constraints on
progenitor models can be derived, as well as the true GRB occurrence rates. For example,
measuring the jet opening angle of 29 short GRBs [130] enabled the calculation of the
true event rates. The inferred rates (~1000 Gpc 2 yr~1) are consistent with the rate of
NS-NS mergers, but are higher than the BH-NS merger rate [131,132] by a factor of 2-13.
This result therefore implies that at most a small fraction of short-GRB progenitors are
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BH-NS mergers. Similarly, when calibrating the true released energy, an average value of
10%-10° erg is found, which constrains possible jet launching mechanisms (see below).

For a long time, GRB jets were treated by most of the theoretical models as being
‘top-hat’, namely, T'(6) = T'g for 6 < 6;, and T'(6) = 0 for larger angles. This is despite the
fact that numerical simulations of jets propagating through a collapsing star clearly show
a more complicated internal structure [46,67]. A possible reason for the consideration of
top-hat jets is the ease of the dynamical calculations, which, in this case, can mostly be
performed analytically. Furthermore, when considering structured jets, there is a high
degree of uncertainty in the exact jet structure.

Prior to 2017, only a handful of works considered the possible effect of a structured jet on
the observed signal [133-136]. This situation dramatically changed following the observations
of GW/GRB170817. As this GRB attracted a lot of attention, high-quality data exist at late
times (up to months, even years). Fitting late-time radio and X-ray data clearly revealed a
structured jet of the form I'(6) < Tg/ /1 + (6/6;)?P, namely, an inner (“core”) region, 6 < 6;,
in which the Lorentz factor was roughly constant, and an outer, “shear” region (6 > 6;) in
which the Lorentz factor decayed roughly as I'(f) « 6~ [137-139]; see Figure 2. Analyzing
broadband afterglow data, from radio through optical (HST) to X-rays, on a time scale of
months, led to the conclusion that this jet must have been structured [140,141] and viewed
off-axis, at an offset of 22° from the jet axis [142-146].

Indeed, additional late-time afterglow measurements of other GRBs, for example,
GRB221009A, also suggest a similar structured jet [147-149]. This realization of a jet
structure is thus now becoming standard when analyzing GRB signals [150]. Fitting data is
now used to estimate the exact jet shape.

The jet structure does not only affect the late-time signal but also the very early times,
namely, the prompt phase. Despite the beaming, structured jets implies that the prompt is
expected to be detected even for off-axis observers [151].

Of particular interest is the jet structure’s effect on the signal observed from the pho-
tosphere, which is the earliest signal that can be detected. A jet structure has a major effect
on the photospheric signal [135] by modifying the observed spectra, both at low and high
energies [152-154]. Various non-trivial effects, such as photon energy gain by scattering back
and forth in the shear layer, were discovered [135,155]. The resulting spectrum is far from hav-
ing a “black body” shape, and rather resembles the observed “Band” function. Furthermore,
it also produces a unique polarization signal (for an observer located off-axis [136,156]). A
very important result is that a high polarization degree is achieved from the photosphere of a
structured jet, without assuming any synchrotron radiation.

To summarize, the jet structure has been realized, in recent years, to play an important
role in both the prompt and afterglow emission phases of GRBs. Studying the jet structure
therefore provides a new set of constraints in studying the jet launching mechanism as
well as its composition. While I focus here on the lateral jet structure, as there has been
major progress in recent years, there is also a radial jet evolution that is non-trivial. For
example, radio data of GRB221009A at a time scale of a few days show inconsistency
with the expectation of the forward shock [157]. This suggests an additional emission
component, whose origin is uncertain, as this time scale is much later than that expected
for a reverse shock.
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Figure 2. Illustration demonstrating a lateral jet structure. The Lorentz factor is maximal in the inner
jet region (¢ < ;) and drops as a power law in angle in outer jet regions, 6 > 6;. This jet profile
emerges due to shear that develops as the jet drills its way through a collapsing star [67]. Figure is
taken from [135].

4. Jet Launching Mechanism

The initial source of energy that fuels the GRB engine is the gravitational energy of a
massive star collapse, or alternatively, the merger of binary stars. The fundamental question
is how this gravitational energy is converted into the form of kinetic energy, namely, to a
relativistically expanding jet. Clearly, the details of the answer to this question also provide
insight into the jet structure.

In the traditional “collapsar” model, the collapse of the stellar core leads to the forma-
tion of an accretion disk rotating around the newly formed BH [47,158]. Alternatively, a
millisecond pulsar (magnetar) may be formed with enough rotational energy to prevent
gravitational collapse [37,159]. In this ‘proto-magnetar’ model [64,65,160,161], the rota-
tional energy is released as gravitational waves and electromagnetic radiation, causing the
magnetar to spin down. If the magnetar is sufficiently massive it may reach a critical point
at which differential rotation is no longer able to support it, resulting in collapse to a BH.

Within the original “collapsar” model, i.e., neglecting BH rotation, energy conversion
is mediated by a strong flux of neutrinos, that are produced in the inner regions close to the
newly formed BH [158,162,163]. The neutrinos and anti-neutrinos annihilate into et pairs,
thereby triggering the formation of the “fireball”.

An alternative scenario for jet launching is the Blandford-Znajek process [66]. In this
model, the source of energy is the rotational energy of the newly formed BH. This energy is
extracted by magnetic field lines that are brought to the horizon as they are attached to the
accreting disk. They then act as ‘springs’, expanding by their self-pressure, and convert the
rotational energy into Poynting flux-dominated outflow. Particles are introduced into the jet
at a later stage, e.g., by instabilities that develop at the jet boundaries [164]. These particles
are accelerated, thereby converting the Poynting energy to kinetic energy, although the
details of this last conversion are still uncertain. While this mechanism is in wide use in the
study of AGNs and XRBs, it was only recently claimed to be highly efficient in the context
of GRBs as well [165].

In the past two decades, there has been a rapid development in parallel computation
facilities. This has enabled the development of various codes that explores the core collapse
during the stellar explosion (e.g., [166-168]) as well as general relativistic, magnetohydro-
dynamic (GR-MHD) codes aimed at exploring the evolution of the disks and emerging
jets; as an example, see Figure 3. Over the years, several GR-MHD codes have been de-
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veloped (e.g., [169-177], and more). These codes are most frequently used in studying
the properties of accretion disks around rotating BHs. Given initial conditions, the codes
trace the evolution of the gas as it accretes into the BH. The numerical calculations enable
the various instabilities that develop to be traced, such as magneto-rotational instability
(MRI; [178,179]), which strongly affects the magnitude and global magnetic field config-
uration evolution. A major finding was that the accretion disks evolve into two distinct
quasi-steady state structures. The fate of the disk evolution largely depends on the initial
magnetic field configuration.

The two quasi-steady-state disk configurations are the “standard and normal evolution”
(SANE; [180]) and “magnetically arrested disks” (MAD; [181,182]). These separate config-
urations are important, as it was found that in addition to the different disk structures, the
emerging jets are much more powerful when the disks are in the MAD states [183,184].
Furthermore, these codes enabled detailed numerical study of the Blandford-Znajek
process [185], confirming its validity.

In recent years, several authors applied some of these codes to study the properties of
the jets emerging from GRBs [186-190]. These GR-MHD codes do not simulate the entire
collapse or merger, but rather it is assumed that the merger or collapse leads to the formation
of an accretion disk surrounding a newly formed rotating BH. The simulations are then
run to explore the emerging jet’s properties under various assumptions on the initial disk
structure, magnetic field configuration, etc. These properties include, among others, jet
velocity profile, fluctuations, location of internal shocks, and magnetic field configuration.
When radiation is added, which is currently performed in post-processing (i.e., separated
from the dynamical calculations), one also obtains the expected photospheric signal [186].
It should be pointed out that deep in the flow, in regions of very high optical depth, where
radiation is fully coupled to the plasma, the effect of radiation can be directly incorporated
by simply considering the relativistic equation of state (adiabatic index ¥ = 4/3). Some
authors used this to calculate the photospheric signal resulting from fluctuations deep in the
flow [190,191]. Such calculations, though, are very limited, as the photons start to decouple
from the gas close to, but below, the photosphere [192], and therefore the approximations
used fail.

Crudely, currently existing simulations provide the following:

1. A realistic structure of both the collapsing star and the newly formed disk, of course
for a given set of initial conditions. There is still a high degree of uncertainty as to
whether the initial conditions chosen represent those that occur in nature.

2. An insight into the role of magnetic fields in the jet launching process, as well as
connection between the jet properties and the inner disk properties, including the
magnetic field configuration.

3. Arealistic calculation of the internal jet structure, its temporal evolution and the role
of various instabilities (in particular, the Rayleigh-Taylor instability), again, for a
given set of initial conditions.

4. Aninsight into some of the jet properties, such as its terminal Lorentz factor.

These results cannot be achieved analytically, and necessitate the use of very consider-
able numerical calculations. Therefore, existing GR-MHD codes enable substantial progress
in understanding the GRB physics.

While this direction is obviously very promising, there are still very serious gaps that
need to be filled before these simulations can provide realistic predictions to understand
the nature of GRBs. The key gaps that still exist today include the following:

*  Missing physics. Despite the great progress made, still there are important physi-
cal ingredients that are not considered in the currently existing models. These in-
clude the following: (a) the full effects of radiation, namely, radiation back reaction
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(i.e., its effect on the dynamics) as well as independent treatment of radiation close
to the photosphere; (b) the effects of neutrinos that transfer energy, momentum,
and angular momentum. These transfers can be substantial under the appropriate
conditions [163]. (c) Exact cross-sections for various nuclear processes.

¢  The results of the models are sensitive to the uncertain initial conditions. This is an
inherent problem that could not easily be resolved.

¢ Key ingredients, such as the initial configuration of the magnetic field, are unknown,
and are therefore ‘put by hand’.

*  The dynamical range of the calculations is limited by computational power. Therefore,
some calculations are interpolated to larger radii. As explained, when approaching
the photosphere this interpolation becomes less valid.

*  There are various numerical limitations, such as numerical treatments of the polar
regions, the need for ‘flooring’ (adding material ‘by hand’ into empty regions, in order
to achieve computational stability), etc.

Nonetheless, many of these are technical problems that are expected to be solved in the
coming years with the continuous developments of algorithms as well as the continuous
increase in computational power. I therefore anticipate that the role of GR-MHD simulations
in the study of GRBs will increase in the coming years, and they will enable new insights to
be provided into some of the yet unsolved problems.

0

0 10 20 30

Figure 3. Demonstration of a result obtained by 3D GR-MHD simulation. This shows the flux of
the ¢ component of the angular momentum between the disk and the jet. Here, the BH assumes a
positive spin, 2 = 0.94, and the angular momentum is the sum of angular momentum in the magnetic
field and the gas. The scale is normalized to the gravitational radius of the BH. These results show the
formation of the jet, its structure, and that it transforms a significant amount of angular momentum
to infinity. The result is taken from [193].

5. The Nature of the Energy Dissipation Mechanism

Perhaps the easiest way to understand the complex chain of events that lead to a
GRB is to follow the energy conversion episodes. The GRB “fireball” model (which is
referred to here in a very broad context) provides the basic skeleton. The source of energy
is the gravitational energy of either a collapsing star or a merger of binaries. During the
formation of the BH, (part of) this energy is then converted to kinetic energy, in the form of
a jet. This conversion can be mediated by neutrinos and photons (the so-called “fireball”),
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or alternatively by a magnetic field, in which case there is another energy conversion of
Poynting energy to gas kinetic energy.

Since an observer does not directly see kinetic energy, the next stage must be a mech-
anism that converts part of this kinetic or magnetic energy into photons. A plausible
intermediate step is the use of this energy to accelerate particles to high energies. These en-
ergetic particles then radiate the photons observed. Within this framework, a photospheric
model provides an alternative to this part of energy conversion, as it does not require
energetic particles, but rather assumes that one directly observes photons that decouple the
plasma at the photosphere.

In the early days (mid-1990s), internal energy dissipation in the form of ‘internal
shocks’, resulting from velocity differences within the jet, was suggested as a way of con-
verting the kinetic energy to energetic particles [20,21,194]. This seemed a natural outcome,
as the flow is relativistic and shock waves are common. Furthermore, a propagating shock
wave is required to explain the afterglow. However, it was quickly realized that the internal
shock idea suffers a severe efficiency problem, with a typical efficiency of no more than a
few percent [23,24,195-197]. This is due to the fact that only the differential kinetic energy
is available for extraction.

This severe drawback motivated the search for alternatives. A leading alternative
that has also been discussed since the 1990s is that of a magnetized jet. In a magnetically
dominated flow, magnetic field lines of different orientations reconnect, thereby releasing a
magnetic energy that is used in heating and accelerating particles. While the basic theory of
magnetic reconnection was studied already in the 1950s and 1960s [198-200], the original
theoretical models showed that this process may be too slow to be relevant to GRBs, making
this idea less appealing until the last decade.

The rapid development in parallel computational facilities enabled rapid progress in
this field as well. Studying magnetic reconnection is achieved using particle-in-cell (PIC)
simulations [69,201,202]. These simulations trace the evolution of individual charged
particles along a grid, by solving for the electromagnetic forces they exert on each other.
Inside each grid cell, the currents resulting from particle motion are calculated. Using
these currents, electromagnetic (EM) fields on the grid are computed by summing over all
the particles in a cell. These EM fields are then interpolated back to the particles in each
cell, from which the Lorentz force acting on individual particles is deduced. The particles’
motions are then calculated from the Lorentz force.

These simulations have matured in the past decade, and provide an insight into the
mechanism of magnetic reconnection. It was found that the reconnecting lines lead to the
formation of plasmoids, which are regions in space filled with energetic particles and magnetic
fields [203]; see Figure 4. Particles are accelerated by the generated electromagnetic potential,
and can reach substantial energies as they enter the 'reconnection island’, and are then
accelerated by strong electric fields that are formed between the islands [203,204]. The limit
occurs when the particle’s Larmor radius becomes comparable to the plasmoid size. The
accelerated particles leave the plasmoid due to the developed turbulence, and their emerging
distribution follows a power law [205,206]. The plasmoids themselves grow with time, and
can reach a substantial fraction of the system size. Furthermore, due to turbulence in the flow,
the rate of reconnection can be much higher than initially thought [207-209].

Thus, overall, the rapid progress in this field in the past 10 years puts reconnection
as a very viable method for explaining particle acceleration. I anticipate here too rapid
progress in the coming years.
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Figure 4. Results of 2D simulation shows the particle number density along the magnetic reconnection
layer. Time evolves from top to bottom, as marked. After triggering reconnection in the center of the
current sheet (x = 0 in the top panel), two ‘reconnection fronts’ propagate: to the right and to the left.
The result is taken from [203].

6. The Ambient Medium: Deviation from Self-Similar Motion

It is surprising how little is known about the surrounding medium into which GRBs
explode. This is mainly due to two reasons: (1) GRBs reside in distant galaxies, which cannot
be resolved directly; and (2) theoretically, little is known about the final stages of massive
stellar evolution, prior to a star’s terminal collapse. This is the stage in which they may
emit strong stellar winds, which would affect the GRB environment. It is therefore difficult
to theoretically predict the stellar environment, which is affected by the stellar wind.

Early models of GRB afterglows [30,210] show a broadband spectral distribution and
late-time (hours onward) temporal evolution that are well fitted with the basic theoretical
model of self-similar motion [211]. The basic idea is that following an initial acceleration
and coasting phases, the relativistic GRB blast wave propagates into the ambient medium
in a self-similar way; namely, its Lorentz factor is a power law in radius, I'(r) & r~%, where
the index & depends on the ambient density profile (x = 3/2 for constant density ISM,

and a = 1/2 for a decaying density, n(r) « r—2

, as is expected for a constant-velocity
stellar wind).

Electrons are accelerated based on a power law in this propagating shock wave. The
spectra are fitted with synchrotron emission from power-law-accelerated particles [31,212],
while the lightcurve evolves according to the expectation from a relativistic blast wave
explosion into a constant-density environment [211]. While initially only explosions into
constant-density ISM were considered, extensions were quickly made to a power-law

density environment; namely, n(r) o r~—2

, as is expected if the star emits a constant-velocity
wind for a substantial duration prior to its terminal explosion [213].

Thus, this model predicts early-time light curve fluctuations, expected either before
or during the transition to the self-similar phase, while it predicts a smooth late-time
afterglow. During the transition, a reverse shock is expected that propagates into the
plasma and wipes out the memory of the initial explosion [18,214]. The time scale of the
existence of the reverse shock is expected to be of the order of tens of seconds to minutes,
i.e., close to the end of the prompt phase. This was used to explain some rebrightening seen,

e.g., in GRB180720B [215].
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In recent years, analysis of late-time afterglow data has revealed that the expectation
for self-similar motion is not always fulfilled. Various wiggles and fluctuations are detected,
that are not expected. For example, it was argued that a reverse shock may exist in the
lightcurve of GRB181201A, 3.9 days after the explosion, i.e., 3-4 orders of magnitude later
than expected [216]. A second example is GRB201216C, in which radio data after ~a
month require a different emission component than the forward shock [217,218]. Another
peculiar event was the short GRB210726A. No radio signal was detected during the first
11 days, but then the radio flux showed a rebrightening by a factor of 3 over a duration
of a week [219]. Such a result cannot be explained as being due to the forward shock, and
explaining it requires either a very late reverse shock, or late-time energy injection. These
results, therefore, challenge the basic self-similar motion picture.

The environment profile in the stellar vicinity is expected to be much more complicated
than the power-law description often assumed. As the stellar wind from a GRB progenitor
star is emitted over a finite, uncertain duration of thousands to millions of years, it cannot
cover the entire relevant space. Instead, the massive star that emits the wind is surrounded
by a “wind bubble” structure [220].

This structure is characterized by four distinct regimes (see Figure 5). The inner-most
regime (“region a”) contains the freely expanding stellar wind. The outer-most regime
(“region d”) contains the interstellar medium (ISM). Two more regions are the shocked
stellar wind (“region b”), consisting of stellar wind shocked by the wind termination shock
(reverse shock); and the shocked ISM (“region c”), shocked by the forward-propagating
shock, which also marks the edge of the bubble. The shocked wind and shocked ISM
(regions (b) and (c)) are separated by a contact discontinuity; see Figure 5.

The size of this cavity is ~ 1 pc, and it clearly depends on uncertain model parameters,
such as the wind velocity, the mass ejection rate, and the time the star emits the wind [221].
While in the basic picture the relevant radii can be calculated analytically, clearly additional
physical ingredients such as stellar rotation will further complicate the structure [75,222].
Indeed, such ring nebulae are observed around one-third of the massive stars in our galaxy
in their Wolf-Rayet phase [223-225].

When the star explodes to produce a GRB, the GRB jet must cross the surrounding
bubble [76]. During its crossing, it encounters the reverse and forward shock waves
as well as the contact discontinuity. These encounters lead to observable signals [226].
For plausible wind bubble parameters, interaction of the GRB blast wave with the wind
termination (reverse) shock is observed on a time scale of a few seconds, and may therefore
be associated with an observed precursor. The main interaction may take place with the
contact discontinuity at an observed time of the order of ~100 s. This could lead to a
significant observed signal, which would be detected as a strong rebrightening at this time
frame. Energy dissipation at this stage is much more efficient than internal shocks, as the
contact discontinuity is nearly static.

This model can explain about 5-10% of GRB lightcurves, that show a weak precursor
followed by a quiescent period and a main emission after 100-200 s [227,228]. As a concrete
example, the bright GRB160821A [229-231] showed a giant flare at ~100 s, which was not
directly connected to the following “afterglow” emission. This could very well be due to
the blast wave-bubble interaction. One can conclude therefore that observations on the
time scale of minutes may provide new insights on the wind structure in the vicinity of
GRB progenitors, hence may be used as an independent probe of the last stages in the life
of massive stars that end their lives as GRBs.
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Figure 5. An illustration demonstrating the four regimes in the wind bubble. The star is to the left,
emitting a wind prior to its explosion. Region a is the unshocked wind. Region d is the (constant-
density) ISM. Region b is the shocked wind, and region c is the shocked ISM. When the star explodes
into a GRB, the GRB blast wave propagates into this environment, interacting with the shock waves
and contact discontinuity in it. Figure is taken from [226].

7. The X-Ray Plateau: Potential Revolution

Associated with the question of the environment, is the open question of the origin of
the X-ray plateau. The plateau in GRB X-ray lightcurves was identified shortly after the
launch of the Swift mission [232,233]. Prior to Swift, data existed only during the prompt
phase, and then during the later afterglow (after a time of ~ hours). Swift bridged this
gap by enabling a near-continuous probe of the X-ray afterglow from the prompt phase
onward. The surprising result is that immediately after the prompt phase, the flow does
not transform into a similar motion as is expected [211]. Rather, the X-ray lightcurve in
a significant fraction, of about 60%, of GRBs [234] is flat for a long duration of several
hundreds to several thousands of seconds—tens of minutes, sometimes even a few hours.

Over the years, a plethora of ideas have been suggested to explain this result. No-
table suggestions include the following. (1) A continuous energy injection that slows the
acceleration [232,233,235-237]. This requires the GRB progenitor to operate for a much
longer period than a few seconds. (2) Emission in inhomogeneous media [238,239] that
causes rebrightening of the lightcurve. (3) Dominant emission from a long-lasting reverse
shock [240-242]. This idea requires that the (microphysical) properties of the plasma
shocked by the reverse shock are significantly different than at the plasma shocked by the
forward shock. (4) Jets viewed off-axis, namely, a viewing angle effect [243,244]. This is
particularly appealing for structured jets viewed off-axis, when gradually inner, brighter re-
gions become accessible [245,246]. Finally, (5) emission during the coasting phase [247,248].
As was found, if emission occurs into a low-density “wind” environment (1(r) o r~2) dur-
ing the coasting phase, the resulting lightcurve can be flat [248]. The fact that no consensus
has been reached nearly 20 years since its discovery implies that this is still considered an
open question which is debated in the literature.

The last idea—emission during the coasting phase—may hold the key to revolutioniz-
ing our understanding of GRB jet physics. The reason is that it was proven that a plateau
emission is a natural outcome of a model in which the Lorentz factor of the flow is only a
few tens, rather than a few hundreds as is often assumed [248]. The average Lorentz factor
of GRBs in the analyzed sample in that work is (I')~50, with variations between a few and
a couple of hundred (see Figure 6).

The reasoning behind the claim that GRB Lorentz factors reach terminal values of
several hundred are as follows. (i) The opacity argument: photons with energies that exceed
the threshold energy (0.5 MeV) will produce e* pairs [249-251], unless the observed signal
is highly blue-shifted. (ii) Identifying the onset of the self-similar motion by identifying
emission from the reverse shock [252,253]. The observed time is related to the terminal
value of the Lorentz factor. (iii) Deducing the value of the Lorentz factor directly from
measuring the properties of the thermal emission component [254-256].
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A close analysis reveals that none of these observational constraints apply to GRBs
with X-ray plateaus. Only 3/186 GRBs in the Fermi LAT catalog [257] show any evidence
for a plateau, implying an anti-correlation between the existence of a plateau and high
energy emission. Furthermore, no evidence for a substantial thermal emission component,
and no clear identification of reverse shock emission were observed in GRBs with plateaus.
These results therefore suggest that the distribution of terminal Lorentz factors within the
GRB population may be much broader than previously assumed, ranging between a few
(say, I'~10) to several hundred.

In the past year, several pieces of supporting evidence for this idea were found. These result
from analyzing prompt emission pulses [258], from analyzing GRB spectral lags [153], and, most
importantly, from analyzing the properties of the observed late-time X-ray flares [259]. This last
analysis is of particular importance, since different explanations for the origin of the plateau give
different, testable theoretical predictions. For example, if the plateau originates from observers
located off the jet axis, then the observed time of the X-ray flares are expected to be later than for
GRBs without a plateau due to the different Doppler boost. The results of the analysis show that
there is no difference between the average flare times for GRBs with and without plateaus, which
seems to contradict this prediction. This, though, is expected if the Lorentz factor of GRBs with
plateaus is lower, since in this case the flare emission radius is smaller, and the dependence on the
Lorentz factor cancels.

This idea of low-Lorentz-factor GRBs, if proven correct, obviously marks a paradigm
shift in the study of GRBs, by proving that the majority of GRBs in fact have Lorentz factors
of tens rather than hundreds. One can conclude that this epoch of early afterglow provides
several open questions that are still unanswered, and I anticipate that it will continue to
be explored in the coming decade. It has already shown the potential to revolutionize our
understanding of GRB physics, if indeed proven that the Lorentz factor of many GRBs is
“only” a few tens, as recently suggested.
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Figure 6. The results of an analysis shows that the plateau can naturally be explained as due to
emission during the coasting phase of jets with mild Lorentz factors, propagating into low-density
stellar wind. The left panel shows the constraints set on the Lorentz factor and the wind density
(marked as A,, where A, = 1 is expected for a Wolf-Rayet star). The right panel compares the
results obtained (black) to measured Lorentz factors in AGNs (a few, marked in green) and high
GRBs without plateaus (several hundreds, yellow). The region of a Lorentz factor, in GRBs that show
a plateau, of several tens, therefore, fills the observational gap. The figure is taken from [248].

8. Radiative Processes and Radiative Counterparts

Since nearly the entire signal detected from GRBs is electromagnetic, the basic question
of its origin is a fundamental one. The nature of the observed spectrum strongly depends
on the radius in which it originates. Emission from small radii, i.e., below or close to the
photosphere, is expected to behave as a modified black body, with a leading radiative
process of inverse Compton (IC) scattering [70,260,261]. On the other hand, emission at



Galaxies 2025, 13, 2

17 of 33

larger radii —above the photosphere—is expected to be mainly of synchrotron origin, with
IC scattering contributing to the high-energy part.

Already, in the early 1990s, when it was realized that the observed GRB spectra did
not resemble a “Planck” function, synchrotron emission was suggested as a leading radiative
mechanism [20,262,263]. However, inconsistency with the synchrotron model prediction [264]
(but see [265] for a reanalysis) prompted interest in alternative models. One example was
a revived interest in a proton-synchrotron model that was found to better fit the observed
spectral slopes [266]; see further discussion below. Alternatively, a photospheric (thermal) model
contribution also became the subject of increasing interest ([70,267-271], and many more).

It should be noted that since the photospheric radius strongly depends on the Lorentz
factor, 1, o I3 (e.g., [272,273]), a low Lorentz factor implies a larger photospheric radius,
resulting in a likely more pronounced contribution from the photosphere. This, though, will
necessitate sub-photospheric energy dissipation, or alternatively, lateral jet confinement, to
reduce adiabatic losses that will lower the peak energy below the sub-MeV range in which
it is observed.

Although initially, emission from the photosphere was expected to resemble a “Planck”
function [17], it was realized that this approach was too simplified. There are several
effects that act to broaden the naively expected black-body signal from the photosphere.
First, sub-photospheric energy dissipation that occurs due to any cause, such as shocks,
magnetic reconnection, neutrino annihilation, or any unspecified dissipation process, will
modify the emitted spectra. If the dissipation does not occur too far below the photosphere,
the photons will not have sufficient time to re-thermalize, and the resulting spectra will
be broadened [70,269,274-277]. Second, due to the relativistic motion of the jet, light
aberration effects will further modify the observed signal [260,261,278]. This will become
very pronounced for any non-spherical expansion, such as a structured jet [135,136,152,153],
a jet with an angle-dependent Lorentz factor, I' = I'(#), which is expected in a realistic
scenario, as discussed above. Third, the photospheric signal, like any signal in a transient
event, is time dependent. Therefore, integrating over a finite time automatically smears
the signal. And fourth, there are instrumental effects—due to the limited bandwidth of the
detectors, as well as the “curvature” of the spectrum near the energy peak, it is found that
the expected observed values of the low energy spectral slope are much shallower than the
Rayleigh-Jeans slope [279].

After considering these effects, a recent analysis shows that in fact more than a quar-
ter of long GRBs, and a third of short GRBs are consistent with having a pure thermal
origin [280,281]. When adding a possible sub-photospheric energy dissipation that could
potentially broaden the spectra, these fractions become much larger, close to 100%.

On the other hand, a recent analysis of time-resolved GRB spectra of single-pulse
GRBs, showed that synchrotron emission can account for about 95% of the spectra [265].
Thus, overall, the debate on the radiative origin of the observed signal is still on-going, and
may potentially be resolved in the next decade with a more refined time-resolved analysis.

8.1. The Pair Annihilation Line in BOAT GRB 221009A: Further Constraints on the
Physical Parameters

The existence of energetic photons implies that a large number of e* pairs are expected
to be produced within a GRB outflow. Indeed, as discussed above, within the framework
of the GRB “fireball” model, the existence of these pairs is a natural outcome. These pairs,
in turn, are expected to annihilate, producing a distinct line at the observed energy I'n,c?,
where I' is the outflow Lorentz factor. Detection of such a line has long been predicted [282].
It is therefore a surprise that such a line has never been detected. A possible reason for this
is the lower sensitivity of existing detectors in the >MeV band.
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This situation has changed recently, with the observation of GRB221009A—the “bright-
est of all time” (BOAT) GRB [283]. This burst was so bright that its observed fluence,
0.21 £0.02 erg cm ™2 (as seen by Konus-Wind; [284]), was more than 50 times larger than
that of the second brightest GRB observed to date, GRB230307A.

In addition to being so extremely bright, this GRB showed clear evidence of an
emission line, starting approximately 80 s after the onset of the afterglow (at 226 s after the
explosion [285]). This line was detected at ~10 MeV, and its peak energy showed a clear
decay in time, as €peqi (1) o t~1. Such a discriminated line can result from the annihilation
of pairs. However, a direct calculation results in a Lorentz factor of ~20 (the Doppler boost
needed to reach this energy), which seem too low given the extreme brightness of this GRB.

A more comprehensive calculation carried out recently [286] examined the conditions
for producing such a line. The temporal decay of the peak is a strong hint towards a
high-latitude emission, i.e., that the emission at different times originates from off the line
of sight, therefore the Doppler boost varies with observed time, as an observer sees the
emission from different angles [287]. Taking this into account, it was shown that this GRB
jet had a more realistic Lorentz factor, of I'~600. Most importantly, a detailed analysis
revealed that only a relatively narrow range of physical conditions, very high luminosity
and Lorentz factor that is in a relatively narrow range of few hundreds, is needed in order
to produce the observed pair annihilation line signal. The conditions found, in a range
that is much narrower than previously thought, explain the rareness of this line (see [286]
for further details). These results therefore demonstrate that further identification of such
annihilation lines could be a very useful tool in constraining the physical properties of GRB
jet outflows.

8.2. TeV Emission and Its Origin

Another field which matured in the past decade is that of very high energy detec-
tors. In the past decade, we witnessed the matureness of high-energy (GeV-TeV range)
detectors, such as MAGIC [288,289], H.E.S.S [290,291] and recently LHAASO [292-294].
For example, the MAGIC collaboration recently published lightcurves and spectra of
GRB190114C [14,289,295], starting about a minute after the onset of this burst, and lasting
for about 40 min. The MAGIC data show a comparable flux at the TeV band to that of longer
wavelengths, in particular the GeV (Fermi-LAT band) and X-rays (XRT and Fermi-GBM
bands). Similarly, LHAASO reported 7/13 TeV photons in GRB221009A [293,294].

These new data naturally called for a theoretical interpretation. A basic model that
was suggested as a way of explaining the TeV data was IC scattering (e.g., [14,296]). Indeed,
this process is naturally expected: as energetic electrons are needed to explain the lower-
energy (optical, X- and gamma-rays) signal observed by synchrotron emission, they must
be accelerated to high energies inside the plasma. These energetic electrons up-scatter the
synchrotron photons to higher energies, and may therefore contribute to the TeV signal.
Additional advantages of this model is that the energy budget needed is relatively not very
high, and the required magnetic field energy is relatively low.

However, a close look reveals that this model requires some additional assumptions
in order to provide good fits to the TeV data. Both the flux and the observed spectral and
temporal slopes predicted do not match those observed very well. In order to overcome
these problems, additional ‘freedom factors” were suggested [296], which enable some
fine-tuning of the model parameters. Such freedom parameters include a certain freedom
factor in connecting the emission radius and the observed time, the emitted and observed
frequency, or the dependence of the observed luminosity on the jet kinetic energy; it turned
out that the use of the classical, basic theoretical relations did not provide sufficient fits.
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An alternative model that was proposed was synchrotron emission from accelerated
protons [297,298]. This idea is not new, as similar ideas were already proposed in the
1990s (e.g., [299-301]). These were less appealing due to the fact that protons are much less
efficient radiators than electrons. As a result, a high total energy budget is required to be
provided to the energetic protons to reproduce the observed flux.

However, as pointed out recently [297], the problem can be easily overcome by noting
that it is sufficient to assume that only a small fraction, ~10%, of the protons are accelerated.
This aligns both with the results of particle-in-cell simulations, that show that only a few %
of the particles are accelerated in shock waves [302], and lead to a dramatic decrease in the
required overall explosion energy budget, which is ~10°*5 erg—high, but not unreasonable.

According to this model, both electrons and protons are accelerated by the propagating
shock. The electrons though have a lower energy, and therefore are in the slow-cooling
regime, while the more energetic protons are in the fast-cooling regime [31]. Radiation in
the X-ray and gamma-ray bands is explained by synchrotron emission from the electrons,
while the TeV emission is due to synchrotron emission from the accelerated protons. The
condition for proton-synchrotron to dominate over IC scattering is that the fraction of
post-shock thermal energy converted to the magnetic field is much higher than the fraction
of energy given to the electrons, namely, eg > €.. Here, €3 is the fraction of post-shock
thermal energy that is converted to the magnetic field, and €, is that fraction used in
accelerating electrons above the thermal distribution. Indeed values that are found to
fit the broadband data of GRB190114C are eg = 0.13 and €, = 0.003. Both values are
consistent with the results of PIC simulations, as well as with fits of late-time afterglow
data of various GRBs. In the opposite regime, €, > €p, IC emission from the electrons is
found to dominate the proton-synchrotron contribution. These results seem to be universal:
similar fitting holds also for the spectra and lightcurve of GRB221009A [298]. Similarly,
protons accelerated at the reverse shock may also contribute to the TeV flux [303,304].

Thus, a continuous stream of TeV data, as is expected with the matureness of current
TeV detectors, and the coming CTA observatory [305], may revolutionize our understanding
of the radiative processes, and of the protons’ role in the observed signal. This will clearly
have a direct impact on the physics of cosmic rays and expected high-energy neutrinos.

8.3. Polarization: Introducing a New Dimension

The final signal that I would like to mention is that of X- and y-ray polarization. These
represent another observational field that has matured in recent years. While claims of a
high degree of polarization from GRBs have existed for over 20 years [306,307], these were
by and large sparse and not always reliable. Polarization measures were expected, though,
as both the leading radiative models in GRBs, namely, synchrotron emission and Compton
scattering, were predicted to produce a high degree of polarization [134,136,308,309].

Following the launch of AstroSat, a plethora of polarization information became
available [310]. This is due to the Cadmium-Zinc-Telluride Imager (CZTI) on board
this satellite, which is sensitive to both soft and hard X-rays (0.3-100 keV). A unique
example is GRB160821A. This was a very energetic burst (E > 10° erg) which showed high
degree of polarization—more than 30% in the gamma-ray lightcurve. The most interesting
observation was a polarization angle change, which was detected twice: once during the
rise phase and once during the decay phase of a bright pulse that was seen after ~ 120 s.
Each of these polarization angle changes was consistent with 90 degrees [229].

Such a polarization angle change challenges existing models. While current models
can explain a 90-degree change for an observer located close to the jet edge (e.g., [311]),
this is accompanied by a sharp decrease in the flux. The reason for this flux decay is that
in order to obtain such a 90-degree change, the observer needs to be located close to the
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jet edge. Initially, the detected photons originate from a small, magnetized region, which
produces a polarized signal. As time elapses, the region from which photons reach the
observer grows, and part of it is outside of the jet. Thus, while the observed parts that
remain within the jet can produce a signal polarized by 90 degrees to the initial polarized
signal, most of the viewing region is outside of the jet opening angle, and therefore the flux
is expected to sharply drop.

As of today, a convincing explanation to this observational result is still lacking,
and it requires some "out-of-the-box” ideas, such as unconventional jet geometry. Indeed,
most existing theories for polarization assume simple "top-hat’ jets. However, recently,
more advanced models, that consider the possibility of jet structure have emerged [312]. I
anticipate that many more such models will emerge in the coming years, with the realization
that GRB jets are structured.

9. Summary

Extensive study of GRBs began in the early 1990s, about 30 years ago. Despite the
matureness of the field, basic open questions still remain. In this short review, I tried to
highlight the key advances that took place in the past decade, while looking forward to the
next decade and trying to predict the next challenges that are expected to be addressed in
the coming years.

Looking at the different subjects, one can summarize as follows.

1.  The nature of the progenitor. Ten years ago there was already firm evidence sup-
porting the idea that long GRBs originate from the collapse of a massive star (the
“collapsar”), and there was plenty of indirect evidence supporting the idea that short
GRBs originate from a binary merger. Today, while there is a consensus that long
GRBs indeed originate from a collapsar, there are several outliers known, whose
origin is not clear. There is one firm detection of the association of a short GRB with
a merger—the GW/GRB170817 event—but it is not fully clear whether this event is
representative of the entire short-GRB population.

2. Jet launching mechanism and GRB jet composition. Ten years ago, the basic
theories—namely, the Blandford-Znajek [66], collapsar, and merger—already ex-
isted, but most of the details were uncertain. In the past decade, major progress
in computational facilities took place, which enabled the study these mechanisms
in much more detail. These mechanisms include many relevant physical processes
that cannot be studied analytically, such as instabilities, the effect of radiation on the
dynamics, and magnetic field configurations. I anticipate that this field will continue
to flourish in the next decade.

3. Jet structure, dynamics and evolution. Ten years ago, most works considered a
simple "top hat’ jet, i.e., a jet with a sharp cutoff, as well as 'standard” (self-similar) jet
dynamics. In the past decade, and especially after GW/GRB170817, it was realized
that GRB jets have a spatial structure, which has now been taken into consideration
by several authors. Furthermore, the idea that many GRB jets have a Lorentz factor of
tens rather than 100 s, although suggested relatively recently, has a strong potential to
revolutionize the field.

4.  Properties of the ambient medium. Ten years ago, the vast majority of works assumed
a very simple ambient density profile, either constant or decaying as a power law
with radius from the progenitor, as is expected from a steady stellar wind. Only
recently did the realization that massive stars are surrounded by wind nebulae, or
wind bubbles, which may have a significant effect on the early afterglow in (long)
GRBs, start to be explored more in depth. Here too, I anticipate a potential for further
breakthroughs in the next decade.
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5. Energy dissipation mechanism. While early models suggested shock waves, whose
physics is well understood, as a leading kinetic energy dissipation mechanism, already
ten years ago it was realized that this mechanism is not able to provide efficient enough
dissipation. The matureness of computational facilities and PIC simulations in the
past decade has enabled a detailed study and several breakthroughs in understanding
the alternative mechanism of magnetic reconnection. Here too, additional progress is
anticipated in the next decade.

6. Radiative process. The basic radiative processes—synchrotron, inverse Compton,

and photosphere—have been known for decades, and have been used since the 1990s
to the present day to fit most GRB spectra. However, in the past few years, with the
increase in the data quality (and quantity) it was realized that many of these models
are too simplified, and do not provide good enough fits to the data. This led to a
renewed interest in alternative models, such as proton-synchrotron.
Major efforts are being devoted to obtaining new signals, such as TeV and polarization,
which are expected to flourish in the next decade, promising a wealth of new data.
Furthermore, the need for a time-dependent spectral analysis, as well as abandoning
the “Band” function, have become more evident in the past few years. New detections,
such as the pair annihilation line in GRB221009A, challenge existing theories, and call
for renewed modeling. Thus, overall, the continuous streams of new data promise to
stimulate new ideas in the next decade and beyond.
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Notes

1

Supernova type Ib/c are core collapse supernovae with stripped hydrogen envelopes.
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