Generalized Curvature-Matter Couplings in Modified Gravity
Abstract
:1. Introduction
2. Gravity Theories with Linear Curvature-Matter Coupling
2.1. Gravity
2.2. Linear Non-Minimal Curvature-Matter Coupling
2.3. The Matter Lagrangian and the Energy-Momentum Tensor in Modified Gravity with Non-Minimal Linear Coupling between Matter and Geometry
2.3.1. The Newtonian Limit
2.3.2. The Matter Lagrangian in Modified Gravity Theories with Curvature-Matter Coupling
2.4. Equivalence of the Modified Gravity Theory with Linear Matter-Geometry Coupling with an Anomalous Scaler-Tensor Theory
2.5. Further Theoretical Developments in Modified Gravity with Linear Curvature-Matter Coupling
3. Gravity
3.1. Solar System Tests of Gravity
3.2. The Geodesic Deviation Equation and the Raychaudhury Equation in Gravity
3.3. Tidal Forces and the Roche Limit
4. Extended Gravity with the Generalized Scalar Field and Kinetic Term Dependencies
4.1. Action and Field Equations
4.2. Models with Nonminimal Matter-Scalar Field Coupling
5. Gravity
5.1. Action and Gravitational Field Equations
5.2. Specific Cosmological Solution
5.3. Further Applications
6. Gravity
6.1. Action and Field Equations
6.2. Equation of Motion of the Massive Test Particles in the Gravity Theory
6.3. Cosmological Applications: Specific Case of
6.3.1. High Cosmological Density Limit of the Field Equations
6.3.2. The Case of Dust
7. Dark Matter As a Curvature-Matter Coupling Effect
7.1. Stable Circular Orbits and Frequency Shifts in Modified Gravity with Linear Curvature-Matter Coupling
7.2. The Effect of the Curvature-Matter Coupling on the Light Shifts
7.3. Galactic Rotation Curves and the Curvature-Matter Coupling
7.4. Constraining the Curvature-Matter Coupling with Galactic Stellar Distributions
7.5. Stability of the Stable Circular Orbits in Modified Gravity with Curvature-Matter Coupling
8. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.-G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef]
- Maartens, R.; Koyama, K. Brane-world gravity. Living Rev. Relativ. 2004, 7, 7. [Google Scholar] [CrossRef]
- Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. ArXiv E-Prints 2009. arXiv:0807.1640. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Sasaki, M. Gauss-Bonnet dark energy. Phys. Rev. D 2005, 71. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70. [Google Scholar] [CrossRef]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Gravity assisted dark energy dominance and cosmic acceleration. Phys. Lett. B 2004, 599, 137–142. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Dark energy and cosmic speed-up from consistent modified gravity. PoS WC 2004, 2004, 024. [Google Scholar]
- Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S.D. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 2005, 72. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D. Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scalemagnetic fields. J. Cosmol. Astropart. Phys. 2008, 2008. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R) gravity and non-minimal vector-F(R) gravity. Phys. Rev. D 2008, 77. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. f(R,Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Springer: Berlin, Germany, 2004. [Google Scholar]
- Bertolami, O.; Paramos, J.; Turyshev, S. General theory of relativity: Will it survive the next decade? In Lasers, Clocks, and Drag-Free Control; Springer: Berlin, Germany, 2006; pp. 27–67. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. ArXiv E-Prints 2005. arXiv:gr-qc/0510072. [Google Scholar]
- Bertolami, O.; Pedro, F.G.; le Delliou, M. Dark Energy-Dark Matter Interaction and the Violation of the Equivalence Principle from the Abell Cluster A586. Phys. Lett. B 2007, 654, 165–169. [Google Scholar] [CrossRef]
- Damour, T. Questioning the equivalence principle. ArXiv E-Prints 2001. arXiv:gr-qc/0109063. [Google Scholar] [CrossRef]
- Damour, T. Testing the equivalence principle: Why and how? Class. Quantum Gravity 1996, 13. [Google Scholar] [CrossRef]
- Damour, T.; Donoghue, J.F. Equivalence Principle Violations and Couplings of a Light Dilaton. Phys. Rev. D 2010, 82. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Minazzoli, O. Extended f(R,Lm) gravity with generalized scalar field and kinetic term dependences. Phys. Rev. D 2013, 87. [Google Scholar] [CrossRef]
- Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: f(R,T,RμνTμν) gravity. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Sáez-Gómez, D. f(R,T,RμνTμν) gravity phenomenology and ΛCDM universe. Phys. Lett. B 2013, 725, 437–444. [Google Scholar] [CrossRef]
- Haghani, Z.; Harko, T.; Sepangi, H.R.; Shahidi, S. Matter may matter. ArXiv E-Prints 2014. arXiv:1405.3771. [Google Scholar] [CrossRef]
- Deser, S.; Gibbons, G.W. Born-Infeld-Einstein actions? Class. Quantum Gravity 1998, 15. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Kawasaki, M. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 2003, 573, 1–4. [Google Scholar] [CrossRef]
- Unzicker, A.; Case, T. Translation of Einstein’s attempt of a unified field theory with teleparallelism. ArXiv E-Prints 2005. arXiv:physics/0503046. [Google Scholar]
- Möller, C. Conservation laws and absolute parallelism in general relativity. Math. Phys. Skr. Danske Vid. Selsk. 1961, 1, 3–50. [Google Scholar]
- Pellegrini, C.; Plebanski, J. Tetrad fields and gravitational fields. Math. Phys. Skr. Danske Vid. Selsk. 1963, 2, 1–39. [Google Scholar]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without an inflaton. Phys. Rev. D 2007, 75. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Otalora, G.; Saridakis, E.N. Non-minimal torsion-matter coupling extension of f(T) gravity. Phys. Rev. D 2014, 89. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Otalora, G.; Saridakis, E.N. f(T,) gravity and cosmology. ArXiv E-Prints 2014. arXiv:1405.0519. [Google Scholar] [CrossRef]
- Kiani, F.; Nozari, K. Energy conditions in F(T,Θ) gravity and compatibility with a stable de Sitter solution. Phys. Lett. B 2014, 728, 554–561. [Google Scholar] [CrossRef]
- Harko, T. Galactic rotation curves in modified gravity with non-minimal coupling between matter and geometry. Phys. Rev. D 2010, 81. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. Modified gravity with R-matter couplings and (non-)geodesic motion. Class. Quantum Gravity 2008, 25. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. The String dilaton and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farese, G. Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 1992, 9. [Google Scholar] [CrossRef]
- Gottlober, S.; Schmidt, H.J.; Starobinsky, A.A. Sixth-order gravity and conformal transformations. Class. Quantum Gravity 1990, 7. [Google Scholar] [CrossRef]
- Drummond, I.T.; Hathrell, S.J. QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys. Rev. D 1980, 22. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 1970, 150, 1–8. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ottewill, A.C. The stability of general relativistic cosmological theory. J. Phys. A Math. Gen. 1983, 16, 2757–2776. [Google Scholar] [CrossRef]
- Koivisto, T. A note on covariant conservation of energy-momentum in modified gravities. Class. Quantum Gravity 2006, 23. [Google Scholar] [CrossRef]
- Teyssandier, P.; Tourrenc, Ph. The Cauchy problem for the R+R2 theories of gravity without torsion. J. Math. Phys. 1983, 24. [Google Scholar] [CrossRef]
- Whitt, B. Fourth-order gravity as general relativity plus matter. Phys. Lett. B 1984, 145, 176–178. [Google Scholar] [CrossRef]
- Wands, D. Extended gravity theories and the Einstein–Hilbert action. Class. Quantum Gravity 1994, 11. [Google Scholar] [CrossRef]
- Faraoni, V. De Sitter space and the equivalence between f(R) and scalar-tensor gravity. Phys. Rev. D 2007, 75. [Google Scholar] [CrossRef]
- Olmo, G.J. Limit to general relativity in f(R) theories of gravity. Phys. Rev. D 2007, 75. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N. Palatini formulation of modified gravity with a non-minimal curvature-matter coupling. Mod. Phys. Lett. A 2011, 26. [Google Scholar] [CrossRef]
- Mohseni, M. Non-geodesic motion in f(G) gravity with non-minimal coupling. Phys. Lett. B 2009, 682, 89–92. [Google Scholar] [CrossRef]
- Bertolami, O.; Lobo, F.S.N.; Páramos, J. Nonminimum coupling of perfect fluids to curvature. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Faraoni, V. Lagrangian description of perfect fluids and modified gravity with an extra force. Phys. Rev. D 2009, 80. [Google Scholar] [CrossRef]
- Bertolami, O.; Páramos, J. Homogeneous spherically symmetric bodies with a nonminimal coupling between curvature and matter: The choice of the Lagrangian density for matter. ArXiv E-Prints 2013. arXiv:1306.1177. [Google Scholar]
- Minazzoli, O. Conservation laws in theories with universal gravity/matter coupling. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Bisabr, Y. Non-minimal Gravitational Coupling of Phantom and Big Rip Singularity. Gen. Relativ. Gravit. 2013, 45, 1559–1566. [Google Scholar] [CrossRef]
- Harko, T. Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2008, 669, 376–379. [Google Scholar] [CrossRef]
- Wu, Y.-B.; Zhao, Y.-Y.; Lu, J.-W.; Zhang, X.; Zhang, C.-Y.; Qiao, J.-W. Five-dimensional generalized f(R) gravity with curvature-matter coupling. Eur. Phys. J. C 2014, 74. [Google Scholar] [CrossRef]
- Olmo, G.J.; Rubiera-Garcia, D. Brane-world and loop cosmology from a gravity-matter coupling perspective. ArXiv E-Prints 2014. arXiv:1405.7184. [Google Scholar] [CrossRef]
- Harko, T. The matter Lagrangian and the energy-momentum tensor in modified gravity with nonminimal coupling between matter and geometry. Phys. Rev. D 2010, 81. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Fock, V. The Theory of Space, Time and Gravitation; Pergamon Press: London, UK, 1959. [Google Scholar]
- Faraoni, V. Viability criterion for modified gravity with an extra force. Phys. Rev. D 2007, 76. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Obukhov, Y.N. Motion of test bodies in theories with nonminimal coupling. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Bertolami, O.; Martins, A. On the dynamics of perfect fluids in non-minimally coupled gravity. Phys. Rev. D 2012, 85. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. Do f(R) theories matter? Phys. Rev. D 2008, 77. [Google Scholar] [CrossRef]
- Bertolami, O.; Sequeira, M.C. Energy Conditions and Stability in f(R) theories of gravity with non-minimal coupling to matter. Phys. Rev. D 2009, 79. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.-B.; Guo, Y.-X.; Yang, W.-Q.; Wang, L. Energy conditions and stability in generalized f(R) gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2010, 689, 133–138. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.-B.; Guo, Y.-X.; Qi, F.; Zhao, Y.-Y.; Sun, X.-Y. Conditions and instability in f(R) gravity with non-minimal coupling between matter and geometry. Eur. Phys. J. C 2010, 69, 541–546. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Y.-B.; Guo, Y.-X.; Yang, W.-Q.; Wang, L. Energy conditions and stability in generalized f(R) gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2010, 689, 133–138. [Google Scholar] [CrossRef]
- Sotiriou, T.P. The viability of theories with matter coupled to the Ricci scalar. Phys. Lett. B 2008, 664, 225–228. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. On the non-trivial gravitational coupling to matter. Class. Quantum Gravity 2008, 25. [Google Scholar] [CrossRef]
- Tamanini, N.; Koivisto, T.S. Consistency of non-minimally coupled f(R) gravity. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Obukhov, Y.N.; Puetzfeld, D. Conservation laws in gravitational theories with general nonminimal coupling. Phys. Rev. D 2013, 87. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Obukhov, Y.N. Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D 2013, 87. [Google Scholar] [CrossRef]
- Puetzfeld, D.; Obukhov, Y.N. Equations of motion in gravity theories with nonminimal coupling: A loophole to detect torsion macroscopically? Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Bertolami, O.; March, R.; Páramos, J. Solar System constraints to nonminimally coupled gravity. Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Castel-Branco, N.; Páramos, J.; March, R. Perturbation of the metric around a spherical body from a nonminimal coupling between matter and curvature. ArXiv E-Prints 2014. arXiv:1403.7251. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 2010, 82. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quantum Gravity 2011, 28. [Google Scholar] [CrossRef]
- Bertolami, O.; Ferreira, R.Z. Traversable wormholes and time machines in nonminimally coupled curvature-matter f(R) theories. Phys. Rev. D 2012, 85. [Google Scholar] [CrossRef]
- Nesseris, S. Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry. Phys. Rev. D 2009, 79. [Google Scholar] [CrossRef]
- Bertolami, O.; Frazao, P.; Paramos, J. Accelerated expansion from a nonminimal gravitational coupling to matter. Phys. Rev. D 2010, 81. [Google Scholar] [CrossRef]
- Thakur, S.; Sen, A.A.; Seshadri, T.R. Non-minimally coupled f(R) cosmology. Phys. Lett. B 2011, 696, 309–314. [Google Scholar] [CrossRef]
- Bisabr, Y. Modified gravity with a nonminimal gravitational coupling to matter. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Bertolami, O.; Frazao, P.; Paramos, J. Reheating via a generalized non-minimal coupling of curvature to matter. Phys. Rev. D 2011, 83. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. Modified Friedmann Equation from Nonminimally Coupled Theories of Gravity. Phys. Rev. D 2014, 89. [Google Scholar] [CrossRef]
- Bertolami, O.; Frazao, P.; Paramos, J. Cosmological perturbations in theories with non-minimal coupling between curvature and matter. J. Cosmol. Astropart. Phys. 2013, 2013. [Google Scholar] [CrossRef]
- Thakur, S.; Sen, A.A. Can structure formation distinguish ΛCDM from nonminimal f(R) gravity? Phys. Rev. D 2013, 88. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. Mimicking dark matter through a non-minimal gravitational coupling with matter. J. Cosmol. Astropart. Phys. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Bertolami, O.; Frazao, P.; Paramos, J. Mimicking dark matter in galaxy clusters through a nonminimal gravitational coupling with matter. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J.; Harko, T.; Lobo, F.S.N. Non-minimal curvature-matter couplings in modified gravity. ArXiv E-Prints 2008. arXiv:0811.2876. [Google Scholar]
- Bertolami, O.; Paramos, J. Minimal extension of General Relativity: Alternative gravity model with non-minimal coupling between matter and curvature. Int. J. Geom. Methods Mod. Phys. 2014, 11. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Harko, T. Extended f(R,Lm) theories of gravity. ArXiv E-Prints 2012. arXiv:1211.0426. [Google Scholar]
- Wang, J.; Liao, K. Energy conditions in f(R,Lm) gravity. Class. Quantum Gravity 2012, 29. [Google Scholar] [CrossRef]
- Huang, R.-N. The Wheeler-DeWitt equation of f(R,Lm) gravity in minisuperspace. ArXiv E-Prints 2013. arXiv:1304.5309. [Google Scholar]
- Tian, D.W.; Booth, I. Lessons from f(R,,,Lm) gravity: Smooth Gauss-Bonnet limit, energy-momentum conservation and nonminimal coupling. ArXiv E-Prints 2014. arXiv:1404.7823. [Google Scholar]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 2004, 70. [Google Scholar] [CrossRef]
- Hawking, S.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Mashhoon, B. Tidal Gravitational Radiation. Astrophys. J. 1973, 185, 83–86. [Google Scholar] [CrossRef]
- Mashhoon, B. On tidal phenomena in a strong gravitational field. Astrophys. J. 1975, 197, 705–716. [Google Scholar] [CrossRef]
- Mashhoon, B.; Theiss, D.S. Relativistic Tidal Forces and the Possibility of Measuring Them. Phys. Rev. Lett. 1982, 49. [Google Scholar] [CrossRef]
- Ohanian, H.C. Gravitation and Spacetime; Norton: New York, NY, USA, 1976. [Google Scholar]
- Gasperini, M.; Piazza, F.; Veneziano, G. Quintessence as a runaway dilaton. Phys. Rev. D 2001, 65. [Google Scholar] [CrossRef]
- Damour, T.; Vilenkin, A. String theory and inflation. Phys. Rev. D 1996, 53. [Google Scholar] [CrossRef]
- Armendáriz-Picón, C. Predictions and observations in theories with varying couplings. Phys. Rev. D 2002, 66. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. The string dilation and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. String theory and gravity. Gen. Relativ. Gravit. 1994, 26, 1171–1176. [Google Scholar] [CrossRef]
- Damour, T.; Piazza, F.; Veneziano, G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 2002, 66. [Google Scholar] [CrossRef]
- Damour, T.; Donoghue, J.F. Equivalence principle violations and couplings of a light dilaton. Phys. Rev. D 2010, 82. [Google Scholar] [CrossRef]
- Damour, T. Theoretical aspects of the equivalence principle. Class. Quantum Gravity 2012, 29. [Google Scholar] [CrossRef]
- Damour, T.; Gibbons, G.W.; Gundlach, C.C. Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett. 1990, 64. [Google Scholar] [CrossRef]
- Casas, J.A.; García-Bellido, J.; Quiros, M. Scalar-tensor theories of gravity with Phi-dependent masses. Class. Quantum Gravity 1992, 9. [Google Scholar] [CrossRef]
- Wetterich, C. An asymptotically vanishing time-dependent cosmological constant. Astron. Astrophys. 1995, 301, 321–328. [Google Scholar]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62. [Google Scholar] [CrossRef]
- Das, S.; Banerjee, N. Brans-Dicke scalar field as a chameleon. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Minazzoli, O. The γ parameter in Brans-Dicke-like (light-)Scalar-Tensor theory with a universal scalar/matter coupling and a new decoupling scenario. ArXiv E-Prints 2012. arXiv:1208.2372. [Google Scholar]
- Aviles, A.; Cervantes-Cota, J.L. Dark degeneracy and interacting cosmic components. Phys. Rev. D 2011, 83. [Google Scholar] [CrossRef]
- Overduin, J.M.; Wesson, P.S. Kaluza-Klein gravity. Phys. Rep. 1997, 283, 303–378. [Google Scholar] [CrossRef]Fujii, Y.; Maeda, K.I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Minazzoli, O.; Harko, T. New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys. Rev. D 2012, 86. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Generalized dark gravity. Int. J. Mod. Phys. D 2012, 21. [Google Scholar] [CrossRef]
- Poplawski, N.J. A Lagrangian description of interacting dark energy. ArXiv E-Prints 2006. arXiv:gr-qc/0608031. [Google Scholar]
- Houndjo, M.J.S. Reconstruction of f(R,T) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D 2012, 21. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Raza, M.; Myrzakulov, R. Reconstruction of some cosmological models in f(R,T) cosmology. Eur. Phys. J. C 2012, 72. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Piattella, O.F. Reconstructing f(R,T) gravity from holographic dark energy. Int. J. Mod. Phys. D 2012, 21. [Google Scholar] [CrossRef]
- Houndjo, M.J.S.; Batista, C.E.M.; Campos, J.P.; Piattella, O.F. Finite-time singularities in f(R,T) gravity and the effect of conformal anomaly. Can. J. Phys. 2013, 91, 548–553. [Google Scholar] [CrossRef]
- Sharif, M.; Zubair, M. Thermodynamics in f(R,T) Theory of Gravity. J. Cosmol. Astropart. Phys. 2012, 2012. [Google Scholar] [CrossRef]
- Sharif, M.; Rani, S.; Myrzakulov, R. Analysis of f(R,T) gravity models through energy conditions. Eur. Phys. J. Plus 2013, 128. [Google Scholar] [CrossRef]
- Sharif, M.; Zubair, M. Energy Conditions Constraints and Stability of Power Law Solutions in f(R,T) Gravity. J. Phys. Soc. Jpn. 2013, 82. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; Houndjo, M.J.S.; Monwanou, A.V.; Orou, J.B.C. Testing some f(R,T) gravity models from energy conditions. J. Mod. Phys. 2013, 4, 130–139. [Google Scholar] [CrossRef]
- Santos, A.F. Gödel solution in f(R,T) gravity. Mod. Phys. Lett. A 2013, 28. [Google Scholar] [CrossRef]
- Priyanka, S.R. Some Kaluza-Klein cosmological models in f(R,T) gravity theory. Astrophys. Space Sci. 2013, 347, 389–397. [Google Scholar]
- Naidu, R.L.; Reddy, D.R.K.; Ramprasad, T.; Ramana, K.V. Bianchi type-V bulk viscous string cosmological model in f(R,T) gravity. Astrophys. Space Sci. 2013, 348, 247–252. [Google Scholar] [CrossRef]
- Sharif, M.; Zubair, M. Study of Bianchi I anisotropic model in f(R,T) gravity. Astrophys. Space Sci. 2014, 349, 457–465. [Google Scholar] [CrossRef]
- Chakraborty, S. An alternative f(R,T) gravity theory and the dark energy problem. Gen. Relativ. Gravit. 2013, 45, 2039–2052. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; de la Cruz-Dombriz, A.; Houndjo, M.J.S.; Rodrigues, M.E.; Sáez-Gómez, D. Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D 2013, 87. [Google Scholar] [CrossRef]
- Sharif, M.; Zubair, M. Reconstruction and stability of f(R,T) gravity with Ricci and modified Ricci dark energy. Astrophys. Space Sci. 2014, 349, 529–537. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K.; Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys. J. 1980, 238, 471–487. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P.; Stel, F. The universal rotation curve of spiral galaxies—I. The dark matter connection. Mon. Not. R. Astron. Soc. 1996, 281, 27–47. [Google Scholar] [CrossRef]
- Borriello, A.; Salucci, P.; Borriello, A.; Salucci, P. The dark matter distribution in disc galaxies. Mon. Not. R. Astron. Soc. 2001, 323, 285–292. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton, N.J., Ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Overduin, J.M.; Wesson, P.S. Dark matter and background light. Phys. Rep. 2004, 402, 267–406. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Dark matter as a geometric effect in f(R) gravity. Astropart. Phys. 2008, 29, 386–392. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Generalized virial theorem in f(R) gravity. J. Cosmol. Astropart. Phys. 2008, 2008. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. J. Cosmol. Astropart. Phys. 2013, 2013. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys. 2013, 50–52, 65–75. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 2012, 85. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Cosmology of hybrid metric-Palatini f(X)-gravity. J. Cosmol. Astropart. Phys. 2013, 2013. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 2013, 22. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J.; Vignolo, S. The Cauchy problem in hybrid metric-Palatini f(X)-gravity. Int. J. Geom. Methods Mod. Phys. 2014, 11. [Google Scholar] [CrossRef]
- Nucamendi, U.; Salgado, M.; Sudarsky, D. Alternative approach to the galactic dark matter problem. Phys. Rev. D 2001, 63. [Google Scholar] [CrossRef]
- Lake, K. Galactic Potentials. Phys. Rev. Lett. 2004, 92. [Google Scholar] [CrossRef]
- Salucci, P.; Persic, M. Dark Halos around Galaxies, in Dark and Visible Matter in Galaxies; Persic, M., Salucci, P., Eds.; ASP Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 117, p. 1. [Google Scholar]
- Pun, C.S.J.; Kovacs, Z.; Harko, T. Thin accretion disks in f(R) modified gravity models. Phys. Rev. D 2008, 78. [Google Scholar] [CrossRef]
- Mamon, G.A.; Lokas, E.L. Dark matter in elliptical galaxies—II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc. 2005, 363, 705–722. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harko, T.; Lobo, F.S.N. Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies 2014, 2, 410-465. https://doi.org/10.3390/galaxies2030410
Harko T, Lobo FSN. Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies. 2014; 2(3):410-465. https://doi.org/10.3390/galaxies2030410
Chicago/Turabian StyleHarko, Tiberiu, and Francisco S.N. Lobo. 2014. "Generalized Curvature-Matter Couplings in Modified Gravity" Galaxies 2, no. 3: 410-465. https://doi.org/10.3390/galaxies2030410
APA StyleHarko, T., & Lobo, F. S. N. (2014). Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies, 2(3), 410-465. https://doi.org/10.3390/galaxies2030410