Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter
Abstract
:1. Introduction
2. Orbital Precessions
3. Confrontation with the Observations
3.1. Discussion of the Existing Constraints
3.2. Preliminary Upper Bounds From the Planetary Perihelion Precessions
[36] | ||||
---|---|---|---|---|
Mercury | ||||
Venus | ||||
Earth | ||||
Mars | ||||
Jupiter | ||||
Saturn |
4. Summary and Conclusions
Conflicts of Interest
References
- Nordtvedt, K. Equivalence Principle for Massive Bodies. II. Theory. Phys. Rev. 1968, 169, 1017–1025. [Google Scholar] [CrossRef]
- Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611–628. [Google Scholar] [CrossRef]
- Will, C.M.; Nordtvedt, K., Jr. Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism. Astrophys. J. 1972, 177, 757–774. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Nordtvedt, K., Jr.; Will, C.M. Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity. Astrophys. J. 1972, 177, 775–792. [Google Scholar] [CrossRef]
- Nordtvedt, K. Post-Newtonian Gravitational Effects in Lunar Laser Ranging. Phys. Rev. D 1973, 7, 2347–2356. [Google Scholar] [CrossRef]
- Ashby, N.; Bender, P.L.; Wahr, J.M. Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D 2007, 75, 022001. [Google Scholar] [CrossRef]
- Turyshev, S.G. Experimental Tests of General Relativity. Annu. Rev. Nucl. Part. Sci. 2008, 58, 207–248. [Google Scholar] [CrossRef]
- Seidelmann, P.K.; Archinal, B.A.; A’Hearn, M.F.; Conrad, A.; Consolmagno, G.J.; Hestroffer, D.; Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; et al. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 2007, 98, 155–180. [Google Scholar] [CrossRef]
- Warburton, R.J.; Goodkind, J.M. Search for evidence of a preferred reference frame. Astrophys. J. 1976, 208, 881–886. [Google Scholar] [CrossRef]
- Hellings, R.W. Testing Relativity with Solar System Dynamics. In General Relativity and Gravitation Conference; Bertotti, B., de Felice, F., Pascolini, A., Eds.; Reidel: Dordrecht, The Netherland, 1984; pp. 365–385. [Google Scholar]
- Nordtvedt, K. Probing gravity to the second post-Newtonian order and to one part in 10 to the 7th using the spin axis of the sun. Astrophys. J. 1987, 320, 871–874. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Testing local Lorentz invariance of gravity with binary-pulsar data. Phys. Rev. D 1992, 46, 4128–4132. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Testing for preferred-frame effects in gravity with artificial Earth satellites. Phys. Rev. D 1994, 49, 1693–1706. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quantum Grav. 2012, 29, 215018. [Google Scholar] [CrossRef]
- Hinshaw, G.; Weiland, J.L.; Hill, R.S.; Odegard, N.; Larson, D.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Jarosik, N.; et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results. Astrophys. J. Suppl. Ser. 2009, 180, 225–245. [Google Scholar] [CrossRef]
- Beck, J.G. A comparison of differential rotation measurements—(Invited Review). Sol. Phys. 2000, 191, 47–70. [Google Scholar] [CrossRef]
- Snodgrass, H.B.; Ulrich, R.K. Rotation of Doppler features in the solar photosphere. Astrophys. J. 1990, 351, 309–316. [Google Scholar] [CrossRef]
- Ulrich, R.K. The influence of partial ionization and scattering states on the solar interior structure. Astrophys. J. 1982, 258, 404–413. [Google Scholar] [CrossRef]
- Bertotti, B.; Farinella, P.; Vokrouhlický, D. Physics of the Solar System; Kluwer Academic Press: Dordrecht, The Netherland, 2003. [Google Scholar]
- Kopeikin, S.; Efroimsky, M.; Kaplan, G. Relativistic Celestial Mechanics of the Solar System; Wiley-VCH: Berlin, Germany, 2011. [Google Scholar]
- Calura, M.; Fortini, P.; Montanari, E. Post-Newtonian Lagrangian planetary equations. Phys. Rev. D 1997, 56, 4782–4788. [Google Scholar] [CrossRef]
- Calura, M.; Montanari, E.; Fortini, P. Lagrangian planetary equations in Schwarzschild spacetime. Class. Quantum Gravity 1998, 15, 3121–3129. [Google Scholar] [CrossRef]
- Souami, D.; Souchay, J. The solar system’s invariable plane. Astron. Astrophys. 2012, 543, A133. [Google Scholar] [CrossRef]
- Javaraiah, J. A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun’s Subsurface, Surface, Corona, and Sunspot Groups. Sol. Phys. 2013, 287, 197–214. [Google Scholar] [CrossRef]
- Javaraiah, J. Long-Term Variations in the Solar Differential Rotation. Sol. Phys. 2003, 212, 23–49. [Google Scholar] [CrossRef]
- Database. Available online: http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt (accessed on 22 September 2014).
- Stairs, I.H. Testing General Relativity with Pulsar Timing. Living Rev. Relat. 2003, 6. [Google Scholar] [CrossRef]
- Bell, J.F. A Tighter Constraint on Post-Newtonian Gravity Using Millisecond Pulsars. Astrophys. J. 1996, 462, 287. [Google Scholar] [CrossRef]
- Bell, J.F.; Damour, T. A new test of conservation laws and Lorentz invariance in relativistic gravity. Class. Quantum Gravity 1996, 13, 3121–3127. [Google Scholar] [CrossRef]
- Damour, T.; Schaefer, G. New tests of the strong equivalence principle using binary-pulsar data. Phys. Rev. Lett. 1991, 66, 2549–2552. [Google Scholar] [CrossRef] [PubMed]
- Wex, N. Small-eccentricity binary pulsars and relativistic gravity. In Proceedings of the 177th Colloquium of the IAU, Bonn, Germany, 30 August–3 September 1999.
- Stairs, I.H.; Faulkner, A.J.; Lyne, A.G.; Kramer, M.; Lorimer, D.R.; McLaughlin, M.A.; Manchester, R.N.; Hobbs, G.B.; Camilo, F.; Possenti, A.; et al. Discovery of Three Wide-Orbit Binary Pulsars: Implications for Binary Evolution and Equivalence Principles. Astrophys. J. 2005, 632, 1060–1068. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Nonperturbative strong-field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 1993, 70, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Pitjeva, E.V. Updated IAA RAS Planetary Ephemerides-EPM2011 and Their Use in Scientific Research. Sol. Syst. Res. 2013, 47, 386–402. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431–3437. [Google Scholar] [CrossRef]
- Avalos-Vargas, A.; Ares de Parga, G. The precession of the orbit of a charged body interacting with a massive charged body in General Relativity. Eur. Phys. J. Plus 2012, 127, 155. [Google Scholar] [CrossRef]
- Xie, Y.; Deng, X.M. gravity: Effects on astronomical observations and Solar system experiments and upper bounds. Mon. Not. R. Astron. Soc. 2013, 433, 3584–3589. [Google Scholar] [CrossRef]
- Cheung, Y.K.E.; Xu, F. Constraining the String Gauge Field by Galaxy Rotation Curves and Perihelion Precession of Planets. Astrophys. J. 2013, 774, 65. [Google Scholar] [CrossRef]
- Deng, X.M.; Xie, Y. Preliminary limits on a logarithmic correction to the Newtonian gravitational potential in the solar system. Astrophys. Space Sci. 2013, 350, 103–107. [Google Scholar] [CrossRef]
- Li, Z.W.; Yuan, S.F.; Lu, C.; Xie, Y. New upper limits on deviation from the inverse-square law of gravity in the solar system: A Yukawa parameterization. Res. Astron. Astrophys. 2014, 14, 139–143. [Google Scholar] [CrossRef]
- Nordtvedt, K. Improving gravity theory tests with solar system “grand fits”. Phys. Rev. D 2000, 61, 122001. [Google Scholar] [CrossRef]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 1918, 19, 156–163. (In German) [Google Scholar]
- Damour, T.; Schafer, G. Higher-order relativistic periastron advances and binary pulsars. Nuovo Cimento B 1988, 101, 127–176. [Google Scholar] [CrossRef]
- Wex, N. The second post-Newtonian motion of compact binary-star systems with spin. Class. Quantum Gravity 1995, 12, 983–1005. [Google Scholar] [CrossRef]
- Iorio, L. Constraints on the Preferred-Frame α1, α2 Parameters from Solar System Planetary Precessions. Int. J. Mod. Phys. D 2014, 23, 1450006. [Google Scholar] [CrossRef]
- Fienga, A.; Laskar, J.; Kuchynka, P.; Manche, H.; Desvignes, G.; Gastineau, M.; Cognard, I.; Theureau, G. The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 2011, 111, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Fienga, A.; Manche, H.; Laskar, J.; Gastineau, M.; Verma, A. INPOP new release: INPOP10e. 2013; arXiv:1301.1510. [Google Scholar]
- Verma, A.K.; Fienga, A.; Laskar, J.; Manche, H.; Gastineau, M. Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. Astron. Astrophys. 2014, 561, A115. [Google Scholar] [CrossRef] [Green Version]
© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter. Galaxies 2014, 2, 482-495. https://doi.org/10.3390/galaxies2040482
Iorio L. Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter. Galaxies. 2014; 2(4):482-495. https://doi.org/10.3390/galaxies2040482
Chicago/Turabian StyleIorio, Lorenzo. 2014. "Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter" Galaxies 2, no. 4: 482-495. https://doi.org/10.3390/galaxies2040482
APA StyleIorio, L. (2014). Orbital Motions and the Conservation-Law/Preferred-Frame α3 Parameter. Galaxies, 2(4), 482-495. https://doi.org/10.3390/galaxies2040482