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Abstract: We study an influence of the leading coefficient of the parameterized line element of the
spherically symmetric, static black hole on the capture of massless and massive particles. We have
shown that negative (positive) values of ε decreases (increases) the radius of characteristic circular
orbits and consequently, increases (decreases) the energy and decreases (increases) the angular
momentum of the particle moving along these orbits. Moreover, we have calculated and compared
the capture cross section of the massive particle in the relativistic and non-relativistic limits. It has
been shown that in the case of small deviation from general relativity the capture cross section for the
relativistic and nonrelativistic particle has an additional term being linear in the small dimensionless
deviation parameter ε.
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1. Introduction

General relativity is considered as the most satisfactory theory of gravitation due to its
conceptual and structural elegance, as well as its reasonable agreement with experimental
and astronomical observations [1]. The following three observational classical tests are
called experimental verification of the Einstein theory in the weak field and slow motion
regime: the perihelion precession of the orbit of the planet Mercury, the deflection of the
light ray as it passes close to the sun, and the gravitational redshift of light. Consequently,
all three tests verify the correctness of general relativity in the weak gravitational field
regime. This fact has served as a base for the development of new alternative theories of
gravity that perfectly match with general relativity in the weak field regime, but in the
strong field regime the main differences could be risen. The best laboratory to test the
theory in a strong gravitational field is a black hole (and a neutron star) close environment.
Thanks to the development of new modern technologies in recent years, we have obtained
several observational breakthrough events such as the detected gravitational waves from
the coalescence of two massive black holes or neutron stars in close binaries by the LIGO
and Virgo scientific collaborations (for example, see [2–6]) and the discovery of the first
image of the supermassive black hole at the center of the elliptic galaxy M87 by the Event
Horizon Telescope (EHT) collaboration [7] that gave us an initial possibility to check
general relativity in the strong field regime. However, there is still room for alternative
theories of gravity [8] as the current sensitivity of technology is not enough to fully exclude
them by testing the no-hair theorem and general relativity. With the further development
of detectors and the new obtained observational data in the near future, we hopefully
will be able to check the validity of all theories one by one in the strong field regime.
However, there is a very compact method in which all black hole geometries are written in
the generic, model independent form. The generic spacetime geometry could be chosen

Galaxies 2021, 9, 65. https://doi.org/10.3390/galaxies9030065 https://www.mdpi.com/journal/galaxies

https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0002-7853-186X
https://orcid.org/0000-0002-1232-610X
https://doi.org/10.3390/galaxies9030065
https://doi.org/10.3390/galaxies9030065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/galaxies9030065
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies9030065?type=check_update&version=2


Galaxies 2021, 9, 65 2 of 10

in such a way that can be used to measure deviations from general relativity via the
expansion parameters [9,10] and, depending on the data from observation, one can find
the constraints for the appropriate parameters [11–18].

In this paper, we study the capture of massless and massive particles by the black
hole whose line element is the parameterized by the Rezzolla–Zhidenko method presented
in [10] in terms of the bumpy parameters ε and ai with i = 0, 1, 2, . . . that defines the
deviation from the general relativity. For simplicity, in order to analyze the effect of the
parameters to the motion and physical quantities of the particle in non-general relativity,
we restrict ourselves to the first two expansion parameters ε, a0, and b0. However, observa-
tional constraints on the PPN parameters impose a0 = 0 = b0 [10]. Therefore, throughout
the paper, we study the effect of parameter ε on the motion of the massless and massive
particles. The paper is organized as follows: in Section 2, the equations of motion are
explored in the spacetime of a spherically symmetric, static black hole described in the
parameterized form. In the next Sections 3 and 4, the motion of the photon and the massive
particle including the capture by the black hole have been investigated. The last Section 5 is
devoted to the discussion of the main results and future prospects. Throughout the paper,
we use the geometrized units in which the Newtonian gravitational constant G, and the
speed of light c are G = c = 1.

2. Equations of Motion

According to [10], the line element of a spherically symmetric, static black hole can be
written as

ds2 = −N2(r)dt2 +
B2(r)
N2(r)

dr2 + r2dΩ2 , (1)

where the metric functions N and B depend on the radial coordinate r only and
dΩ2 ≡ dθ2 + sin2 θdφ2 represents the solid angle element. Through the event horizon
r0, one introduces a new dimensionless variable that allows us to compact the radial
coordinate as

x ≡ 1− r0

r
, (2)

where the event horizon is recovered when x = 0 while spatial infinity corresponds to
x = 1, thus 0 ≤ x ≤ 1. Furthermore, we assume that

N2(r) = xA(x) . (3)

The functions A and B are expanded in terms of the new parameters as

A(x) = 1− ε(1− x) + (a0 − ε)(1− x)2 + Ã(x)(1− x)3 ,

B(x) = 1 + b0(1− x) + B̃(x)(1− x)2 ,

where ε, a0, and b0 are new coefficients and Ã and B̃ describe the spacetime metric at the
horizon and at infinity. It is important to notice that the dimensionless coefficient ε is
related to the event horizon by

ε = −
(

1− 2M
r0

)
, (4)

where M is the ADM mass. ε measures the deviations of the event horizon r0 from 2M, and
it is an important parameter because one can recast all the other coefficients in terms of it.
The functions Ã(x) and B̃(x) are expressed in terms of continued fractions (i.e., Padé series)
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Ã(x) =
a1

1 +
a2x

1 +
a3x

1 + . . .

,

B̃(x) =
b1

1 +
b2x

1 +
b3x

1 + . . .

,

where a1, a2, a3, . . . and b1, b2, b3, . . . are dimensionless constants. In this paper, for simplicity
we consider terms up to O(x3) order, i.e., ai = 0, and bi = 0 where i = 1, 2, 3, . . .. However,
observational constraints, i.e., the Solar System tests of the general relativity at the first
PPN parameters, which were done by C. Will in [1] impose that the values of a0 and b0 are
as small as a0 ∼ b0 ∼ 10−4 [10]. Since these values are very small and in the strong field
regime (when r is small) where we focus on, their contributions to the spacetime metric are
negligible. Therefore, throughout the paper, we adopt the constraint a0 = 0 = b0. Then,
the second metric function takes the form of B(r) = 1 and the spacetime line element (1)
reduces to the following form:

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2dΩ2 . (5)

Now, one can expand the metric function N2(r) in terms of the expansion parameters as

N2(r) =
(

1− r0

r

)[
1− ε

r0

r
− ε
( r0

r

)2
]

. (6)

If ε = 0, one recovers the standard spherically symmetric Schwarzschild spacetime.
At this point, there is all the background necessary to proceed with the calculations.

In order to investigate the motion of both massive and massless particles using the same
equations of motion, by setting the mass of the particle zero in the latter one, one can
easily recover the former case. One can easily notice from the symmetry of the spacetime
metric (5) that the momenta corresponding to the time and azimuthal coordinates are
conserved due to the stationarity and spherical symmetry, and these conserved momenta
are called energy, E, and angular momentum, L, of the particle, respectively, as

N2(r)ut = E ,

r2uφ = L .

Hereafter, instead of the energy and angular momentum of the massive particle with mass
m, we use the specific energy, E → E/m, and specific angular momentum, L → L/m,
notions which define the ones per unit mass. Moreover, for simplicity we consider the
motion of the particle as confined at the equatorial plane and by using the normalization
condition uµuµ = −1, one can find the radial velocity of the particle as

(ur)2 = E2 −Veff, Veff = N2(r)
(

ε +
L2

r2

)
, (7)

where ε = 0, 1 for the massless and massive particles, respectively. The effective potential
can be separated into two components with one coming from general relativity and the
second being of the additional deviation term from ε as

Veff = VGR
eff + VRZ

eff , (8)
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where

VGR
eff =

(
1− r0

r

)(
ε +

L2

r2

)
,

VRZ
eff = − r0

r

(
1−

r2
0

r2

)(
ε +

L2

r2

)
ε , (9)

Thus, the motion of the particle is fully characterized by the two conserved physical
quantities: E and L, in terms of the spacetime parameters: r0 and ε. In particular, the
massive particle moving along the circular orbit has no radial velocity and it is located at
the extrema of the effective potential as

ur = 0 , V′eff = 0 . (10)

From the above conditions, one can easily find the expressions of the energy and
angular momentum of the particle moving along the circular orbit as

E =

√
2(r− r0)

[
r2 − r0ε(r + r0)

]√
2r6 − 3r5r0(ε + 1) + 5r3r3

0ε
,

L =
r
√

r0

√
r2(ε + 1)− 3r2

0ε√
2r3 − 3r2r0(ε + 1) + 5r3

0ε
. (11)

Moreover, if the condition ε << 1 is applied, the above expressions can be written as
the following

E = EGR + δEε + O(ε2) , (12)

L = LGR + δLε + O(ε2) ,

where

EGR =

√
2(r− r0)√

r
√

2r− 3r0
, δE = −

(r− r0)
(
r2r0 − 2rr2

0 − r3
0
)

√
2r5/2(2r− 3r0)3/2

,

LGR =
r
√

r0√
2r− 3r0

, δL =

√
r0
(
r3 − 3rr2

0 + 2r3
0
)

r(2r− 3r0)3/2 . (13)

One can find a radius of the innermost stable circular orbit (ISCO) by solving the equation
V′′eff = 0 together with the conditions (10). For small ε, the radius of ISCO is

rISCO = 3r0 +
8
9

r0ε + O(ε2) . (14)

The energy and angular momentum of this particle are found to be

EISCO =
2
√

2
3
− 2
√

2
81

ε + O(ε2) ,

LISCO =
√

3r0 +
20

9
√

3
r0ε + O(ε2) . (15)

Calculations have shown that for negative (positive) values of ε, the radius of the ISCO
decreases (increases) and consequently, the energy increases (decreases) and the angular
momentum of the particle moving along the ISCO decreases (increases).
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3. Capture of Photons

In this section, we explore the motion of the photon and its capture by a black hole
whose line element is given by (5). In both studies, the determination of the impact
parameter, b, that defines the closest approach distance of a photon to a black hole that can
still pass through is very crucial. It is a well-known fact that the photon passing through
the black hole spacetime can approach the black hole until the photonsphere, beyond
which it moves along the photonsphere or is captured by the black hole. Therefore, the
photonsphere is a boundary between the capture and escape cases. Therefore, our main
task in this section is to find the impact parameter, b, of the photon. The impact parameter
is defined by b = Lcr/E, with Lcr being the critical angular momentum of the photon. For
simplicity, one can write the equation of motion (7) for the photon (ε = 0) by applying the
transformation λ→ λL for the affine parameter in the following polynomial form:

(ur)2 =
1
b2 −

N2(r)
r2 . (16)

The right hand side of this equation can be written in the monic polynomial form as

b2r5(ur)2 = r5 − b2r3 + b2r0(ε + 1)r2 − b2r3
0ε . (17)

It is well-known that the positive zeros (> r0) of the right hand side of (17) define the
turning points. One can easily notice from the shape of the effective potential of photon
Figure 1 that the possible number of real turning points can be up to two (r1 and r2).
Depending on the value of the impact parameter of the photon passing close to the black
hole the following scenarios can happen:

(i) Two turning points r0 < r1 < r2: in this case b > bcr, i.e., either the photon coming
from infinity reaches the periastron (r2) and again escapes to infinity, or if the photon
is emitted from near the horizon (r0 < r < r1), it reaches an apastron (r1) and falls
back to the black hole.

(ii) Ine turning point r0 < r1: in this case b = bcr, i.e., the photon moves along an unstable
circular orbit that corresponds to the peak of the effective potential. Any deviation
from the trajectory causes the photon to fall into or escape from the black hole.

(iii) No turning point: in this case b < bcr, i.e., either the photon coming from infinity falls
into the black hole or the photon emitted from near the horizon escapes to infinity.

Figure 1. Left panel: Radial profile of the effective potential of photon for the parameter ε in the range [−0.4, 0.4] with
0.05 steps. Where gray, black, and brown curves correspond to ε < 0, ε = 0, and ε > 0 cases, respectively. Right panel: a
location of maximum of the effective potential as a function of ε.

As it was mentioned in the second point of the above cases, the critical angular
momentum corresponds to the maximum of the effective potential where two turning
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points merge and corresponds to the unstable photonsphere that is located at (or see right
panel of Figure 1)

rps =
3
2

r0 +
7

18
r0ε + O(ε2) . (18)

Two turning points merge at the photonsphere when the discriminant of the polynomial
vanishes. Thus, to find the critical impact parameter, we must solve Equation whose
discriminant is equal to zero (∆ = 0). To find the discriminant, we set the Sylvester matrix
for the resultant of polynomial equal to zero as

det



1 0 −b2 A 0 B 0 0 0
0 1 0 −b2 A 0 B 0 0
0 0 1 0 −b2 A 0 B 0
0 0 0 1 0 −b2 A 0 B
5 0 −3b2 2A 0 0 0 0 0
0 5 0 −3b2 2A 0 0 0 0
0 0 5 0 −3b2 2A 0 0 0
0 0 0 5 0 −3b2 2A 0 0
0 0 0 0 5 0 −3b2 2A 0


= 0 , (19)

where

A = b2r0(ε + 1) , B = −b2r3
0ε .

Equation (19) gives the following equation:

4b6(1− 2ε)2(ε + 4)− 3b4r2
0(ε + 1)2{ε[36ε(ε + 3)− 167] + 36}

−3750b2r4
0ε2(ε + 1) + 3125r6

0ε3 = 0. (20)

Due to the cumbersome form of the solution of (20), we do not report its full analytic
expression, instead we present the dependence of the critical impact parameter on the
spacetime parameter ε in Figure 2.

Figure 2. Dependence of the critical impact parameter of photon on the parameter ε. Here a junction
with the vertical line at ε = 0 corresponds to the one in general relativity.

For the small values of ε, the critical impact parameter of the photon can be written as

bcr =
3
√

3
2

r0 +
5
√

3
6

r0ε + O(ε2) . (21)

If ε = 0 is imposed, one recovers bcr = 3
√

3r0/2 [19–23].
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The capture cross section of the photon by the black hole in small deviation from
general relativity is found to be

σcapt =
27πr2

0
4

(
1 +

10
9

ε

)
+ O(ε2) . (22)

One can notice from the above given results that negative (positive) values of ε decrease (in-
crease) the radius of the photonsphere and the critical impact parameter of the photon, and
consequently, decrease (increase) the capture cross section of the photon by the black hole.

4. Capture of Massive Particles

In this section, we repeat all calculations presented in the previous section, but now
for the massive particle. Again, all the introductory points about the turning points are
similar to the case of the photon presented in the previous section. To find the value of the
critical angular momentum for the massive particle being enough to escape from the black
hole, one needs to investigate again the turning points. To find the turning points, we write
the equation of motion (7) with ε = 1 in the polynomial form as

r5(ur)2 =
(

E2 − 1
)

r5 + r0(ε + 1)r4 − L2r3 + r0

[
L2(ε + 1)− r2

0ε
]
r2 − L2r3

0ε . (23)

Since in the case of a massive particle, the effective potential tends to one rather than zero
(see Figure 3), the value of the critical impact parameter is defined by bcr = Lcr/

√
E2 − 1,

and the possible number of real turning points can be up to three (r1, r2, and r3).

Figure 3. The same as the left panel of Figure 1, but for the massive particle.

Depending on the value of the impact parameter of the particle passing close to the
black hole, the following scenarios can happen:

(i) Three turning points r0 < r1 < r2 < r3: in this case b > bcr, i.e., either the particle
moves along the stable elliptic orbit between periastron (r2) and apastron (r3), or if the
particle is emitted from near the horizon (r0 < r < r1), it reaches an apastron (r1) and
falls back to the black hole.

(ii) Two turning points r0 < r1 < r2: this corresponds to b > bcr, i.e., either the particle
coming from infinity reaches the periastron (r2) and escapes back to infinity along the
hyperbolic orbit, or if it is emitted close to the event horizon, it reaches an apastron
(r1) and falls back to the black hole.

(iii) One turning point r0 < r1: in this case b = bcr, i.e., the particle moves along the
unstable circular orbit that corresponds to the peak of the effective potential.

(iv) No turning point: in this case b < bcr, i.e., either the particle coming from infinity falls
into the black hole or the particle emitted from near the horizon escapes to infinity.

As it was pointed out in the third item the critical impact parameter corresponds to
the case of one turning point. In the case of the one turning point, two turning points r1 and
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r2 merge into one and in this case the discriminant vanishes (∆ = 0). Again by using the
Sylvester matrix we find the equation of the discriminant, however, due to its cumbersome
form, we report here only its form for the small ε approximation as

4L2
[
4
(

E2 − 1
)

E2 −
(

27E4 − 36E2 + 8
)

L2r2
0 − 4r4

0

]
+ε
[
−60

(
E2 − 1

)
L6 +

(
285E4 − 348E2 + 56

)
L4r2

0

−4
(

90E4 − 112E2 + 17
)

L2r4
0 − 64r6

0

]
= 0 . (24)

The solution of (24) is quite long even in the small ε limit. Therefore, we do not write it
here, instead we present the absorption cross section of the relativistic and non-relativistic
particles, which is given by σ = πb2

cr. For the relativistic particle the capture cross section
in the case of small deviation from general relativity is determined by

σcapt =
27πr2

0
4

[
1 +

2
3E2 +

(
10
9

+
76

81E2

)
ε

]
+ O

(
E−4, ε2

)
, (25)

that perfectly matches the one for the Schwarzschild black hole in the general relativity
limit [19]. Moreover, in the photon limit, i.e., E→ ∞, we recover again the capture cross
section of the photon (22).

For the low energy limit or in the non-relativistic limit, i.e., E = 1 + β2/2, where β is
the velocity of the particle relative to the speed of light as β = v/c, the cross section takes
the following form:

σcapt =
4πr2

0
β2

(
1 +

3
2

ε

)
+ O

(
β2, ε2

)
. (26)

In the general relativity limit, one recovers the result presented in [19].

5. Conclusions

In this paper, we have studied the capture of massless and massive particles by the
spherically symmetric black hole whose line element is described by the Rezzolla–Zhidenko
parameterization [10] up to O(x3) terms that takes only the coefficient ε as nonvanishing,
including the PPN constraints. We have shown that negative (positive) values of ε decrease
(increase) the radii of characteristic circular orbits, such as the photonsphere, marginally
bound and innermost stable circular orbits. The results related to the photonsphere can be
directly related to the shadow of the black hole whose radius is determined by the critical
impact parameter. It stands for that with increasing (decreasing) the value of parameter ε,
the radius of the shadow of the black hole increases (decreases). Due to the phenomenon
that the increase in the values of the parameter ε increases the radius of characteristic
circular orbits, the energy and the angular momentum of the particle moving along these
circular orbits increase (decrease).

Moreover, we have calculated and compared the capture cross section of the massive
particle in relativistic and non-relativistic limits. It has been shown that in the case of
small deviation from general relativity the capture cross Section of the relativistic and
nonrelativistic particles have an additional term being linear in the small dimensionless
deviation parameter ε. It has been shown that the massive particles always have bigger
capture cross sections than the photon.

We underline that the dependence of spherically symmetric black hole cross sections
on the dimensionless deviation parameter ε can be proposed as a powerful tool to determine
the valid theory of gravity in the strong field regime using observational data on the highly
energetic processes in a black hole close environment.
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