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Abstract: Within the domain of tribology, enterprises and research institutions are constantly working
on new concepts, materials, lubricants, or surface technologies for a wide range of applications. This
is also reflected in the continuously growing number of publications, which in turn serve as guidance
and benchmark for researchers and developers. Due to the lack of suited data and knowledge bases,
knowledge acquisition and aggregation is still a manual process involving the time-consuming review
of literature. Therefore, semantic annotation and natural language processing (NLP) techniques can
decrease this manual effort by providing a semi-automatic support in knowledge acquisition. The
generation of knowledge graphs as a structured information format from textual sources promises
improved reuse and retrieval of information acquired from scientific literature. Motivated by this,
the contribution introduces a novel semantic annotation pipeline for generating knowledge in the
domain of tribology. The pipeline is built on Bidirectional Encoder Representations from Transform-
ers (BERT)—a state-of-the-art language model—and involves classic NLP tasks like information
extraction, named entity recognition and question answering. Within this contribution, the three
modules of the pipeline for document extraction, annotation, and analysis are introduced. Based on
a comparison with a manual annotation of publications on tribological model testing, satisfactory
performance is verified.

Keywords: tribo-testing; tribo-informatics; machine learning; artificial intelligence; natural language
processing; tribAIn; BERT

1. Introduction

The emergence of efficient and sustainable technologies represents a major challenge
for the 21st century. While renewable energy sources are increasingly replacing fossil fuels
in order to reduce CO2 emissions, the influence of friction and wear on the energy efficiency
of a wide range of technical processes has hardly reached public awareness. However,
these offer considerable potential for saving CO2 and resources. Holmberg and Erdemir [1]
estimated that roughly 23% of the global primary energy is consumed to overcome friction
and to repair/replace worn components in tribo-technical systems. The authors predicted
that these energy losses could be reduced by up to 40% through tribological advances.
Accordingly, companies and research institutions are focusing on new concepts, materials,
lubricants, or surface technologies in a wide range of applications. This is also reflected in
the continuously growing number of publications related to the domain of tribology, which
in turn serve as inspiration, guidance, and benchmark for researchers and developers,
but which are almost impossible to keep up with due to their vast quantity and the
associated complexity and diversity. Thereby, profound data bases in combination with
machine learning (ML) and artificial intelligence (AI) approaches can support sorting
through the complexity of patterns and identifying trends [2]. Therefore, they are more
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and more employed in the analysis, design, optimization, or monitoring of tribological
systems in various fields [3], ranging from composite materials [4], drive technology [5,6],
manufacturing [7], surface engineering [8,9], or lubricant formulation [10,11]. As pointed
out by Marian and Tremmel [12], novel findings and additional value in the domain of
tribology can especially be created by extracting knowledge from available literature and
drawing higher-level conclusions. For example, Kurt and Oduncuoglu [13] trained artificial
neural networks (ANNs) with data from literature to study the influence of normal load,
sliding speed as well as the type and weight fraction of various reinforcement phases within
a polyethylene matrix on the resulting friction and wear behavior. Similarly, Vinoth and
Datta [14] utilized 153 data sets from literature to predict mechanical properties of carbon
nanotube or graphene reinforced polyethylene in dependency of composition, particle
size, and bulk properties by means of an ANN. Subsequently, multi-objective optimization
by genetic algorithms and corresponding experimental validation actually demonstrated
improved tribological properties compared to the references. Using 80 data sets from
four-ball-tests and 120 data sets from pin-on-disk experiments with varying base oils and
friction modifiers as reported in literature as well as an ANN and a genetic algorithm,
Bhaumik et al. [15] optimized the lubricant formulation and experimentally validated their
results. The aforementioned studies indicate the potential through leveraging knowledge
from the available literature. However, the data acquisition and processing still are very
manual in the field of tribology, involving the review of publications and the extraction of
relevant (most frequently textually/descriptive) information, which limits the generation
of sophisticated and broad databases and thus the further use of ML/AI [12].

High manual efforts to acquire and curate information and knowledge for further
processing are not limited to the domain of tribology and is known as “knowledge ac-
quisition bottleneck” [16]. Although the latter has been discussed since the rise of expert
systems in the 1980s [17], for instance with the purpose of tribological design decisions [18]
or failure diagnosis [19] to mention two examples from the tribological domain, knowledge
acquisition and thus knowledge engineering are still quite manual and time-consuming
tasks. Studer et al. [20] argue that knowledge engineering is a modeling activity, which goes
beyond the simple transfer of directly accessible knowledge into an appropriate computer
representation towards a model construction process [21]. In consequence, knowledge
structuring and modeling plays an important role in the knowledge acquisition process.
Hoekstra [22] therefore refers to a “knowledge reengineering bottleneck”, which highlights
the general difficulty of continuously reusing existing generic and assertional knowledge.
The latter refers to data-level or object knowledge, while generic knowledge concerns
schema-level describing conceptual knowledge and is represented as a domain theory to
structure the respective domain. This includes the decision on used vocabulary to describe
the domain and a representation form to formalize the model. Chandrasegaran et al. [23],
as well as Verhagen et al. [24], emphasized the importance of semantic interoperability for
knowledge reuse and sharing, which is frequently dealt with ontological models repre-
sented in formal logics. According to Gruber [25], an ontology is an “explicit specification
of a conceptualization”. This means that an ontology can be used to explicitly define a
domain model for sharing and reusing structured knowledge by humans and machines. In
other domains, e.g., bioinformatics, ontologies are widely used for knowledge structuring,
data integration and decision support systems [26]. One successful example is the Gene On-
tology (GO) [27], which provides broadly accepted vocabulary for annotating gene product
data from different databases and sources. Exploiting ontologies for accessing and reusing
experimental knowledge has also been pursued in the domain of tribology. One example
is the “OntoCommons” project (https://ontocommons.eu/industrial-domain-ontologies,
accessed on 14 December 2021), where a tribological use case aimed at reducing efforts
in tribological experiments by reusing existing knowledge. Thereby, Esnaola–Gonzalez
and Fernandez [28] argue, that semantic technologies, and more specifically ontologies
propose a suited representation for the vaguely documented results of experiments. Within
the domain of materials science, the “European Materials Modelling Ontology” (EMMO,
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https://emmc.info/emmo-info/, accessed on 14 December 2021) provides a represen-
tational ontology based on materials modelling and characterization knowledge. Fur-
thermore, we recently introduced the tribAIn ontology [29] for reusing knowledge from
tribological experiments. The domain ontology was built for the purpose of providing a
common and machine-readable schema for structuring tribological experiments intending
to improve reuse and shareability of testing results from different sources. Since this contri-
bution relies on the tribAIn ontology, more detailed information is provided in Section 2.2.
In addition to schema-level generic knowledge, assertional knowledge refers to specific
knowledge objects, e.g., results from individual experiments. As mentioned before, as-
sertional knowledge from experiments in the domain of tribology is usually published
in natural language, thus publications are a well-suited knowledge source for acquiring
the current state of tribological findings. Dealing with natural language sources is usually
problematic since it is ambiguous and unstructured. Moreover, textual descriptions may be
incomplete in the sense of formal models. Due to the time-consuming process of acquiring
and structuring knowledge from textual sources in systematic literature studies or man-
ual database construction, those knowledge bases are not suited for long-term reuse and
continuous extension. A successful example for generating structured information from
textual sources is the DBpedia project [30], which extracts structured data from Wikipedia
content using templates and pattern matching techniques. The structured format then
allows querying the vast content in a sophisticated way instead of searching articles by
keywords and processing the information manually. In terms of the results from tribological
experiments, publications—similar to Wikipedia—contain structured (e.g., operational pa-
rameters, wear rate, coefficient of friction, etc.) and unstructured knowledge (for example
interpretive description and discussion of results). By extracting the information from text
in a structured way, the knowledge can be queried, processed, and compared. Thus, one
could query for tribological experiments on desired materials and testing conditions, for
example dry-running pin-on-disk model tests with various reinforcement phases within
composites or deposited coatings on the specimen surfaces.

A large-scale employment of aforementioned knowledge extraction approaches, how-
ever, strongly demands for strategies for (semi-)automatically streamlining data acquisition.
Therefore, this contribution aims at the introduction of a semantic annotation pipeline
based upon natural language processing (NLP) methods in order to overcome the “knowl-
edge reengineering bottleneck” in the domain of tribology. The motivation behind this
contribution is mainly inspired by the current practice in biomedical research, where a
massive growth in published research articles led to increasing attention for automated
information extraction methods to support human researchers [31,32]. Regarding similar
challenges, like sharing research outcomes via natural language publications, semantic
ambiguity and interdisciplinary nature of the domain, this contribution is a first attempt to
apply (semi-)automatic knowledge acquisition techniques within the domain of tribology.
Therefore, while the methods used within this contribution have already shown potential
in similar knowledge acquisition and structuring issues within the biomedical domain,
this paper aims at the effective use of these methods in tribology. The contribution is
structured as follows: First, the applied methods for the acquisition pipeline are introduced,
containing a description of the underlying domain theory of tribological test methods as
a generic schema as well as the relevant semantic web and NLP techniques, especially
named entity recognition and question answering under the use of the BERT language
model [33]. The semantic annotation pipeline and packages used for implementation are
summarized in Section 3. Subsequently, the access-level and performance of the pipeline
are demonstrated in Section 4, including a description of the Web-User-Interface and a
technical evaluation of the single modules of the pipeline. Finally, we discuss the potentials
and limitations of the pipeline, as well as connections and outlooks to further approaches
in Section 5.

https://emmc.info/emmo-info/
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2. Theory and Methods
2.1. Domain Theory from Tribology

As mentioned before, generic knowledge builds a domain theory, which can be repre-
sented as a formal ontology. In terms of semantic annotation, the domain theory is used
as structured metadata, the unstructured resource is enriched with. Therefore, relevant
concepts and relations from established methodologies of tribological testing are used to
build the schema for the semantic annotation pipeline. Generally, a tribological system
can be described by its system structure, input and output variables and their functional
conversion within the open or closed system boundary [34] (Figure 1). The system structure
consists of the relatively moving body and counter-body, which are rubbing against each
other and may be completely or partially separated by an intermediate medium (liquid or
gaseous). Operational input variables, such as loads, kinematics, duration, and tempera-
tures, can be summarized in the stress collective. Depending on the latter, as well as any
disturbance variables and the system structure, the body and counter-body physically and
chemically interact at temporally and spatially varying locations. On the one hand, this
results in loss variables such as friction and wear, which cause changes in the surface, loss
of material and energy dissipation. On the other hand, this results in the actual functional
variables of the tribological system. The mechanisms and applications of tribology extend
over several size scales. This ranges from processes on the nano- or micro-level in the field
of physics, chemistry, and material sciences, such as the formation of boundary layers or the
shearing of nanoparticle layers and ends with machine elements and assemblies as well as
multiple tribological contacts in the engineering sciences in the micrometer to meter range,
for example in rolling bearings or gears. Accordingly, tribometry, i.e., tribological measur-
ing and testing technology, covers all dimensional ranges of tribology determining friction
and wear parameters of tribological systems. The significance of various quantifiable mea-
sured variables, e.g., a friction coefficient averaged over time or a wear coefficient, usually
depends on the underlying mechanisms, the measurement method, and the objective of
the study. Given the function and structure of tribological systems, tribological testing can
be divided into six categories according to the simplification of the system structure, the
stress collective or the environmental conditions. While original and complete systems are
tested under real operating and environmental conditions in field tests (category I), this is
carried out under laboratory conditions with merely practical operating conditions in test
bench tests (II). In aggregate (III) and component tests (IV), this is further reduced to the
investigation of original aggregates or components. Specimen tests (V) are conducted with
specimens that are similar to the components and subjected to similar stresses as in the
target application. Finally, model tests (VI) involve fundamental analyses of friction and
wear processes with simplified specimens under defined loads. Typical representatives
of the latter are disk-on-disk, cylinder-on-cylinder, ball-on-disk or pin-on-disk tribometer
tests. The advantages of the individual test categories can be combined by a suitable test
chain [34].

2.2. The TribAIn Ontology

Kügler et al. [29] introduced the tribAIn ontology as a schema for structuring, reusing
and sharing experimental knowledge within the tribological domain. The ontology was
modelled highly relying on existing tribological test methods (see Section 2.1 and [34]). The
presence of a common and shared methodology as well as terminology are vital assump-
tions for specifying a formal ontology of a domain, since those build a strong and accepted
conceptualization, the formal specification relies on. Furthermore, the ontology is based
on the EXPO ontology (ontology of scientific experiments) introduced by Soldatova and
King [37], which is a generic formal description of experiments. Since tribAIn shares the
same purpose of efficient analysis, annotation and sharing of results from scientific experi-
ments, EXPO concepts were reused and further specified for the domain of tribology. The
tribAIn ontology is formalized in OWL (Web Ontology Language) [38], which is a common
ontology language based on description logics (DLs) [39]. Knowledge formalized with an
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ontology language is expressed in form of triples: <subject> <predicate> <object>, which
means the ontology can be visualized as a directed graph with named relations between
two classes (concepts). In the following, we will use Turtle Syntax [40] for streamlining
triples of tribAIn. Since every object within an OWL ontology has a unique identifier, the
prefix tAI is used for the tribAIn IRI (Internationalized Resource Identifier), thus concepts
and relations of the tribAIn namespace can be identified by this prefix. The ontology
provides concepts to describe the three main working areas “Experimental Design”, “Pro-
cedure” and “Experimental Results” (Figure 2). The concepts from these areas structure
the information about a specific experiment, with the tribological system (tAI:TriboSystem)
investigated, pre-processing procedures (tAI:IndustrialProcess and subclasses) as well as the
test procedure (tAI:TribologicalTesting) itself and links that information with the outcome
of the investigation (tAI:OutputParameter and subclasses). Due to the close relation to the
underlying methodology (cf. Section 2.1), the concepts refer to common terms within the
domain of tribology. Parameters or variables, for instance loads or temperatures, are de-
scribed using a pattern containing the two triples: Parameter hasValue xsd:float and Parameter
hasUnit Unit. The first triple links a value of the datatype float to an instance of the class (or
some subclass of) Parameter, while the other triple links a unit to the same instance. In this
manner, measurement series are generated in a consistent fashion, which can be compared
and analyzed.

Due to the design of the tribAIn ontology, a knowledge base (KB) which uses the
ontology as schema, can be queried in terms of the following example questions (cf. [29]):

• Which tribological systems were investigated under dry-running conditions using a
solid lubricant coating?

• Which variables were tested regarding their influence on the behavior of a material pairing?
• Which wear rate was calculated of sample XY?

Figure 1. Overall representation of a tribological system, its target function, and interactions in
tribological contacts. Redrawn and adapted from [29,34–36].
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Figure 2. Excerpt of relevant tribAIn concepts. Redrawn and adapted from [29].

2.3. Ontologies, Knowledge Graphs and Semantic Annotation

As Gruber [41] states, within ontologies, definitions associate names of the entities
within a universe of discourse. Therefore, the schema provided by an ontology can be
shared among different knowledge graphs, which hold the actual data. This is referred to
as ontological commitment and is a guarantee for consistency, even for incomplete knowl-
edge, since there are agreements to use a shared vocabulary [41]. Those commitments to
a specific vocabulary (or terminology) are also implicitly made within natural language
communication. Within the domain of tribology, they exist for instance for the description
of a tribological system (cf. Figure 1). Since tribological testing should enable reproduce-
able and comparable results, experiments must be built upon a common methodology,
which defines the system structure as well as input- and output parameters. Describing
experiments as well as results within a scientific publication under the use of a common
terminology is a first step of knowledge formalization (Figure 3).

Figure 3. Different degrees of formalization from natural language text to logical constraints. Re-
drawn and adapted from [42].

Nevertheless, the challenge with sharing knowledge among natural language pub-
lications is the vague or even insufficient description, since often knowledge about the
domain theory is assumed to be present to the human reader. An example is the following
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description from the materials section of an experimental study on Ti3C2Tx nanosheets
(MXenes) [43–45] investigated as solid lubricant for machine elements [46]:

“Commercially available thrust ball bearings 51201 according to ISO 104 [ . . . ] con-
sisting of shaft washer, housing washer and ball cage assembly were used as substrates
(Figure 1a).”

With background knowledge of the tribological domain, it becomes clear, that the
studied tribological system here is a certain thrust ball bearing and with the information
given by the referenced figure, the coated parts can be identified by a human reader. How-
ever, within the textual description, the link to the underlying methodology is not stated
explicitly. Thus, the documentation of the experiment is incomplete and ambiguous from a
formalization perspective. In other words, a semantic gap between textual descriptions
from publications and the general knowledge models with a higher degree of formalization
(Figure 3) prevents machine-supported processing of existing tribological knowledge from
publications. In order to bridge such a gap, semantic annotation is the process of joining
natural language and formal semantic models (e.g., an ontology) [47]. A semantic anno-
tation of the example cited above associated with ontological concepts from the tribAIn
ontology [29] is shown in Figure 4. In this example, the string “thrust ball bearings 51201” is
recognized as referring to the instance tbb_51201, which is a tribological system (“tbb_51201
a tAI:TriboSystem” in the triple notation of Figure 4). Furthermore, the components of the
thrust ball bearing are referred to the instances sw_51201 (shaft washer), hw_51201 (housing
washer) and as_bc_51201 (ball cage assembly) and are annotated as parts of the tribological
system within the triple notation. Annotating text snippets semantically to instances of an
ontology enriches the natural language text with machine-readable context. For example,
the instance “tbb_51201” may not only be referred to the experimental testing described in
the publication, but also be linked within the knowledge graph to information from the
ISO 104 mentioned within the text snippet. Therefore, the semantic annotation process
links mentions of entities from different sources to knowledge objects within a knowledge
graph, which are further semantically defined by an ontological schema.

Figure 4. Example of a semantic annotation of a text excerpt from [46] with concepts from the tribAIn
ontology [29] graphically visualized and in triple notation (Turtle format).

Furthermore, some semantic annotation systems perform ontology population, which
means not only annotating documents with respect to an existing ontology resulting in
semantic documents but creating new instances from the textual source [47]. For example,
the ball bearing from the example above is instantiated as a new knowledge object within a
knowledge graph. One advantage of building knowledge graphs from textual sources is
the direct link between mentions of knowledge objects within a source and the capability
of generating structured data from those mentions, even if the facts about a knowledge
object origin from different sources. A schematic architecture of a semantic knowledge base,
which consists of a domain ontology on schema-level, as well as a knowledge graph that
holds the data about knowledge objects, is shown in Figure 5. An example of structured
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information is given for the knowledge object “thrust ball bearings”, once as its use in a
tribological test setup and once as a rolling bearing with its specification.

Figure 5. Schematic architecture of a semantic knowledge base, consisting of schema-level ontologies
and a knowledge graph containing knowledge objects as structured data and mentions of knowledge
objects from semantic documents.

Thus, different information from various sources is linked for an object of the knowl-
edge graph. Moreover, the original textual sources are also linked nodes within the
graph. Semantic annotation can be performed manually, semi-automatically, or auto-
matically. Thereby, the semi-automatic approach is preferred since manual annotation is
time-consuming and automatic approaches can lead to unreliable information within the
resulting knowledge graph [47].

2.4. Natural Language Processing

A semi-automatically semantic annotation process is often conducted by methods
from NLP. The main challenge of NLP is the representation of contextual nuances of
human language, since the same matter can be described utilizing different wording and
the same word can be used for different meanings depending on the context. Therefore,
enabling machines to understand and process natural language demands the provision of
a machine-readable model of language. However, Goldberg [48] describes a challenging
paradox in this context: Humans are excellent in producing and understanding language
and are capable to express and interpret strongly elaborated and nuanced meaning of
language. In contrast, humans struggle at formally understanding and describing the
rules, which govern our language [48]. Rules in this context are not only referred to syntax
and grammar, but also to contextual concerns. For example, considering a classic NLP
task of document classification into one of the four categories metals, fluids, ceramics, or
polymers. Human readers categorize documents relatively easy into those topics guided
by the words used within a publication but writing up those implicitly applied rules for
categorization is rather challenging [48]. Therefore, machine learning models are trained to
learn vectorized text representations from examples, which are suited input formats for
NLP downstream tasks (e.g., document classification). The classic preprocessing steps for
generating those text representations from a document corpus are summarized in Figure 6.
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Almost any analysis of natural language starts with splitting the documents (e.g., plain
text, charts, figures), removing noise (e.g., references, punctuation) and normalization of
word forms [49]. Subsequently, the plain text is further split into minimal entities of textual
representation, the tokens, on word- or character-level. Since ML models assume some
kind of numerical representation as input, the tokens are replaced by their corresponding
IDs [50]. If a text is split into tokens on word level, the question arises, what counts as a
word. To answer this question, morphology deals with word structures and the minimal
units a word is built from, such as stems, prefixes and suffixes. Those minimal units are
important, if a tokenizer has to deal with unknown words (meaning words, which were
not within the training corpus) [48]. Tokenizers like WordPiece [51] represent words as
subword vectors [49], e.g., “nanosheets” can be separated in the subwords “nano” and
“sheet” and the plural-ending “- s”. However, the tokens are further transferred in so-called
embeddings, which are an input representation a ML or deep learning architecture can
handle for NLP tasks. An embedding is a representation of the meaning of a word; thus,
they are learned under the premise, that a word with the same meaning has a similar vector
representation [49]. A distinction is made between static embeddings and contextualized
embeddings. One quite popular static word embedding package is Word2Vec [52,53]. A
shortcoming of those static embeddings is that polysemantic is not properly handled since
one fixed representation is learned for each word in the vocabulary even if a word has a
different meaning in different contexts [49,54].

Figure 6. Preprocessing steps to generate embeddings from text as input to NLP downstream task.
Redrawn and adapted from [50].

Therefore, contextualized (dynamic) embeddings provide different representations
of each word based on other words within the sentence. State of the art representatives
are ELMO (Embeddings from Language Models) [55], GPT & GPT2 (Generative Pre-
Training) [56] and BERT (Bidirectional Encoder Representations from Transformers) [33],
which are also referred as pre-trained language models. BERT is a multi-layer bidirectional
transformer encoder [33,57], which is provided in a base version with 12 layers and large
version with 24 layers. Most of the recent models for NLP tasks are pre-trained on lan-
guage modeling (unsupervised) and fine-tuned (supervised) with task-dependent labeled
data [58]. Thus, those models are trained to predict the probability of a word occurring in
a given context [48]. BERT is pretrained on large amount of general-purpose texts from
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BooksCorpus and English Wikipedia, which resulted in a training corpus of about 3300 M
words [33]. Devlin et al. [33] differentiate BERTs pre-training from the other mentioned
models, consisting of two unsupervised tasks: masked language modeling (LM) and next
sentence prediction (NSP) (see also [59] for further information on BERTs pre-training).
Fine-tuning BERT for downstream tasks, like Question Answering (QA) or Named Entity
Recognition (NER), the same architecture is used apart from the output layer (see Figure 7).
The input layer consists of the tokens (Tok 1...Tok n). The special token [CLS] signs the
starting point of every input and [SEP] is a special separator token. For instance, question
answering pairs can thus be separated within the input [33]. The contextual embeddings
(E1 . . . En) further result in the final output (T1 . . . Tn), after being computed through
every layer resulting in different intermediate representations (Trm). For more information
on Transformer architectures, the interested reader is referred to [60]. There are different
extensions of the original model of BERT, which are specialized for certain downstream
tasks or domain terminologies. The SciBERT model [61] is pre-trained on scientific papers
improving the performance of downstream tasks with scientific vocabulary. BioBERT [32]
is pre-trained on large-scale biomedical corpora and improves the performance of BERT
especially in biomedical NER, relation extraction and QA. Furthermore, SpanBERT [62]
is a pre-training approach, which is focused on a representation of text spans instead of
single tokens. Both pre-training tasks from the original BERT are adapted for predicting
text spans instead of tokens, which is especially useful in relation extraction or QA.

Figure 7. BERT pre-training and fine-tuning procedures using the same architecture for both. Only
the output layer differs depending on the downstream task e.g., NER, QA. Redrawn and adapted
from [33].

2.5. NLP Downstream Tasks

Information Extraction (IE) is a task of obtaining structured data from unstructured
information, e.g., embedded in textual sources, by recognizing and extracting occurrences of
concepts and relationships among them [49,63]. IE is often used to build knowledge graphs
from textual representations (e.g., DBpedia), since those can be queried and are a common
way of presenting information to users [49]. IE and semantic annotation (see Section 2.3)
are often combined, since both share the subtask of NER. NER is a sequence-labeling task
to recognize and tag words or phrases usually like “Person” (B-PER), “Location” (B-GEO)
or “Organization” (B-ORG) within textual data. A named entity can be anything, which has
a proper name, thus can be distinguished from other objects [49]. Therefore, NER is often
based on a specific domain vocabulary, e.g., in biomedicine [32,64]. Moreover, relation
extraction is also a subtask of IE in the context of building knowledge graphs and mainly
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deals with the extraction of binary relations like child-of or part-whole relationships used
within taxonomies, ontologies and knowledge graphs [49]. IE can be used for template
filling, meaning recognizing and filling a pre-defined template of structured data from the
unstructured sources (cf. Figure 5) [49]. Question Answering (QA) is a task of information
retrieval, but with a query, which is a question in natural language and a response as
an actual answer [63]. QA is often used within Chatbots of customer services or within
virtual speech assistants (e.g., Amazon Alexa or Apple Siri). The main difference from
classic retrieval operations is the form of asking questions in natural language instead of
formal database queries and the retrieval of a precise answer to the question instead of
document retrieval. Therefore, QA can be exploited for generating structured data and
template filling.

3. Semantic Annotation Pipeline

The developed semantic annotation pipeline consists of three separate modules and
a graphical user interface (GUI). The modules communicate via REST API. Due to the
modular architecture, the single module can be exchanged and thus the pipeline can be
adapted to particular applications. The pipeline is trained for annotating and extracting
information from tribological publications with the scope of model tests (cf. Section 2.1).

3.1. Document Extraction

The first module (Figure 8) performs the preprocessing step introduced in Section 2.4
(Figure 6). Since the source format (PDF) is not suited for further processing, plain text is
extracted. By parsing through the documents, elements like figures, charts or tables are
also detected.

Figure 8. Document extraction module.

Besides detecting non-textual elements, the document is segmented into its paragraphs
(e.g., abstract, introduction etc.), since–depending on the IE purpose–the relevant informa-
tion may be provided mainly in a certain paragraph. For example, the introduction section
usually contains information about the aim of the investigation, while the results section
further provides a description of the outcome. Parsing is performed based on syntactical
rules and pattern matching, e.g., indentations, blank spaces or different fonts, can be used
as indicators for the detection process. Besides the content of the publication, meta data
about the document (e.g., author, DOI, date, publishing information) is extracted. The
last step is the aggregation of the previously segmented elements into JSON (Java Script
Object Notation), which is a common and platform independent data sharing format. The
document extraction module is implemented using the PyMuPDF Library [65].

3.2. Document Annotation

The document annotation module (Figure 9) performs the actual annotation process.
The module expects the files in JSON format from the document extraction module as input
and is capable of annotating plain text and table data. The annotation module uses the
Flair library [66] and the embeddings of the NER model are trained on the tribological
annotation categories displayed in Figure 10. Within a parameter study, embeddings from
BERT (Base), SciBERT and SpanBERT were tested against each other. Thereby, SpanBERT
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were chosen, since those have shown the best results with an F1 (micro) score of 0.8065 and
an F1 (macro) score of 0.8012.

Figure 9. Document annotation module.

Figure 10. Example of semantic annotation and knowledge object generation within the document
annotation module and annotation categories for example sentences from [67].

The annotation step within the module recognizes entities of the tribological categories.
An example is shown in Figure 10. The inputs are three different sentences (plain text),
which are parsed. Then, entities of the different categories are annotated. In a second
step, the annotations are aggregated to knowledge objects, thus for instance the two recog-
nized entities MXene and Ti3C2Tx refer to the same knowledge object (Figure 10). Due to
the knowledge object generation, different terms used to describe the same entity within
a text are aggregated to a single object. The generation of knowledge objects is mainly
based on identifying acronyms and synonyms. The identified character strains are then
compared. For character strains, which go beyond four, a fuzzy comparison using the Fuzzy-
Wuzzy Library (https://pypi.org/project/fuzzywuzzy/, accessed on 14 December 2021)
is conducted, which calculates the Levensthein distance to compare two-character strains.
Output data from the document annotation module is again streamlined in JSON format
and contains the annotated text and table data as well as the aggregated knowledge objects.

3.3. Document Analysis

The document analysis module (Figure 11) is a QA system that extracts answers from the
text to questions about tribological model tests to create triples from the document. The QA sys-
tem is built on the PyTorch framework (https://pytorch.org/, accessed on 14 December 2021)
using a SciBERT-Model from the Hugging Face library (https://huggingface.co/, accessed
on 14 December 2021).

https://pypi.org/project/fuzzywuzzy/
https://pytorch.org/
https://huggingface.co/


Lubricants 2022, 10, 18 13 of 25

Figure 11. Document analysis module.

The BERT model is fine-tuned by question-answer pairs. Question templates (Figure 12)
are generated, which contain the questions for extracting knowledge objects from the text.
Those templates determine the structure of the information, which should be extracted
from the text. This means, the question templates can be customized depending on the
extraction task. The decision maker is an intermediate aggregation step containing multiple
redundancies, which ensures higher reliability of an extracted answer. Therefore, the
question template contains the same question rephrased several times. Furthermore, the
answer space is restricted by using regular expressions (Regex) to define an expected
answer pattern and by specifying an entity type (tribological category) of the extracted
answer. The final result is an ID of a knowledge object and its textual annotation, for the
case a knowledge object can be assigned. Otherwise, the textual passage is extracted as
answer to the question.

Figure 12. Question template example for the extraction of the testing duration of an experiment.

4. Implementation and Evaluation
4.1. Web-Application

For testing the capability, the pipeline can be assessed through a web interface (see
Data Availability Statement). The three modules communicate via REST API with the GUI.
Publications have to be provided in PDF-format and can be delivered by drag and drop
to the first module (1). As indicated in Figure 13, a manual control and adaptation step is
integrated between the three separate modules. Thus, the acquisition of structure works in
a semi-automatic manner with human supervision.
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Figure 13. Process of document annotation via the web-interface.

The output from the first module is the extracted text and other entities (e.g., figures,
tables, metadata) from the PDF. The text itself is split into chapters, paragraphs and
sentences, which serve as input to the next modules. The user check enables adaptation
and correction of the automatically generated output from the module (e.g., adaption
of the paragraph separation). Subsequently, the pipeline can be continued via the GUI
and the JSON-data produced by the first module forwarded to the document annotation
module (2), which performs NER and knowledge object generation. The output from
the second module can also be checked by the user after the automatic annotations are
generated. The NER process thereby performs the annotation part while the knowledge
objects are the semantic output of the annotation pipeline (see Figure 5 in Section 2.3 for
the role of knowledge objects within a semantic knowledge base). The check especially
contains proof of annotations and the aggregation to knowledge objects. Next, the pipeline
is continued to the final context analyses via the document analysis module, which performs
the QA and generates the structured data as final output.

4.2. Resulting Knowledge Graph

The output from the document annotation module is a linked data structure, contain-
ing the aggregated knowledge objects related to the mentions within paragraphs and tables
of the publication. Therefore, the output can be visualized as a knowledge graph contain-
ing the structured data annotated within the respective publication. This is exemplified
in Figure 14 for a representative publication [67]. The generated knowledge graph is a
complex network of nodes and relationships. Thereby, the size of the nodes corresponds to
the number of mentions of a knowledge object within the publication. This means that a
knowledge object with only one mention has the minimum size while the size increases
with the number of mentions. In this way, the important knowledge objects within the
publication can be easily identified within the graph.

While the output graph from the document annotation module is particularly suited
to identify the main topics of the analyzed publication in form of the most often mentioned
knowledge objects, the output from the document analysis module is a graph generated
from the question templates (Figure 15). The knowledge graph contains the identified
and correctly classified answers (triangles) given by the decision maker. Thereby the
triples are generated from the schema provided by the tribAIn ontology [29]. Thereby, the
excerpts of the knowledge graph in Figure 15 refer to the example questions introduced in
Section 2.2 regarding the tested variables (1) and the calculated wear rate (2). The generated
linked data combined with an ontology provides a formally and semantically unambiguous
representation which can be queried, filtered and further processed.



Lubricants 2022, 10, 18 15 of 25

Figure 14. Schematic visualization of the resulting knowledge graph from the document annotation
module for the processed representative publication [67].



Lubricants 2022, 10, 18 16 of 25

Figure 15. Schematic of the resulting knowledge graph from the document analysis module for the
processed representative publication [67] with a detailed view on the varied operational parameters (1)
and the outcome measurements of the wear rate (2).

4.3. Evaluation

For evaluation, five documents from a pool of existing publications on model-tests
were used for an initial performance test of the pipeline:

• Doc#1: Marian et al., 2020 [67]
• Doc#2: Mekgwe et al., 2019 [68]
• Doc#3: Li & Xu 2018 [69]
• Doc#4: Wang et al., 2018 [70]
• Doc#5: Byeong-Choon & In-Sik 2017 [71]

The documents differentiate in length and format, for instance number of columns.
Furthermore, Doc#5 is kind of defect since the PDF contains invisible text overlaps. Thereby,
the three modules were evaluated separately depending on the evaluation aim. Since
semantic annotation is not a common task within the domain of tribology, standard test
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documents, which are widely accepted for performance measurement of NLP tasks, do
not exist. Therefore, the test documents were manually annotated for the special purpose
of evaluating the pipeline introduced within this contribution. The document extraction
module was analyzed with respect to its quality in extracting and separating text and other
elements like figures and tables from the PDF documents. This resulted in a comparison
of the data from the extraction module against the ground truth (GT) for text, figures and
tables. This shows if the system works as it is intended. The smaller the deviations from
GT, the more reliable is the PDF extraction. Within Table 1, the reliability of text extraction
is assessed against the criteria, if chapters, paragraphs, sentences, words and chars are
correctly detected and separated. The deviations from GT are relatively small for Doc#1
(chapter −12.5%; paragraph −8.6%, sentence −7.3%, word −7.3%, char −9.8%), Doc#2
(chapter 37.5%; paragraph −26.7%, sentence −3.0%, word −10.0%, char −18.2%, Doc#3
(chapter 7.1%; paragraph 11.5%, sentence −2.4%, word −1.3%, char −5.4%) and Doc#4
(chapter 27.3%; paragraph −22.2%, sentence 23.6%, word −5.0%, char −10.9%), while the
deviation is substantially higher for Doc#5 (chapter 240%; paragraph 400%, sentence 149%,
word 132%, char 118%). Those high deviations can be attributed to the defect PDF, which
contains embedded textual and other elements, which overlap the intended content of the
document. The results of the figure extraction analysis are shown in Table 2. Almost all
figures within the test set were correctly detected. Only one figure was partly incorrect
extracted in Doc#2 and two figure areas were incorrectly recognized in Doc#4. However, all
figures were correctly extracted within the defect PDF Doc#5. Thereby, 14 additional figures
were identified, which is due to the overlayed elements within the PDF. The extraction of
tables seems also reliable since the majority of tables are correctly recognized (see Table 3).
An exception is within Doc#1, which can be attributed to the table being rotated within the
publication. This shows that the first module depends on the quality and regularity of the
input files. Since the module provides a manual check, small deviations from the expected
output can easily be fixed via the GUI.

Table 1. Quality of text extraction regarding the extracted chapters, paragraphs, sentences, words,
chars and if an abstract was detected (true/false). The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Chapter 14 (16) 11 (8) 15 (14) 14 (11) 31 (9)
Paragraph 32 (35) 11 (15) 29 (26) 14 (18) 40 (18)
Sentence 179 (193) 65 (67) 124 (127) 68 (55) 237 (95)

Word 4213 (4547) 1304 (1449) 2898 (2937) 1205 (1276) 5192 (2241)
Char 26,127 (28,881) 7497 (9160) 17,119 (18,089) 6998 (7759) 30,928 (14,198)

Abstract true true true true true

Table 2. Quality of figure extraction regarding detected figures, incorrectly detected figure area and
additional extractions. The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Figure 12 (12) 5 (5) 12 (12) 5 (5) 12 (12)
Incorrect area 0 1 0 2 0

Additional Figure 0 0 0 0 14

Table 3. Quality of tables extraction regarding detected tables, additional extractions and correct
number of cells. The GT is given in the brackets.

Document Doc#1 Doc#2 Doc#3 Doc#4 Doc#5

Table 0 (1) 1 (1) 0 (0) 0 (0) 1 (1)
Additional Table 0 0 0 0 0

Incorrect cells - 0 - - 0
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The document annotation module was evaluated with respect to the ability of NER
and knowledge object generation. Three language models (BERT, SciBERT and SpanBERT)
were trained with the hyperparameters shown in Table 4, which were an outcome of a
previously conducted parameter study. Thereby, an RNN (recurrent neuronal network)
architecture was used with one layer and a hidden size of 128. Dropout [72,73] is a method
to reduce overfitting by deactivating a number of neurons randomly from the neural
network. The learning rate defines the step size of the optimization and thus controls
how quickly the model learns the given problem. The batch size specifies the number
simultaneously evaluated examples. Since the used language models have already been
pre-trained on large-scale general language data (cf. Section 2.4), the training includes only
fine-tuning, which is computationally less expensive. The training of the models took about
20 to 30 min each on a NVDIA RTX 2070 and 8 GB RAM.

Table 4. Hyperparameters for training language models.

Language
Model RNN Layers Hidden Size Dropout

Rate
Learning

Rate
Mini Batch

Size

BERT 1 128 0.0479 0.1 32
SciBERT 1 128 0.0020 0.1 32

SpanBERT 1 128 0.1454 0.15 32

Micro and Macro F1 scores were calculated to select the best of the three models for
the recognition task. Therefore, the five documents were manually annotated due to the
tribological annotation model categories. For every category the precision, recall and F1
score were calculated three times for each of the trained language models with regard to
the manual annotations (see Table 5). The test set contained 986 annotated sentences for the
tribological annotation model categories already introduced in Figure 10.

Table 5. Precision (P), Recall (R) and F1 score for each tribological annotation model category.

Category Score
BERT SciBERT SpanBERT

1 2 3 1 2 3 1 2 3
P 0.8000 0.7037 0.7692 0.7037 0.6667 0.7097 0.7600 0.7600 0.7241
R 0.8333 0.7917 0.8333 0.7917 0.8333 0.9167 0.7917 0.7917 0.8750Body

structure F1 0.8163 0.7451 0.8000 0.7451 0.7407 0.8000 0.7755 0.7755 0.7924

Composite
element

P 0.7833 0.7241 0.7272 0.7846 0.7286 0.7429 0.7576 0.8030 0.7812

R 0.7833 0.7000 0.8000 0.8500 0.8500 0.8667 0.8333 0.8833 0.8333

F1 0.7833 0.7118 0.7619 0.8160 0.7846 0.8000 0.7936 0.8412 0.8064
P 1.0000 0.8000 1.0000 1.0000 1.0000 1.0000 0.8333 0.8333 1.0000
R 0.8000 0.8000 0.8000 0.8000 0.6000 0.6000 1.0000 1.0000 0.8000Environmental

medium F1 0.9000 0.8000 0.9000 0.9000 0.8000 0.8000 0.9167 0.9167 0.9000

Geometry

P 0.9375 0.8824 0.8750 0.7500 0.8235 0.8235 0.8824 0.8889 0.8325

R 0.7895 0.8950 0.7368 0.6316 0.7368 0.7368 0.7895 0.8421 0.7368

F1 0.8572 0.8887 0.8000 0.6857 0.7777 0.7777 0.8334 0.8649 0.7817
P 0.8462 0.7143 1.0000 0.9286 1.0000 0.8571 1.0000 1.0000 1.0000
R 0.6111 0.5556 0.6111 0.7222 0.7222 0.6667 0.6667 0.6667 0.6667Intermediate

medium F1 0.7097 0.6250 0.7586 0.8125 0.8387 0.7500 0.8000 0.8000 0.8000

Kinematic
parameter

P 0.6667 0.6667 0.6364 0.7273 0.6923 0.6923 0.8000 0.8000 0.7273

R 0.8000 0.8000 0.7000 0.8000 0.9000 0.9000 0.8000 0.8000 0.8000

F1 0.7273 0.7273 0.6667 0.7619 0.7826 0.7826 0.8000 0.8000 0.7619
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Table 5. Cont.

Category Score
BERT SciBERT SpanBERT

1 2 3 1 2 3 1 2 3
P 0.6250 0.5000 0.6250 0.8182 0.6923 0.7143 0.7143 0.7500 0.6667
R 0.4545 0.5455 0.4545 0.8182 0.8182 0.9091 0.4545 0.5455 0.5455

Manufacturing
process

F1 0.5263 0.5218 0.5263 0.8182 0.7500 0.8000 0.5555 0.6316 0.6000

Operational
parameter

P 0.7222 0.7571 0.7647 0.7656 0.7937 0.8197 0.7059 0.7500 0.7424

R 0.8525 0.8689 0.8525 0.8033 0.8197 0.8197 0.7869 0.8361 0.8033

F1 0.7820 0.8092 0.8062 0.7840 0.8065 0.8197 0.7442 0.7907 0.7717
P 0.7143 0.7500 0.7368 0.6842 0.8235 0.7647 0.6190 0.7778 0.7778
R 0.7895 0.7895 0.7368 0.6842 0.7368 0.6842 0.6842 0.7368 0.7368Specification
F1 0.7500 0.7692 0.7368 0.6842 0.7777 0.7222 0.6500 0.7567 0.7567

Test
method

P 0.8947 0.8571 0.8571 0.8500 0.8095 0.8182 0.8889 0.8421 0.8497

R 0.8947 0.9474 0.9474 0.8947 0.8947 0.9474 0.8421 0.8421 0.8497

F1 0.8947 0.9000 0.9000 0.8718 0.8500 0.8781 0.8649 0.8421 0.8497

The resulting F1 scores are summarized in Table 6 for BERT, SciBERT and SpanBERT,
which were each calculated in triplicate. As mentioned before, SpanBERT featured the
best scores within the second run, which may be due to the annotated entities referring
to the tribological categories, that are often spans of words instead of single tokens (e.g.,
“Scanning electron microscopy”).

Table 6. Evaluation and selection of the NER model. F1 scores for BERT, SciBERT and SpanBERT.

BERT SciBERT SpanBERT
1 2 3 1 2 3 1 2 3

F1 (micro) 0.7823 0.7570 0.7782 0.7847 0.7905 0.7992 0.7702 0.8065 0.7879
F1 (macro) 0.7736 0.7443 0.7645 0.7868 0.7859 0.7880 0.7726 0.8012 0.7851

The annotations generated through NER were further aggregated to knowledge objects
within the document analysis module. The resulting number of aggregations is shown
in Table 7. Annotations are considered incorrectly aggregated if at least two annotations
are assigned to the same knowledge objects, although they do not belong together (false
positive). Furthermore, if at least two annotations which belong to a knowledge object
are not aggregated, they count as false negative. This criterion captures the reductivity of
the knowledge object generation while the counts of correctly and incorrectly aggregated
annotations provide an insight into the precision of the generation. A precision of 89.5% is
reached for the test pool while the recall is about 84.4%. This can be considered as sufficient
for the quality of knowledge object generation.

Table 7. Evaluation of knowledge object generation containing the number of annotations, of all
knowledge objects as well as correctly aggregative (true positive), incorrectly aggregated (false
positive) and not aggregated (false negative) knowledge objects.

Document Annotations Knowledge
Objects

Correctly
Aggregated

Incorrectly
Aggregated

Not
Aggregated

Doc#1 944 236 59 12 11
Doc#2 296 68 21 1 11
Doc#3 609 98 57 4 2
Doc#4 323 75 32 5 0
Doc#5 400 70 36 2 14

∑ 2572 547 205 24 38
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Finally, the document analysis module was evaluated due to its quality of answering
the questions from the templates. The criteria for assessing the quality were grouped to the
quality of question answering itself and if the decision maker prefers the right answer. The
final results over all questions are shown in Table 8. The GT is counted, if at least one answer
within the text can be given to the question. The criteria for question answering itself are
split into the cases if the expected answer is found in text and/or if at least one additional
answer was found independent of the expected answer. The need for the decision maker
can be seen from the fact that additional answers besides the expected one were found for
all documents. The criteria for the decision maker were thereby split into the cases if the
correct answer was preferred by the decision maker, if an incorrect answer was preferred,
or if no answer was found or preferred. When the text contains at least one correct answer
(GT), the question answering itself found the correct answer with a probability of 60.4%.
The decision maker found the correct answer with a probability of 62.3%. At this point it
should be noted that the quality of answers is highly influenced by the question templates.
This means what questions are asked of the publication to get a desired answer.

Table 8. Evaluation results of all answers to question templates regarding the input parameters (e.g.,
kinematical parameters), structural information of the tribological system (e.g., geometry) and output
parameters (e.g., friction and wear).

Question Answering Decision Maker

Document GT Answer
Found

Additional
Answers

Correct
Answer

Incorrect
Answer

No
Answer

Doc#1 26 16 15 13 1 10
Doc#2 20 13 18 7 11 9
Doc#3 20 9 13 7 4 13
Doc#4 16 8 8 7 4 16
Doc#5 24 12 14 9 6 8

∑ 96 58 68 43 26 56

5. Discussion

In the context of the “knowledge reengineering bottleneck”, we introduced a semantic
annotation pipeline to semi-automatically streamline the knowledge aggregation from
publications within the domain of tribology. The inputs for the pipeline are publications of
experimental investigations from the domain of tribology and in particular experiments
of the category model test. The output is structured and linked data in form of json-files,
which can be visualized as graphs (cf. Section 4.2). The pipeline is built on state-of-
the-art language models and NLP techniques and was evaluated on five representative
documents. Since NLP is not in common use within the domain of tribology, there are no
datasets and standard documents for training and evaluating language models. This limits
the significance of the performance test conducted within this contribution since a Gold
Standard accepted by the community is missing and the pipeline cannot be compared to
similar projects. However, as we work with standard language models, which are approved
to be reliable within NLP communities and we conducted a first evaluation of our fine-
tuned models by manually annotating five representative documents, some assertions can
still be made about the current performance. Thereby, the document extraction (module 1)
has shown reliable performance on different structured and formatted publications under
the premise that the provided PDFs are not defect. This was substantiated by one tested
PDF document, which contains invisible overlays and therefore shows high deviations
from the GT in comparison to the other documents. The PDF extraction is always a critical
step within NLP processes as it depends on the quality of the PDF and accessibility of
the textual and other entities within the PDF. This is one reason for the modular structure
of the pipeline. The PDF extraction is only required if the input publications are in the
form of PDF format (which is a common format for textual documents). Since nowadays
publications are frequently available online as well, the accessibility of textual data from
HTML-Websites via an API is easier when the access is provided by publishers. Therefore,
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PDF extraction is a pragmatic approach to access the textual information from publications.
The annotation process (module 2) is performed using the SpanBERT language model,
which shows remarkable high F1 scores. The NER model introduced within this publication
is currently limited to publications on model tests (without claiming completeness), since
those are well structured and mostly standardized. To our best knowledge, NER tagsets or
language models itself as available for example in the domain of biomedicine (e.g., BioBERT)
so far do not exist for the domain of tribology. In the future, the development and training
of tribological language models can therefore improve the performance of applications in
NLP within the domain of tribology. Furthermore, knowledge object generation is only a
first step in named entity linking.

We discussed the role of knowledge objects within semantic knowledge bases within
Section 2.3. The knowledge objects here are an aggregation of annotations from the docu-
ment extracted by the pipeline. However, successful semantic knowledge sharing is usually
community driven within a domain (e.g., OBO foundry). An established knowledge graph
within the domain of tribology containing knowledge objects can therefore be extended
with aggregated objects from the annotation module. Further established knowledge ob-
jects can also be enriched by the annotations. Thus, information about entities of interest
in the domain of tribology can be semi-automatically acquired. Within the last module,
we exploited QA to generate structured output from the unstructured and annotated data.
The templates contain questions referring to tribAIn-ontology (e.g., questions about input
parameters, the tribological system structure and output parameters). Overall, the QA
system showed plausible answers to the tested question templates. During evaluation, we
recognized a frequently appearing misconduct of the decision maker, which often could
not differentiate the properties of the body and the counterbody. On the one hand, this
can be attributed to an insufficient differentiation within the textual description and on
the other hand to the question generation process within the QA system. The experiences
with the QA module further led to two major perceptions in the context of extracting
information from tribological publications. First, analyzing publications by a QA system
can be exploited for a quality check and improvement of standardization of the description
of experimental studies and outcomes. Thereby, question templates can be specified as a
check list, what a sufficient description of experimental studies and results should contain
to enable understanding and reproduction of the results. Second and relating thereto, the
question templates itself have to be carefully designed to gain an answer and aggregate
structured data from texts. Therefore, analyzing the publication practices and further the
research practices of tribologists can give interesting insights for improving knowledge
and data aggregation within the domain. However, the pipeline is intended to be human
supervised, since trust is a critical issue especially within neural NLP processes which
generate output without explanations of the process itself. This is the second reason for the
modular architecture. The output from every module can be checked and adapted before
continuing with the pipeline. This is especially important if automatic extraction is used
to extend semantic knowledge bases or aggregate structured data for further processing.
Besides the quality and trust of the results from the pipeline, another important issue is
the computational costs. As mentioned within Section 4.3, the training of the language
models took less than an hour (20 to 30 min) for each model. The low computational costs
are due to the currently available pre-trained language models, which merely must be
fine-tuned to be tailored to a specific domain. The execution of the annotation further only
takes a few seconds. Therefore, the pipeline can be considered as very efficient compared
to manual annotation.

6. Conclusions

Sharing knowledge in publications has a long tradition in scientific research since this
is the elemental way of consuming and communicating information and knowledge by
human scientists. Within the domain of tribology, the vast amount of available information
overcomes the cognitive capacity of humans in terms of efficient aggregation and processing.
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Therefore, AI provides a lot of potential to support scientists by handling this flood of
information. Nevertheless, the way of knowledge sharing within tribology is still mainly
based on publications and thus human focused. Descriptions in natural language are vague
and insufficient from a formalization perspective. This phenomenon is due to an intended
human consumer, for whom the provision of formal sufficient information would result
in far too long publications and re-reading the same information over and over again.
In contrast, machines need a formal and explicit model for aggregating and processing
information. Therefore, if the available amount of information overwhelms the capacity
of human processability, the question arises if we better should create representations
for sharing information with an AI instead of humans in the future? The answer is: Not
necessarily. As pointed out by Gruber [74], “the purpose of AI is to empower humans
with machine intelligence". This is referred to as “humanistic AI”, an artificial intelligence
designed to meet human needs by collaborating with and augmenting people. In terms of
an AI empowered tribological knowledge sharing, we introduced a semantic annotation
pipeline towards generating knowledge graphs from natural language publications to
bridge the gap between a human-understandable and a machine-processable knowledge
representation. The pipeline is built upon state-of-the-art NLP methods and is inspired by
similar challenges from the biomedical domain. Although we demonstrate the potential
of the approach (NER and QA show reliable computational performance scores), further
validation of the approach to ensure practical usability is recommended. This includes
especially the definition of the specific objective of the extracted information, e.g., for trend
studies or identifying research gaps and contradictions within the domain of tribology.
Furthermore, the annotation model is currently limited to model tests and is not validated
to suit the practical information needs of tribologists. Therefore, user studies for analyzing
the capability of information extraction compared with human experts provide possibilities
to improve the performance of the approach.
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