Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of D230s
2.3. Synthesis of D2000s
2.4. Synthesis of D4000s
2.5. Infrared Spectra of Alkylation Derivatives of Polyether Amines
2.6. NMR Spectra of Alkylation Derivatives of Polyether Amines
2.7. Elemental Contents and Molecular Weights of Alkylation Derivatives of Polyether Amines
2.8. Thermal Stability Analysis of the Alkylation Derivatives of Polyether Amines
2.9. Tribological Test Conditions
3. Results
3.1. Tribological Properties of Point-to-Point Contact on Four-Ball Friction Tester
3.2. Tribological Properties of Point-on-Flat Contact on UMT Friction Tester
3.3. Adsorption Mechanism
3.4. Analysis of the Worn Surfaces after Point-to-Point Friction Tests
3.4.1. EDS Analysis
3.4.2. Raman Analysis
4. Conclusions
- (1)
- Polyether amine alkylated derivatives as OFMs exhibit obvious wear resistance in point-to-point, point-on-flat and line-on-flat contact modes, and perform well in relatively mild point-on-flat and line-on-flat friction tests. Among them, D2000s showed a superior anti-friction effect.
- (2)
- The lone pair electrons on the oxygen atom can form coordination bonds with the vacant d orbital on the metal surface. The intermolecular hydrogen bonds are also helpful for the molecular association of the additive to form a dense adsorption film on the metal surface. The increase of molecular weights of the polymers makes the number of active adsorption sites increase, which is beneficial to the improvement of tribological properties. However, once the molecular weight increases to a certain extent, it is not conducive to the formation of adsorption film.
- (3)
- The surface morphology and composition analysis show that the lubricating films are mainly carbon films and iron oxides. Polyether amine alkylated derivatives are a kind of linear polymers. The molecules are arranged on the metal surfaces along the polar parts of the main chains, which are further transformed into carbon friction films through an in situ tribochemical reaction. Fragments formed by carbon film under the shear action of friction pairs fill the rough surfaces and then reduce the surface roughness. Given that the formation rate is greater than the wear removal rate, the friction film is effective in reducing friction and wear. The carbon film avoids direct contact of the sliding surfaces, thus significantly improving the tribological properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 2012, 47, 221–234. [Google Scholar] [CrossRef]
- Wong, V.W.; Tung, S.C. Overview of automotive engine friction and reduction trends—Effects of surface, material, and lubricant-additive technologies. Friction 2016, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Nagashima, T.; Sato, T.; Kawauchi, S. The Effect of 0W-20 Low Viscosity Engine Oil on Fuel Economy; SAE Technical Paper; SAE: Warrendale, PA, USA, 1999. [Google Scholar]
- Singh, S.; Singh, S.; Sehgal, A. Impact of low Viscosity Engine Oil on Performance, Fuel Economy and Emissions of Light Duty Diesel Engine; SAE Technical Paper 2016-01-2316; SAE: Warrendale, PA, USA, 2016; p. 6. [Google Scholar]
- Okuyama, Y.; Shimokoji, D.; Sakurai, T.; Maruyama, M. Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability; SAE Technical Paper 2011-01-1247; SAE: Warrendale, PA, USA, 2011; p. 9. [Google Scholar]
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Speight, J.G. Lubricant Additives-Chemistry and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Spikes, H. Friction modifier additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef] [Green Version]
- Grossiord, C.; Varlot, K.; Martin, J.M.; Le Mogne, T.; Esnouf, C.; Inoue, K. MoS2, single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 1998, 31, 737–743. [Google Scholar] [CrossRef]
- Bec, S.; Tonck, A.; Georges, J.M.; Roper, G.W. Synergistic effects of MoDTC and ZDTP on frictional behaviour of tribofilms at the nanometer scale. Tribol. Lett. 2004, 17, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Morina, A.; Neville, A.; Priest, M.; Green, J.H. ZDDP and MoDTC interactions and their effect on tribological performance—Tribofilm characteristics and its evolution. Tribol. Lett. 2006, 24, 243–256. [Google Scholar] [CrossRef]
- Laine, E.; Olver, A.V.; Lekstrom, M.F.; Shollock, B.A.; Beveridge, T.A.; Hua, D.Y. The effect of a friction modifier additive on micropitting. Tribol. Trans. 2009, 52, 526–533. [Google Scholar] [CrossRef]
- Müller, M.; Topolovec-Miklozic, K.; Dardin, A.; Spikes, H.A. The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 2006, 49, 225–232. [Google Scholar] [CrossRef]
- Aoki, S.; Yamada, Y.; Fukada, D.; Suzuki, A.; Masuko, M. Verification of the advantages in friction-reducing performance of organic polymers having multiple adsorption sites. Tribol. Int. 2013, 59, 57–66. [Google Scholar] [CrossRef]
- Qiu, S.; Dong, J.; Cheng, G. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils. Lubr. Sci. 1999, 11, 217–226. [Google Scholar]
- Bakunin, V.N.; Suslov, A.Y.; Kuzmina, G.N.; Parenago, O.P. Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. J. Nanopart. Res. 2004, 6, 273–284. [Google Scholar] [CrossRef]
- Sankaranarayanan, V.; Ramaprabhu, S. Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Inter. 2011, 3, 4221–4227. [Google Scholar]
- Wang, W.; Zhang, G.; Xie, G. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives. Appl. Surf. Sci. 2019, 498, 143683. [Google Scholar] [CrossRef]
- Onumata, Y.; Zhao, H.; Wang, C.; Morina, A.; Neville, A. Interactive effect between organic friction modifiers and additives on friction at metal pushing V-Belt CVT components. Tribol. Trans. 2017, 61, 474–481. [Google Scholar] [CrossRef]
- Soltanahmadi, S.; Esfahani, E.A.; Nedelcu, I.; Morina, A.; van Eijk, M.C.P.; Neville, A. Surface reaction films from amine-based organic friction modifiers and their influence on surface fatigue and friction. Tribol. Lett. 2019, 67, 80. [Google Scholar] [CrossRef] [Green Version]
- Zachariah, Z.; Nalam, P.C.; Ravindra, A.; Raju, A.; Mohanlal, A.; Wang, K.; Castillo, R.V.; Espinosa-Marzal, R.M. Correlation between the adsorption and the nanotribological performance of fatty acid-based organic friction modifiers on stainless steel. Tribol. Lett. 2019, 68, 11. [Google Scholar] [CrossRef]
- Fry, B.M.; Moody, G.; Spikes, H.; Wong, J.S.S. Effect of surface cleaning on performance of organic friction modifiers. Tribol. Trans. 2019, 63, 305–313. [Google Scholar] [CrossRef]
- Mitchell, K.; Neville, A.; Walker, G.M.; Sutton, M.R.; Cayre, O.J. Synthesis and tribological testing of poly(methyl methacrylate) particles containing encapsulated organic friction modifier. Tribol. Int. 2018, 124, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhou, Q.; Sun, K.; Liu, G.; Zhou, F. Understanding adsorption behaviors of organic friction modifiers on hydroxylated SiO2 (001) surfaces: Effects of molecular polarity and temperature. Langmuir 2020, 36, 8543–8553. [Google Scholar] [CrossRef]
- Zhang, X.; Tsukamoto, M.; Zhang, H.; Mitsuya, Y.; Itoh, S.; Fukuzawa, K. Experimental study of application of molecules with a cyclic head group containing a free radical as organic friction modifiers. J. Adv. Mech. Des. Syst. 2020, 14, Jamdsm0044. [Google Scholar] [CrossRef] [Green Version]
- Cyriac, F.; Tee, X.Y.; Poornachary, S.K.; Chow, P.S. Influence of structural factors on the tribological performance of organic friction modifiers. Friction 2021, 9, 380–400. [Google Scholar] [CrossRef]
- Pominov, A.; Mueller-Hillebrand, J.; Traeg, J.; Zahn, D. Interaction models and molecular simulation systems of steel-organic friction modifier interfaces. Tribol. Lett. 2021, 69, 14. [Google Scholar] [CrossRef]
- Li, W.; Kumara, C.; Meyer, H.M.; Luo, H.; Qu, J. Compatibility between various ionic liquids and an organic friction modifier as lubricant additives. Langmuir 2018, 34, 10711–10720. [Google Scholar] [CrossRef]
- Kuwahara, T.; Romero, P.A.; Makowski, S.; Weihnacht, V.; Moras, G.; Moseler, M. Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C. Nat. Commun. 2019, 10, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Ye, L. Synthesis and properties of monomer cast nylon-6-b-polyether amine copolymers with different structures. RSC Adv. 2015, 5, 32460–32468. [Google Scholar] [CrossRef]
- Hu, W.J.; Zhang, Z.J.; Zeng, X.Q.; Li, J.S. Correlation between the degree of alkylation and tribological properties of amino-PEG2-amine-based organic friction modifiers. Ind. Eng. Chem. Res. 2019, 59, 215–225. [Google Scholar] [CrossRef]
- Brittain, W.J.; Minko, S. A structural definition of polymer brushes. J. Polym. Sci. A Polym. Chem. 2007, 45, 3505–3512. [Google Scholar] [CrossRef]
- Smeeth, M.; Gunsel, S.; Spikes, H.A. Friction and Wear Reduction by Boundary Film-Forming Viscosity Index Improvers; SAE Technical Paper; SAE: Warrendale, PA, USA, 1996; p. 962037. [Google Scholar]
- Muller, M.; Fan, J.; Spikes, H.A. Design of functionalized PAMA viscosity modifiers to reduce friction and wear in lubricating oils. ASTM Int. 2007, 4, JAI100956. [Google Scholar] [CrossRef]
- Johnson, B.; Wu, H.; Desanker, M.; Pickens, D.; Chung, Y.W.; Wang, Q.J. Direct formation of lubricious and wear-protective carbon films from phosphorus- and sulfur-free oil-soluble additives. Tribol. Lett. 2018, 66, 2. [Google Scholar] [CrossRef]
- Wu, H.; Khan, A.M.; Johnson, B.; Sasikumar, K.; Chung, Y.W.; Wang, Q.J. Formation and nature of carbon-containing tribofilms. ACS Appl. Mater. Inter. 2019, 11, 16139–16146. [Google Scholar] [CrossRef] [PubMed]
- De Faria, D.L.A.; Venancio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation. J. Raman Spectrosc. 2003, 34, 845–852. [Google Scholar] [CrossRef]
Sample | N (%) | O (%) | C (%) | H (%) |
---|---|---|---|---|
D230s | 5.045 | 12.151 | 70.515 | 12.289 |
D2000s | 1.140 | 26.484 | 62.250 | 10.126 |
D4000s | 0.505 | 25.133 | 63.925 | 10.437 |
Sample | Mn (Daltons) | Mw (Daltons) | Mz (Daltons) | Mw/Mn |
---|---|---|---|---|
D230s | 98 | 218 | 378 | 2.219 |
D2000s | 485 | 1430 | 2342 | 2.948 |
D4000s | 3486 | 5119 | 7321 | 1.468 |
Parameter | Value |
---|---|
Flash point (°C) | 220 |
Pour point (°C) | −66 |
density (g/ml, 25 °C) | 0.815 |
Kinematic viscosity @40 °C (mm2/s) | 19.0 |
Kinematic viscosity @100 °C (mm2/s) | 4.1 |
Viscosity index | 117 |
Element | PAO4 (%) | D230s in PAO4 (%) | D2000s in PAO4 (%) | D4000s in PAO4 (%) | ||||
---|---|---|---|---|---|---|---|---|
surface | edge | surface | edge | surface | edge | surface | edge | |
C | 1.0 | 22.8 | 1.4 | 13.6 | 1.0 | 18.4 | 1.0 | 12.9 |
O | 0.3 | 1.1 | 0.4 | 4.3 | 0.0 | 10.5 | 0.2 | 3.0 |
Fe | 97.1 | 74.7 | 96.9 | 80.8 | 97.5 | 70.0 | 97.1 | 82.5 |
Cr | 1.3 | 1.2 | 1.4 | 1.1 | 1.5 | 0.9 | 1.3 | 1.2 |
Mn | 0.3 | 0.2 | 0.0 | 0.3 | 0.00 | 0.0 | 0.4 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Li, J. Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes. Lubricants 2022, 10, 105. https://doi.org/10.3390/lubricants10060105
Hu W, Li J. Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes. Lubricants. 2022; 10(6):105. https://doi.org/10.3390/lubricants10060105
Chicago/Turabian StyleHu, Wenjing, and Jiusheng Li. 2022. "Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes" Lubricants 10, no. 6: 105. https://doi.org/10.3390/lubricants10060105
APA StyleHu, W., & Li, J. (2022). Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes. Lubricants, 10(6), 105. https://doi.org/10.3390/lubricants10060105