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Abstract: Surfactant solutions are widely used in industry, and their steady-state lubrication prop-
erties have been comprehensively explored, while the “dynamic process” between steady states
attracts much less attention. In this study, the lubrication behaviors of sodium dodecyl sulfate (SDS)
and sodium bis (2–ethylhexyl) sulfosuccinate (Aerosol–OT, AOT) solutions were comparatively and
extensively discussed. Experimental results showed that the duration of the dynamic process of
AOT solution lubrication was significantly shorter than that of SDS. The essence of the dynamic
process was revealed from the aspects of the running-in of solid surfaces and the adsorption process
of surfactant molecules. Unlike the general recognition that the friction force evolution mainly
corresponds to the running-in of surfaces, this study indicated that the dynamic adsorption behavior
of surfactant molecules mainly contributes to this process. Various experiments and analyses showed
that the smaller steric hindrance and lower orientation speed of SDS molecules led to longer diffusion
into the confined contact zone and a longer duration of friction force decrease. This work enhances
our understanding of the dynamic friction process in water-based lubrication, which could also have
important implications for oil-based lubrication and its industrial applications.

Keywords: aqueous lubricant; surfactant; dynamic process of friction; adsorption; orientation

1. Introduction

Studies have shown that approximately one-third of the total global primary energy
consumption originates from tribological contacts, leading to significant industry demands
to reduce friction and wear through proper lubrication [1,2]. Water-based lubricants are
environmentally friendly and have a low cost and, thus, warrant studies on appropriate
frictional additives [3–6]. In particular, amphiphilic surfactants are typically applied to
improve boundary lubrication performance [1,6], and their lubrication properties and
mechanisms require extensive research.

In previous studies, the effects of surfactants in steady-state lubrication (constant load
and sliding velocity) have been widely recognized, wherein one end of the amphiphilic
surfactant molecule is adsorbed onto a friction pair surface while the other end is ex-
posed, resulting in the formation of a boundary film to reduce the direct contact of rough
peaks [7–9]. In steady-state lubrication, surfactant molecules experience a dynamic equilib-
rium of adsorption, desorption, and mechanical disturbance on the solid surface [10,11].
The anti-friction effect is generally determined by the surface coverage of the adsorption
film, which can be influenced by the adsorption strength and the packing density of the
surfactants at the interface [12–15].

Research on the process before the friction reaches a steady state mainly focuses on
the running-in. In the running-in process, two solid surfaces that contact with rough peaks
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undergo significant elastic and plastic deformations and generate obvious wear until the
wear rate or coefficient of friction (COF) reaches a steady state [16]. The essence of this
process includes the physical and chemical evolution of the surface morphology, surficial
material composition and structure, and third-body distribution between the friction pair,
etc. [17,18]. The subsequent lubrication performance after running-in can be greatly affected
by the working conditions of the running-in [16,17,19].

Unlike the running-in process, there are relatively few studies on the “dynamic pro-
cess”; that is, on the surface that has finished the general running-in, the COF changes due
to the change in working conditions (load or sliding velocity), and then it gradually reaches
a stable value due to the molecular behavior of the lubricant. Some studies have noted
that, for some organic friction modifiers, the COF in the first friction cycle may be higher
than that of subsequent cycles, because friction stimulates or accelerates the formation
of adsorption films [20–23]. Another typical case is the friction-induced extension and
orientation of long-chain molecules and liquid crystals, causing the reduction of interfacial
viscosity and molecular internal friction. Accordingly, COF is gradually decreased [24–29].

Sodium dodecyl sulfate (SDS) is one of the commonly used additives in water-based
lubricants. As shown in Figure 1a, the SDS molecule is single-chained, with a critical
micelle concentration (CMC) of 8 mM [30]. Zhang studied the relationship between the
adsorption structure and COF [31]. Siqing and Liu applied different electrode potentials
to the friction pair to control the adsorption/desorption of SDS and its tribological prop-
erties [32–34]. As another widely studied surfactant in aggregation and wetting, sodium
bis (2–ethylhexyl) sulfosuccinate (Aerosol–OT, AOT) is double-chained, with the same
number of carbon atoms in the main carbon chains as SDS, as shown in Figure 1b. AOT
is more hydrophobic, with a CMC of only 2.5 mM [35], resulting in a strong aggregation
and transport ability which means that it can sequentially form micelles, vesicles, and
several phase structures as the concentration increases [35–38]. Furthermore, AOT vesicles
exhibit a higher diffusion rate and adsorption strength to hydrophobic surfaces than SDS
micelles [38–40]. However, AOT has not been investigated as a lubricant additive, probably
due to the large-steric-hindrance molecular structure that makes it hard to form a dense
adsorption layer. Therefore, comparative studies on the lubrication behaviors of SDS and
AOT solutions could be carried out to explore the effects of molecular structure.
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Figure 1. Schematic of the two molecules and the friction test apparatuses used in this study. (a,b) 
Structure diagram of sodium dodecyl sulfate (SDS) and sodium bis (2–ethylhexyl) sulfosuccinate 
(Aerosol–OT, AOT). (c) Illustration of the ball-on-three-plate and four-ball friction test apparatuses 
and contact region. F and v denote the load and velocity applied to the contact zone, respectively. 
For simplicity, only two plates and two lower balls are shown in the figure. 

Figure 1. Schematic of the two molecules and the friction test apparatuses used in this study.
(a,b) Structure diagram of sodium dodecyl sulfate (SDS) and sodium bis (2–ethylhexyl) sulfosuccinate
(Aerosol–OT, AOT). (c) Illustration of the ball-on-three-plate and four-ball friction test apparatuses
and contact region. F and v denote the load and velocity applied to the contact zone, respectively. For
simplicity, only two plates and two lower balls are shown in the figure.

In summary, previous studies mainly focus on the steady-state lubrication situation
and the traditional running-in process while lacking an exploration of the dynamic process
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during which the COF decreases owing to the molecular behavior of lubricants. In this
study, SDS and AOT aqueous solutions were used as lubricants, and two kinds of commonly
used ceramics, silicon nitride and aluminum oxide, were selected as friction pairs, due
to their high corrosion and wear resistance [41]. The dynamic lubrication processes of
the two surfactants were comparatively studied under various working conditions, and
the duration of the dynamic process was the main focus. The essence of the dynamic
process was revealed from the evolution of the solid surface topography and the adsorption
behaviors of the surfactant molecules. The adsorption characteristics were compared from
the aspects of adsorption amount, surface coverage, and diffusion and orientation speed,
and their effects on the dynamic process of lubrication were determined.

2. Materials and Methods
2.1. Materials

The two surfactants used in the study were SDS (purity > 99%; Shanghai Macklin
Biochemical Technology Co., Ltd., Shanghai, China) and AOT (purity > 99%; Tianjin Shine-
sopod Technology Co., Ltd., Tianjin, China). Their aqueous solutions with concentrations of
1.6–30 mM were prepared with deionized water (DW) at room temperature one day before
the friction tests were carried out, and the measured CMCs of SDS and AOT were 7.3 mM
and 2.5 mM, respectively. In addition, aluminum oxide plates (Al2O3; 15 mm × 6 mm;
Ra ~ 2.7 nm; Xi’an Laikete Electronic Technology Co., Ltd., Xi’an, China), silicon nitride
balls (Si3N4; φ 12.7 mm; Ra ~ 2.5 nm; Shanghai Nuansheng Electronic Commerce Co., Ltd.,
Shanghai, China), and aluminum oxide balls (Al2O3; φ 12.7 mm; Ra ~ 30 nm; Dongguan
Bluewhale Ceramic Technology Co., Ltd., Dongguan, China) were selected as the friction
pairs. They were cleaned in an ultrasonic bath successively with petroleum ether, ethanol,
and DW for 5 min each and dried with compressed air.

2.2. Tribology Tests

Friction tests were performed with two apparatuses (Figure 1c). Firstly, a ball-on-three-
plate friction test apparatus (MCR301, Anton Paar Trading Co., Ltd., Graz, Austria) was
mainly used, and the friction pairs were three Al2O3 plates and one Si3N4 ball. Secondly,
the combined experiments of friction and wear scar observation were performed on a four-
ball test apparatus and its supporting microscope (MS–10JS, Xiamen Tenkey Automation
Co., Ltd., Xiamen, China); the friction pairs were three Al2O3 balls and one Si3N4 ball. The
magnification of the microscope was 300×. All friction tests were carried out at 25 ◦C with
DW or surfactant solutions as lubricants. The hydrolysis and decomposition of AOT and
SDS can be neglected in this work. For each newly prepared friction pair, DW was first
used as the lubricant for running-in for a maximum of 1500 s until the changes in COF over
120 s were within 0.03 (on the ball-on-three-plate tester) or 0.08 (on the four-ball tester).
After running-in, the friction pairs were rinsed four times, alternately with DW and ethanol,
and were cleaned with Kimwipes tissue. Then, experiments with surfactant solutions as
lubricants could be started. In each friction experiment, the load used for running-in was
the maximum value of the loads in the subsequent friction tests in order to establish a
stable contact state before the friction tests with the SDS or AOT solutions and so that the
wear scars would not expand significantly during friction. The applied normal force and
speed were different in different tests and are further explained in the subsequent sections.

2.3. Adsorption Measurement at Solid–Liquid Interface

The adsorption mass of SDS or AOT molecules at different concentrations was mea-
sured using a quartz crystal microbalance (QCM; Q–sense E4 system, Biolin Scientific,
Sweden) with an Al2O3-coated quartz crystal sensor at 25 ◦C, and the flow rate of the
liquids was 100 µL/min. Moreover, the adsorbed film was regarded as rigid [42,43], and
the adsorbed mass (∆m) was calculated using the Sauerbrey equation [43] presented in
Equation (1), when changes in the resonance frequency (∆f) and dissipation (∆D) of the
sensor conformed to ∆D < 10∆f:
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∆m = −C
∆f
n

, (1)

where C is a constant with a value of 17.7 ng Hz−1 cm−2 that is related to the properties of
the quartz crystal, and n denotes the overtone of the oscillations.

3. Results

On the friction pair that had been running in with DW under a load of 20 N, a step-up
load was applied as FN = 1, 2, 5, and 10 N, respectively, and the friction test lasted 40 s at
each load. The angular velocity (ω) of the Si3N4 ball was 300 rpm. Different concentrations
of solutions were used as lubricants, and the results are shown in Figure 2. Since the
CMC of SDS (7.3 mM) and AOT (2.5 mM) are different, the lubrication behavior of the two
solutions was compared at concentrations lower than the CMC (Figure 2a), higher than
the CMC (Figure 2b), about two times the CMC (Figure 2c), and about four times the CMC
(Figure 2d). After each load, the COFs of SDS and AOT increased immediately and then
experienced a “dynamic process” during which the COF gradually decreased until finally
approaching a stable value. The decreasing speed of the COF of AOT was higher, and the
duration of the dynamic process of AOT was significantly shorter than that of SDS at all
concentrations, while the stable COF values of SDS were lower.
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Figure 2. COF of the tests at 300 rpm (the sliding velocity was 0.141 m/s) and step-up load. The
load was applied as FN = 1, 2, 5, and 10 N, respectively. Different concentrations of SDS and AOT
solutions were used as lubricants, including the concentrations that were (a) lower than the CMC,
(b) higher than the CMC, (c) about two times the CMC, and (d) about four times the CMC.

On the friction pairs that had been running in with DW under a load of 1 N, friction
tests were carried out with a constant load of 1 N and different angular velocity, as shown
in Figure 3. Different concentrations of SDS and AOT, lower than or about twice the CMC,
were used as lubricants. Figure 3a,c,e shows the curves of COF over time under angular
velocities of 60, 150, and 600 rpm, respectively. For a more intuitive comparison of the time
required for the dynamic process, a normalized COF was obtained by dividing the COF
by its stable value, shown in Figure 3b,d,f. The stable COF value was taken as the average
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value of the last 10 s of each experiment; thus, the normalized COF would eventually tend
to 1. The gray lines in the figures represent the ±5% of the stable COF, between which
the COF was considered stable. Furthermore, they enabled an intuitive comparison of the
time required for the dynamic process. Similar conclusions to the above figures could be
seen such that, under all system angular velocities, the COF of all concentrations of SDS
experienced a slower and longer decrease until lower stable COF values were reached.
The duration for 15 mM SDS was longer than that for 5 mM SDS. Moreover, the lower the
velocity, the longer was the dynamic process.
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(b,d,f) were obtained by dividing the COF values by their respective stable values.

The Stribeck curves of 5 mM SDS and AOT were obtained in continuous variable
speed experiments to characterize the lubrication state under various conditions, as shown
in Figure 4. The applied load of the running-in and the subsequent friction tests was 2 N;
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ω varied from 0.1 to 3000 rpm. The friction lasted 3 s at eachω to avoid large differences in
solid surface, and the COF was an average of 3 s. For both SDS and AOT, the COF in round 1
was higher than those in the other rounds. This was because the Si3N4 ball was lifted
while changing lubricants (from DW to the surfactant solution) and was then placed at the
measurement position again. Accordingly, the surfaces experienced a short running-in at
the beginning of each experiment. The friction curves of SDS in rounds 2–4 did not coincide
well, and the COF in the boundary lubrication region decreased significantly among the
rounds until the COFs of rounds 5–8 were almost coincident. In contrast, the friction
curves of AOT in rounds 2–8 all had a high coincidence degree. Thus, the dynamic process
duration of SDS (rounds 1–4) was much longer than that of AOT (round 1). Moreover,
in the dynamic process, COF varies more with speed in the boundary lubrication region
than in the stable phase. Furthermore, the lubrication states in Figures 2 and 3 were mixed
lubrication, according to the stable Stribeck curves.
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Figure 4. COF evolution in the procedures of the continuous variable speed experiment with (a) 5 mM
SDS and (b) 5 mM AOT as lubricants. FN = 2 N. The value of ω increased from 0.1 to 3000 rpm
in round 1, reduced from 3000 to 0.1 rpm in round 2, increased again in round 3, and so on until
it decreased to 0.1 rpm in round 8. Each round was continuous without stopping or changing the
direction of rotation.

In summary, friction experiments were conducted under various working conditions,
including combinations of several speeds and loads, using different concentrations of SDS
and AOT aqueous solutions as lubricants. It was found that in the dynamic process before
the system reached a steady state, the COF of AOT decreased faster than that of SDS, and
the duration of the dynamic process of AOT was shorter than that of SDS.

4. Discussion

An alternate loading–unloading experiment was performed to understand the essence
of the dynamic process, as shown in Figure 5. The friction pair had been running in under
10 N. When the load was increased from 5 N to 7 N for the first time, the COF increased
abruptly, experienced a dynamic process, and finally stabilized. When unloaded to 5 N
and loaded to 7 N for the second time, the COF increased and remained stable, with no
spikes generated. Thus, it could be inferred that there were two possible reasons why the
COF decreased with time before the system reached a steady state. Firstly, the contact zone
experienced a slight running-in. Secondly, on the fresh surface generated by running-in,
the arrangement properties of the surfactant molecules, including the number of molecules
adsorbed in the contact zone and the molecular conformation and orientation, would
gradually reach a dynamic equilibrium such that the COF would reach a stable value.
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Figure 5. COF in the test of alternate loading–unloading. The load was applied as FN = 5, 7, 5, and
7 N, respectively, andω = 300 rpm; 10 mM SDS was used as a lubricant.

To characterize the effect of running-in, the four-ball friction test apparatus and its
supporting microscope were used to conduct friction experiments and observe wear scars,
and the results for 5 mM SDS and AOT are, respectively, shown in Figures 6 and 7. The
experiment consisted of two stages. Stage 1 contained the rising edge of the COF and was
stopped after the COF reached its peak value, while stage 2 contained the falling edge of
the COF and was stopped when the COF tended to be stable. The experiment was designed
to compare the wear scars at different moments of the dynamic process in order to verify
the effect of running-in on the dynamic process.
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Figure 7. Friction curves with 5 mM AOT solution lubrication and wear scars at each stage. (a) Two
stages of COF curves over time. The load and speed were the same as those of SDS. Before stage 1,
the friction pair had been running in with DW, and the wear scar was as shown in (b). (c,d) The wear
scar after stage 1 and stage 2, respectively.

Figure 6a shows the COF over time with 5 mM SDS as a lubricant. The applied load
was 5 N, and the angular velocity of the upper ball was 300 rpm. Before starting, the
friction pair had been running in with DW under a load of 5 N; the wear scar of one of
the lower balls is shown in Figure 6b. Then, the SDS solution was added as a lubricant
to start the friction test; this corresponds to stage 1 in Figure 6a. During this period, the
COF first increased and then began to decrease. Thus, the friction was stopped, and the
solution was poured out and blow-dried to observe the wear scar of the lower balls, as
shown in Figure 6c. After that, new SDS solution was added to start the friction test again;
this corresponds to stage 2 in Figure 6a. In this stage, the COF increased slightly again
and gradually decreased in the following 30 s until the COF tended to be stable. Thus,
the friction test was stopped again to enable observation of the wear scar, as shown in
Figure 6d. In comparing the size and internal morphology of wear scars in Figure 6b–d, the
size in Figure 6c along the friction direction was only slightly larger than that in Figure 6b,
and the internal grooves were slightly shallower, while the size and grooves of Figure 6d
showed no obvious changes compared with Figure 6c. These results demonstrate that a
slight running-in occurred in the contact zone during stage 1, while the change of wear scar
was not obvious in stage 2, and so the continuous decline of the COF in stage 2 was not
only related to running-in. In addition, it could be seen from the figures that no obvious
corrosion had occurred on the ball.

Similar experiments were also performed with 5 mM AOT solution (Figure 7), and
a similar phenomenon was observed. The COF first increased for several seconds and
then decreased during each stage. The size and internal grooves of the wear scars changed
slightly, similar to Figure 6. The main difference with Figure 6 was the duration of the
falling edge of the COF. Thus, the main difference in the duration of the dynamic process
between AOT and SDS should be related to molecular behavior rather than running-in.
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Since the anti-friction mechanism of surfactant molecules was the adsorption on the
solid surface and the avoidance of direct contact of solids, the adsorption characteristics
of SDS and AOT solutions were compared on QCM, as shown in Figure 8. Typical curves
of the adsorbed number of molecules per unit area are depicted in Figure 8a, where the
adsorption amount gradually increased and tended to stabilize. The statistical results
of the final adsorption amount of different concentrations of SDS were larger than that
of the AOT solutions at all concentrations (Figure 8b), and the dissipations were all less
than 2.0 × 10−6. The result was reasonable, because the molecular structure of SDS is a
single straight chain, while that of AOT is a double-branched chain, such that SDS can be
arranged more densely than AOT on the Al2O3 sensor of QCM [7,44]. The peak value in
the adsorbed amount curve of 15 mM SDS (Figure 8a) was due to the fact that SDS reached
the surface of the Al2O3 sensor in the form of micelles and then underwent a transition of
arrangement structure upon adsorption, and the difference in the arrangement structures
of different concentrations of SDS solutions on the surface was probably the reason for their
different adsorption amount. The adsorption onto the QCM sensor is a thermodynamic
equilibrium in a free space, which may be different from that in the confined space between
the friction pairs, but the results from QCM could be used for reference.

Lubricants 2022, 10, x FOR PEER REVIEW 9 of 12 
 

 

Since the anti-friction mechanism of surfactant molecules was the adsorption on the 
solid surface and the avoidance of direct contact of solids, the adsorption characteristics 
of SDS and AOT solutions were compared on QCM, as shown in Figure 8. Typical curves 
of the adsorbed number of molecules per unit area are depicted in Figure 8a, where the 
adsorption amount gradually increased and tended to stabilize. The statistical results of 
the final adsorption amount of different concentrations of SDS were larger than that of the 
AOT solutions at all concentrations (Figure 8b), and the dissipations were all less than 2.0 
× 10−6. The result was reasonable, because the molecular structure of SDS is a single 
straight chain, while that of AOT is a double-branched chain, such that SDS can be ar-
ranged more densely than AOT on the Al2O3 sensor of QCM [7,44]. The peak value in the 
adsorbed amount curve of 15 mM SDS (Figure 8a) was due to the fact that SDS reached 
the surface of the Al2O3 sensor in the form of micelles and then underwent a transition of 
arrangement structure upon adsorption, and the difference in the arrangement structures 
of different concentrations of SDS solutions on the surface was probably the reason for 
their different adsorption amount. The adsorption onto the QCM sensor is a thermody-
namic equilibrium in a free space, which may be different from that in the confined space 
between the friction pairs, but the results from QCM could be used for reference. 

 
Figure 8. Adsorption of SDS and AOT solutions measured using QCM. (a) Typical scatterplot of the 
adsorbed molecular number per unit area varying with the introduction time of the liquid. (b) Sta-
tistical results of adsorption amount of different concentrations of SDS and AOT solutions. 

The difference in the molecular structure and adsorption amount of SDS and AOT 
led to different lubrication effects, as shown in the above figures. At the end of the dy-
namic process, the COF reached a stable value, and the stable COF value of SDS as lubri-
cant was lower than that of AOT in boundary and mixed lubrication regions. There are 
two possible reasons. Firstly, the boundary film of SDS was denser (Figure 8), which 
meant that it could achieve a better anti-friction effect [44]. Secondly, some parts of the 
contact zones were very limited in space, with only one or a few molecular diameters. 
Compared to AOT, SDS molecules were more likely to enter these contact zones due to 
their smaller steric hindrance in molecular structure (Figure 9); thus, a higher surface cov-
erage could be achieved by SDS. 
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The difference in the molecular structure and adsorption amount of SDS and AOT led
to different lubrication effects, as shown in the above figures. At the end of the dynamic
process, the COF reached a stable value, and the stable COF value of SDS as lubricant
was lower than that of AOT in boundary and mixed lubrication regions. There are two
possible reasons. Firstly, the boundary film of SDS was denser (Figure 8), which meant
that it could achieve a better anti-friction effect [44]. Secondly, some parts of the contact
zones were very limited in space, with only one or a few molecular diameters. Compared
to AOT, SDS molecules were more likely to enter these contact zones due to their smaller
steric hindrance in molecular structure (Figure 9); thus, a higher surface coverage could be
achieved by SDS.
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Figure 9. Mechanism illustration for the molecular behavior in the dynamic process. (a) SDS had
a smaller steric hindrance such that it could enter the contact zones with confined space slowly
and continuously. SDS molecules had a lower orientation speed. (b) AOT had a larger steric
hindrance, making it difficult to enter the same contact zones as SDS. AOT molecules had a higher
orientation speed.

Since the diffusion time of confined molecules could be considerably longer than that
of bulk molecules [45], the above-mentioned process of SDS molecules entering confined
contact zones would take longer to reach equilibrium. This could be one of the possible
reasons why the duration of the dynamic process of SDS was much longer than that of
AOT. Moreover, the adsorbed molecules were subjected to the shear forces of the solid and
fluid during the friction process, causing the chains to gradually extend and orient to a
more uniform tilt angle and direction [25–27]. The orientation of the molecules can promote
molecular alignment, reduce the molecular internal friction [28,29], and may also increase
the packing density [46]. Thus, the COF decreased with the friction process. The larger
packing density and greater intermolecular dispersion force of SDS made it harder to orient
than AOT (Figure 9) [25,47]. Thus, SDS needed longer to reach a stable COF, and the COF
of AOT decreased more rapidly than that of SDS at the beginning of the dynamic process.

All friction tests in this work were carried out at 25 ◦C, but, in practical application,
the ambient temperature could be higher. Temperature can affect molecular behaviors
in dynamic processes such as adsorption and diffusion. On the one hand, for the slight
running-in stage at the beginning of the dynamic process, the adsorption amount [48] and
anti-friction effect of surfactant molecules decrease with the increase in ambient tempera-
ture. Therefore, the running-in stage may last longer. On the other hand, the higher the
temperature, the greater is the molecular diffusion rate into the confined contact zone.
Therefore, the COF may decrease more rapidly over time, and the duration of COF decrease
may be shorter. The characteristics of the dynamic process under different temperatures
are determined by these factors together.

5. Conclusions

In this study, the influence of the adsorption characteristics of surfactants SDS and AOT
as lubricant additives on the dynamic process of the lubrication process was comparatively
studied. It was found that the duration of the dynamic process of AOT was significantly
shorter than that of SDS, while SDS could achieve a lower stable COF value. The essence
of the dynamic process was the slight running-in of the solid surface and the dynamic
adsorption behaviors of surfactant molecules, of which the latter had a greater impact on
the differences in the dynamic processes of the two surfactants. The longer duration of
the dynamic process of SDS was attributed to its slow access to a more confined contact
zone, which achieved a higher surface coverage and a lower stable COF value. The
faster COF decrease of AOT at the beginning of the dynamic process was attributed to its
higher orientation speed. This study focused on the unsteady friction process that is often
overlooked in research and investigated the molecular behavior of lubricants during this
process. The results provide an in-depth understanding of unsteady lubrication behavior
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in water-based lubrication, which could also provide important guidance for oil-based
lubrication and its industrial applications.
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