Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Friction Coefficient and Fluctuations
3.2. Wear Surface Observation
3.3. Wear Debris Evolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
SEM | Scanning Electron Microscope |
EDS | Energy Dispersive Spectroscopy |
COF | Coefficient Of Friction |
BD-1 | A newly design brake disc material; Alloy powder purchased from Trillion Metals Co.,Ltd. |
BD-2 | A commercial break disc material (Knorr, CRCC TKD-DS64) |
BP | Copper-based brake pad of commercial materia (Knorr, CRCC UPE-DP18) |
C | Carbon element |
O | Oxygen element |
Fe | Ferrum element |
Si | Silicon element |
Cr | Chromium element |
Mn | Manganese element |
V | Vanadium element |
Fe3O4 | ferroferric oxide |
Ni | Nickel element |
Mo | Molybdenum element |
Cu | Cuprum element |
F | force Unit N. The force of experiment. |
v | Linear velocities in the experiment |
Fe2O3 | ferroferric oxide |
CuO | Copper oxide |
References
- Xiao, J.-K.; Xiao, S.-X.; Chen, J.; Zhang, C. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h. Tribol. Int. 2020, 150, 106357. [Google Scholar] [CrossRef]
- Mann, R.; Magnier, V.; Brunel, J.F.; Dufrénoy, P.; Henrion, M.; Guillet-Revol, E. Thermomechanical characterization of high-speed train braking materials to improve models: Numerical validation via a comparison with an experimental braking test. Tribol. Int. 2021, 156, 106818. [Google Scholar] [CrossRef]
- Vorobyev, A.A.; Kulik, V.I.; Nilov, A.S.; Spiryugova, M.A. Promising technologies for the production of brake discs from SiC ceramic matrix composites for braking systems of high-speed railway transport. Proc. Petersburg Transp. Univ. 2020, 3, 378–386. [Google Scholar] [CrossRef]
- Niu, J.; Wang, Y.; Wu, D.; Liu, F. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train. Eng. Appl. Comput. Fluid Mech. 2020, 14, 655–668. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Fu, K.; Wu, P.; Cao, J.; Shijia, C.; Qu, X. Effects of Ni-Coated Graphite Flake on Braking Behavior of Cu-Based Brake Pads Applied in High-Speed Railway Trains. J. Tribol. 2019, 141, 081301. [Google Scholar] [CrossRef]
- Tavangar, R.; Moghadam, H.A.; Khavandi, A.; Banaeifar, S. Comparison of Dry Sliding Behavior and Wear Mechanism of Low Metallic and Copper-Free Brake Pads. Tribol. Int. 2020, 151, 106416. [Google Scholar] [CrossRef]
- Chandra Verma, P.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking Pad-Disc System: Wear Mechanisms and Formation of Wear Fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, Y.; Bao, J.; Lu, L.; Feng, X. Review on the Friction and Wear of Brake Materials. Adv. Mech. Eng. 2016, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Zhou, T.; Zhou, H.; Xu, Y.; Zhang, P.; Yan, Y. Effects of Angle Formation between Melted Zone and Friction Direction on Thermal Fatigue and Wear Resistance of Truck Drum Brake. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 1297–1307. [Google Scholar] [CrossRef]
- Li, Z.; Han, J.; Yang, Z.; Li, W. Analyzing the Mechanisms of Thermal Fatigue and Phase Change of Steel Used in Brake Discs. Eng. Fail. Anal. 2015, 57, 202–218. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 23. [Google Scholar] [CrossRef]
- Zhang, P.; Lian, Q.; Deng, G.; Zhu, H.; Li, H.; Wang, X.; Liu, Z. Influence of white etching layer on rolling contact behavior at wheel-rail interface. Friction 2020, 8, 19. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D.; Wu, P.; Cao, J.; Shijia, C.; Qu, X. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear 2020, 444, 203182. [Google Scholar] [CrossRef]
- Neog, S.P.; Kumar, A.R.; Das Bakshi, S.; Das, S. Understanding the Complexities of Dry Sliding Wear Behaviour of Steels. Mater. Sci. Technol. 2021, 37, 504–518. [Google Scholar] [CrossRef]
- Innocenti, A.; Marini, L.; Meli, E.; Pallini, G.; Rindi, A. Development of a Wear Model for the Analysis of Complex Railway Networks. Wear 2014, 309, 174–191. [Google Scholar] [CrossRef] [Green Version]
- Miab, S.A.; Avishan, B.; Yazdani, S. Wear Resistance of Two Nanostructural Bainitic Steels with Different Amounts of Mn and Ni. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, P.V.; Hardell, J.; Vuorinen, E.; Prakash, B. Effect of Retained Austenite on Adhesion-Dominated Wear of Nanostructured Carbide-Free Bainitic Steel. Tribol. Int. 2020, 150, 106348. [Google Scholar] [CrossRef]
- Yetim, A.F.; Codur, M.Y.; Yazici, M. Using of Artificial Neural Network for the Prediction of Tribological Properties of Plasma Nitrided 316L Stainless Steel. Mater. Lett. 2015, 158, 170–173. [Google Scholar] [CrossRef]
- Shah, M.; Das Bakshi, S. Three-Body Abrasive Wear of Carbide-Free Bainite, Martensite and Bainite-Martensite Structure of Similar Hardness. Wear 2018, 402, 207–215. [Google Scholar] [CrossRef]
- Kasem, H.; Brunel, J.F.; Dufrénoy, P.; Siroux, M.; Desmet, B. Thermal Levels and Subsurface Damage Induced by the Occurrence of Hot Spots during High-Energy Braking. Wear 2011, 270, 355–364. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Z.; Yao, P.; Fan, K.; Zhou, H.; Gong, T.; Zhao, L.; Deng, M. Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains. Tribol. Int. 2018, 119, 585–592. [Google Scholar] [CrossRef]
- Vasiljevic, S.; Glišović, J.; Stojanovic, B.; Stojanovic, N.; Grujic, I. The Analysis of the Influential Parameters That Cause Particles Formation during the Braking Process: A Review. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 31–48. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wei, D.; Wu, P.; Cao, J.; Shijia, C.; Qu, X. Substance Evolution and Wear Mechanism on Friction Contact Area of Brake Disc for High-Speed Railway Trains at High Temperature. Eng. Fail. Anal. 2020, 111, 104472. [Google Scholar] [CrossRef]
- Lyu, Y.; Bergseth, E.; Wahlström, J.; Olofsson, U. A Pin-on-Disc Study on the Tribology of Cast Iron, Sinter and Composite Railway Brake Blocks at Low Temperatures. Wear 2019, 424, 48–52. [Google Scholar] [CrossRef]
- Wang, Z.; Han, J.; Domblesky, J.P.; Li, Z.; Fan, X.; Liu, X. Crack Propagation and Microstructural Transformation on the Friction Surface of a High-Speed Railway Brake Disc. Wear 2019, 428, 45–54. [Google Scholar] [CrossRef]
- Riva, G.; Valota, G.; Perricone, G.; Wahlström, J. An FEA Approach to Simulate Disc Brake Wear and Airborne Particle Emissions. Tribol. Int. 2019, 138, 90–98. [Google Scholar] [CrossRef]
- Rodrigues, A.C.P.; Österle, W.; Gradt, T.; Azevedo, C.R.F. Impact of Copper Nanoparticles on Tribofilm Formation Determined by Pin-on-Disc Tests with Powder Supply: Addition of Artificial Third Body Consisting of Fe3O4, Cu and Graphite. Tribol. Int. 2017, 110, 103–112. [Google Scholar] [CrossRef]
- Barros, L.Y.; Poletto, J.C.; Neis, P.D.; Ferreira, N.F.; Pereira, C.H.S. Influence of Copper on Automotive Brake Performance. Wear 2019, 426, 741–749. [Google Scholar] [CrossRef]
- Cai, R.; Zhang, J.; Nie, X.; Tjong, J.; Matthews, D.T.A. Wear Mechanism Evolution on Brake Discs for Reduced Wear and Particulate Emissions. Wear 2020, 452, 203283. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.C.; Wu, C.H.; Cui, Z.X.; Niu, C.; Wang, Y. Debris effect on the surface wear and damage evolution of counterpart materials subjected to contact sliding. Adv. Manuf. 2022, 10, 72–86. [Google Scholar] [CrossRef]
- Jayashree, P.; Federici, M.; Bresciani, L.; Turani, S.; Sicigliano, R.; Straffelini, G. Effect of Steel Counterface on the Dry Sliding Behaviour of a Cu-Based Metal Matrix Composite. Tribol. Lett. 2018, 66, 123. [Google Scholar] [CrossRef]
- Jayashree, P.; Bortolotti, M.; Turani, S.; Straffelini, G. High-Temperature Tribo-Oxidative Wear of a Cu-Based Metal-Matrix Composite Dry Sliding Against Heat-Treated Steel. Tribol. Lett. 2019, 67, 110. [Google Scholar] [CrossRef]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A Pin-on-Disc Study on the Dry Sliding Behavior of a Cu-Free Friction Material Containing Different Types of Natural Graphite. Wear 2020, 442, 203157. [Google Scholar] [CrossRef]
- Li, X.; Sosa, M.; Olofsson, U. A Pin-on-Disc Study of the Tribology Characteristics of Sintered versus Standard Steel Gear Materials. Wear 2015, 340, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Federici, M.; Straffelini, G.; Gialanella, S. Pin-on-Disc Testing of Low-Metallic Friction Material Sliding Against HVOF Coated Cast Iron: Modelling of the Contact Temperature Evolution. Tribol. Lett. 2017, 65, 121. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ma, B.; Li, H.; Stanciulescu, I. The Running-in Micro-Mechanism and Efficient Work Conditions of Cu-Based Friction Material against 65Mn Steel. Exp. Tech. 2019, 43, 667–676. [Google Scholar] [CrossRef]
Element | C | Si | Cr | Mo | Ni | Mn | V | Fe |
---|---|---|---|---|---|---|---|---|
BD-1 | 0.30 | 0.50 | 1.60 | 0.8 | 0.95 | 1.0 | 0.1 | Bal. |
BD-2 | 0.22 | 0.41 | 0.80 | 1.0 | 0.95 | 1.0 | - | Bal. |
Element | Cr | S | C | Mo | Fe | Cu |
---|---|---|---|---|---|---|
BP | 6.5 | 1.6 | 12.4 | 2.1 | 16.6 | Bal. |
NO | Mean COF for BD-1 | COF Fluctuation Amplitude of BD-1 | Mean COF for BD-2 | COF Fluctuation Amplitude of BD-2 |
---|---|---|---|---|
250 rpm | 0.73 | 0.45–0.50 | 0.72 | 0.48–0.68 |
500 rpm | 0.57 | 0.21–0.32 | 0.56 | 0.32–0.52 |
750 rpm | 0.5 | 0.13–0.28 | 0.55 | 0.28–0.43 |
1000 rpm | 0.54 | 0.22–0.32 | 0.39 | 0.30–0.48 |
1250 rpm | 0.60 | 0.32–0.68 | 0.59 | 0.40–0.78 |
NO | Fe | C | Mn | Cr | Ni | Si | Mo | V | O | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Total | 53.2 | 8.7 | 0.6 | 5.1 | 0.0 | 0.6 | 0.2 | 0.0 | 29.1 | 2.5 |
Zone1 | 38.3 | 6.7 | 0.0 | 7.8 | 0.0 | 0.6 | 0.2 | 0.0 | 44.3 | 2.2 |
Zone2 | 77.2 | 10.1 | 2.5 | 5.8 | 0.8 | 0.7 | 0.2 | 0.0 | 2.7 | 0.1 |
Zone3 | 35.5 | 6.9 | 0.0 | 5.0 | 0.0 | 0.4 | 0.2 | 0.0 | 47.8 | 4.3 |
Zone4 | 38.3 | 6.5 | 0.0 | 7.7 | 0.0 | 0.5 | 0.2 | 0.0 | 44.1 | 2.7 |
NO | Fe | C | Mn | Cr | Ni | Si | Mo | V | O | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Total | 20.2 | 9.5 | 0.0 | 2.4 | 0.0 | 0.4 | 0.2 | 0.0 | 39.9 | 27.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zafar, M.Q.; Chen, Y.; Pan, P.; Zuo, L.; Zhao, H.; Zhang, X. Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris. Lubricants 2022, 10, 168. https://doi.org/10.3390/lubricants10080168
Wang J, Zafar MQ, Chen Y, Pan P, Zuo L, Zhao H, Zhang X. Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris. Lubricants. 2022; 10(8):168. https://doi.org/10.3390/lubricants10080168
Chicago/Turabian StyleWang, Jinnan, Muhammad Qasim Zafar, Yunbo Chen, Peng Pan, Lingli Zuo, Haiyan Zhao, and Xiangjun Zhang. 2022. "Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris" Lubricants 10, no. 8: 168. https://doi.org/10.3390/lubricants10080168
APA StyleWang, J., Zafar, M. Q., Chen, Y., Pan, P., Zuo, L., Zhao, H., & Zhang, X. (2022). Tribological Properties of Brake Disc Material for a High-Speed Train and the Evolution of Debris. Lubricants, 10(8), 168. https://doi.org/10.3390/lubricants10080168