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Abstract: Predicting the remaining useful life (RUL) of a bearing can prevent sudden downtime
of rotating machinery, thereby improving economic efficiency and protecting human safety. Two
important steps in RUL prediction are the construction of a health indicator (HI) and the prediction
of life. Traditional methods simply use the time-series characteristics of the vibration signal, for
example, using root mean square (RMS) as HI, but this HI does not reflect the true degradation of
the bearing. Meanwhile, existing prediction models often cannot consider both the time and space
characteristics of the signal, thus limiting prediction accuracy. To address the above problems, in
this study, wavelet packet transform (DWPT) and kernel principal component analysis (KPCA) were
combined to extract HI from the original vibration signal. Then, a CNN-BiLSTM (convolutional and
bidirectional long- and short-term memory) prediction network with root mean square as input and
HI as output was constructed by combining convolutional neural network (CNN) and bi-directional
long- and short-term memory neural network (BiLSTM). The network improved prediction accuracy
by considering the temporal and spatial characteristics of the input signal. Experimental results on the
PHM2012 dataset showed that the method proposed in this paper outperformed existing methods.

Keywords: wavelet packet transform; kernel principal component analysis; remaining service
life of rolling bearings; convolutional neural network; bidirectional long- and short-term memory
neural network

1. Introduction

Bearing is a key component in rotating machinery, known as the joint of machinery,
and its failure may lead to downtime of industrial production or even cause casualties [1].
According to a survey, rolling bearing failure is one of the most important factors of rotating
machinery failure, accounting for 45–55% of cases [2]. A reasonable and effective bearing
remaining useful life prediction (RUL) method can help technicians develop maintenance
plans for predictive maintenance [3]. Therefore, it is important to predict the remaining
service life of bearings to avoid accidents and reduce economic losses [4].

Generally speaking, methods for RUL prediction of bearings fall into two main cate-
gories: model-based (physical/mathematical) methods [5,6] and data-driven methods [7].
Wang et al. [8] proposed a mechanical state prediction method based on a probabilistic
model with particle filters, which was successfully used for the state prediction of wind
power bearings. El-Tawil et al. [9] developed a method based on a nonlinear damage
law to determine the RUL of the system. Ma et al. [5] analyzed the interaction between
various parts of the bearing by modeling the angle of relative sliding velocity between the
rolling element and the bearing raceway and the bearing dynamics. However, model-based
methods require complex physical or mathematical models, which require researchers
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with extensive knowledge base and are often difficult to develop due to complex working
conditions [10].

With the development of sensor technology and computer technology, data-driven
methods based on data have been developed [11]. As a data-driven method, deep learning
can learn the bearing degradation trend spontaneously from sensor data and establish
the mapping relationship between data and bearing health status with remarkable appli-
cation [12]. Deep-learning-based RUL prediction methods are mainly divided into steps
such as data acquisition, health factor (HI) construction, and remaining service life pre-
diction [13]. Liu et al. [14] proposed a rolling bearing RUL prediction method based on
regularized LSTM networks and verified the advantages of the method with the dataset of
PRONOSTIA platform [15]. Ning et al. [16] first performed feature screening of signals and
then predicted the remaining service life of bearings using RNN models. Network models
such as RNN and LSTM tend to ignore spatial features, although they can learn the degra-
dation trend and temporal characteristics of bearings from the data [17]. Wang et al. [18]
used 1d-CNN to process fused signals and learn fault features using the powerful feature
extraction capability of the network. However, a single CNN network tends to ignore the
temporal features of the data and is unable to learn signal features at multiple scales [19].
HI can reflect the degradation trend of bearings, and it is critical to obtain excellent HI
labels for training prediction models [20]. For example, Zhang et al. [21] used the time-
domain feature RMS of the vibration signal as the main performance degradation indicator.
Singleton et al. [22] used the variance of the vibration signal as HI. Zhang et al. [23] used
the kurtosis of the vibration signal after band-pass filtering as HI. In the literature [24], the
ratio of current life to total life of the bearing is used as HI of the bearing. However, HI con-
structed by the above methods cannot fully describe the bearing degradation trend. Because
the bearing signal is nonlinear, we can pay attention to the transient changes of the signal by
analyzing the signal with different resolutions in time–frequency domain. Time–frequency
analysis technology DWPT is often used in the analysis of bearing vibration signals [25].

In response to the above problems, a new method for HI and RUL prediction of rolling
bearings is proposed in this paper. Firstly, discrete wavelet packet transform (DWPT) was
performed on the time-domain vibration signal to extract RMS features from the obtained
sub-bands, and the HI was then obtained by fusing the RMS of each sub-band through
kernel principal component analysis (KPCA). Based on this, the convolutional bidirectional
long- and short-term memory neural network (CNN-BiLSTM) was proposed for lifetime
prediction. Finally, the feasibility of the method was verified by bearing experimental data.
The main contributions are as follows.

1. Discrete wavelet packet transform (DWPT) and principal component analysis (KPCA)
were combined to construct new health indicators to solve the labeling problem of
RUL prediction. Compared to the life-percentage-style linear HI, this HI can better
reflect the bearing degradation trend and retain the time–frequency characteristics of
the signal, which is beneficial to the learning of the prediction model.

2. A convolutional bidirectional long- and short-term memory neural network (CNN-
BiLSTM) was designed for RUL prediction. Convolution can extract signal features
from different scales, and combined with the BiLSTM network, the model can take
into account both temporal and spatial features of the signal to improve prediction
accuracy.

3. Experimental data based on rolling bearing dataset were used to verify the effective-
ness of the method.

The remainder of this paper is organized as follows. Section 2 provides the theoretical
background. Section 3 introduces the method proposed in this paper. Section 4 describes
the experimental procedure and the analysis of the results in detail. Section 5 concludes
the paper.
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2. Theoretical Background
2.1. Discrete Wavelet Packet Transform (DWPT)

The discrete wavelet transform can describe the local characteristics of vibration signals
in the time and frequency domains and is a very effective signal analysis method, which is
often used for signal preprocessing for bearing fault diagnosis and life prediction [26].

In this study, the bearing vibration signal was preprocessed based on DWPT in order
to construct HI. The algorithms for wavelet packet decomposition and reconstruction are
shown in Equations (1) and (2), respectively.

dj,2n
i = ∑

k
pk−2ld

j−1,n
k

dj,2n+1
l = ∑

k
qk−2ld

j−1,n
k

(1)
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k
pl−2kdj,2n

k + ∑
k

ql−2kdj,2n+1
k (2)

where p and q are filter coefficients; d is the wavelet packet decomposition coefficient; k and
l are the number of decomposition layers; and j and n are wavelet packet node numbers.

Figure 1 is a schematic diagram of the three-layer wavelet packet decomposition
structure, where S0 is the original signal, S10 is the low-frequency part of the original signal,
S11 is the high-frequency part of the original signal, and so on. As can be seen from the
figure, the wavelet packet transform can decompose both the low- and high-frequency
parts of the signal uniformly and has higher time–frequency resolution than the wavelet
transform, making it more effective in analyzing nonsmooth signals (e.g., bearing vibration
signals) [20]. In this study, the db4 mother wavelet was used to decompose the original
vibration signal into three levels of wavelet packets to obtain eight sub-bands.

Lubricants 2022, 10, x FOR PEER REVIEW 3 of 21 
 

 

2. Theoretical Background 

2.1. Discrete Wavelet Packet Transform (DWPT) 

The discrete wavelet transform can describe the local characteristics of vibration 

signals in the time and frequency domains and is a very effective signal analysis method, 

which is often used for signal preprocessing for bearing fault diagnosis and life prediction 

[26]. 

In this study, the bearing vibration signal was preprocessed based on DWPT in order 

to construct HI. The algorithms for wavelet packet decomposition and reconstruction are 

shown in Equations (1) and (2), respectively. 

,2 1,

2

,2 1 1,

2

j n j n

i k l k

k

j n j n

l k l k

k

d p d

d q d

−

−

+ −

−

 =



=





 (1) 

1, ,2 ,2 1

2 2

j n j n j n

l l k k l k k

k k

d p d q d− +

− −= +   (2) 

where p and q are filter coefficients; d is the wavelet packet decomposition coefficient; k 

and l are the number of decomposition layers; and j and n are wavelet packet node 

numbers. 

Figure 1 is a schematic diagram of the three-layer wavelet packet decomposition 

structure, where S0 is the original signal, S10 is the low-frequency part of the original 

signal, S11 is the high-frequency part of the original signal, and so on. As can be seen from 

the figure, the wavelet packet transform can decompose both the low- and high-frequency 

parts of the signal uniformly and has higher time–frequency resolution than the wavelet 

transform, making it more effective in analyzing nonsmooth signals (e.g., bearing 

vibration signals) [20]. In this study, the db4 mother wavelet was used to decompose the 

original vibration signal into three levels of wavelet packets to obtain eight sub-bands. 

 

Figure 1. Structural scheme of DWPT. 

2.2. Kernel Principal Component Analysis (KPCA) 

Kernel principal component analysis (KPCA) [27] is a nonlinear feature extraction 

method that is often used for feature extraction and fusion of bearing signals [28]. The 

kernel function was first introduced to map the original data space to a high-dimensional 

feature space, and PCA was then performed to reduce the dimensionality of the analysis. 

The quality of the nonlinear features thus extracted was much better. 

Let the data set with M samples be  1 2, , , ( 1,2,..., )ix x x i M= , N

ix R  and the sample 

dimension be N. Normalize the high-dimensional spatial data so that it satisfies the 

following: 

1

1
( ) 0

M

i

i

x
M


=

=  (3) 

where   is a nonlinear mapping function that enables the mapping of the low-

dimensional spatial feature 
ix  to the higher dimensional space ( )iF x： . 

The covariance matrix of F  space is expressed as follows: 

Figure 1. Structural scheme of DWPT.

2.2. Kernel Principal Component Analysis (KPCA)

Kernel principal component analysis (KPCA) [27] is a nonlinear feature extraction
method that is often used for feature extraction and fusion of bearing signals [28]. The
kernel function was first introduced to map the original data space to a high-dimensional
feature space, and PCA was then performed to reduce the dimensionality of the analysis.
The quality of the nonlinear features thus extracted was much better.

Let the data set with M samples be {x1, x2, · · · , xi}(i = 1, 2, . . . , M), xi ∈ RN and the
sample dimension be N. Normalize the high-dimensional spatial data so that it satisfies
the following:

1
M

M

∑
i=1

ϕ(xi) = 0 (3)

where ϕ is a nonlinear mapping function that enables the mapping of the low-dimensional
spatial feature xi to the higher dimensional space F : ϕ(xi).



Lubricants 2022, 10, 170 4 of 19

The covariance matrix of F space is expressed as follows:

C =
1
M

M

∑
i=1

ϕ(xi)ϕ(xi)
T (4)

The eigenvalues of the covariance matrix are λ, and the eigenvectors are v, both of
which satisfy the following:

Cv = λv (5)

After transforming each sample into ϕ(xk), make inner product with Equation (5):

ϕ(xk)Cv = λϕ(xk)v (6)

The linear representation of the feature vector is as follows:

v =
M

∑
i=1

αi ϕ(xi) (7)

Simultaneous Formulas (4)–(7) can be obtained:

1
M

M

∑
i=1

αi

M

∑
j=1

[
ϕ(xk)ϕ(xj)

][
ϕ(xj)ϕ(xi)

]
= λ

M

∑
i=1

αi[ϕ(xk)ϕ(xi)] (8)

Nonlinear mapping from input space to high-dimensional feature space can be realized
by kernel function inner product operation. The kernel function selected in this study is a
Gaussian radial basis function, whose expression is as follows:

k(xi, xj) = exp(−γ‖xi − xj‖2) (9)

where parameter γ is used to control the range of action of the kernel function.
Define the M×M dimensional matrix K, where the elements can be represented using

the following kernel function:

K =

 k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)

 (10)

The kernel matrix is used to represent Equation (8), which can be simplified as fol-
lows: Kα = Mλα. The eigenvalues and eigenvectors of the kernel matrix can be de-
rived from the simplified Equation (8), which in turn leads to the normalized eigenvector
vk(k = 1, 2, . . . , M) of the covariance matrix. Then, the k-th linear principal element of the
sample x can be obtained as follows:

hk = vk ϕ(x) =
M

∑
i=1

αk
i K(xi, x) (11)

The cumulative contribution of features is calculated and the principal element is
selected as follows:

p

∑
k=1

λk/
m

∑
i=1

λi ≥ 0.90 (12)

where λ1 ≥ λ2 ≥ λ3 . . . ≥ λm is the eigenvalue of the kernel matrix.

2.3. Bidirectional Long Short-Term Memory Neural Network (BiLSTM)

Long short-term memory neural network (LSTM) [29] is an improvement on the
recurrent neural network (RNN). It solves the RNN gradient disappearance and gradient
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explosion problems by introducing forgetting gates and can efficiently learn the nonlinear
features of time series.

As a deep learning neural network model, each neuron of LSTM is a memory cell
with three gates, which are forgetting gate ft, input gate it, and output gate ot. The whole
update process is shown in Equations (13)–(18).

The forgetting gate ft determines what information is discarded and is determined by
both the current input and the output of the previous sequence.

ft = σ
(

W f ·(ht−1, xt) + b f

)
(13)

where σ is the sigmoid activation function; W f is the weight vector; b f is the base vector;
and Ct−1 denotes the cell state, which is used to store the memory information of the
previous moment.

Update gate it determines what information is stored and updates the cell state as
follows:

it = σ(Wi·(ht−1, xt) + bc (14)

C̃t = tanh(Wc·(ht−1, xt) + bc (15)

Ct = ft·Ct−1 + it·C̃t (16)

where tanh is the activation function, C̃t is the candidate vector for the current new state
information; ft·Ct−1 denotes the information to be forgotten; it·C̃t is the information to be
retained; and Ct is the current cell state.

ot = σ(Wo·(ht−1, xt) + bo) (17)

ht = ot·tanh(Ct) (18)

where ot represents the output of information from the output gate, and ht is the output of
the memory cell, which will also be input in the next LSTM cell.

The BiLSTM [30,31] consists of two LSTMs that pass information from the forward
and reverse directions, respectively, compared to the LSTM and can associate both past and
future states. The Bi-LSTM structure is shown in Figure 2, and its output is as follows [32].

ht = [
→
ht,
←
ht] (19)

where
→
ht is the result of forward propagation, and

←
ht is the result of backward propagation.
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2.4. Convolutional Neural Network (CNN)

Convolutional neural networks [33] have the characteristics of local connectivity and
weight sharing. One-dimensional convolutional neural networks can perform feature
extraction on time-domain signals and are commonly used in the field of bearing fault
diagnosis [34].

Convolutional neural networks usually consist of three types of network layers: con-
volutional layer, pooling layer, and fully connected layer. The convolutional layer can
implement convolutional operations for feature extraction, the pooling layer can reduce the
feature dimensionality and prevent overfitting, and the fully connected layer can perform
nonlinear combination of the extracted features.

The formula for one-dimensional convolution is as follows:

Zl+1 =
[

Zl ∗ wl+1
]
+ b =

f

∑
x=1

[
Zl

k(s0 + x)wl+1
k (x)

]
+ b (20)

The maximum pooling equation is as follows:

Al+1
i (j) = max

(j−1)W+1≤jW

{
Fl

i (t)
}

(21)

where Zl is the convolutional input of layer l + 1, and Zl+1 is the output of layer l + 1; b is
the amount of variance; wl+1

k is the weight of layer l + 1; f is the convolutional kernel size;
s0 is the convolutional step size; Fl

i (t) is the value of the t-th neuron in the i-th feature of
layer l; W is the pooling region; and Al+1

i is the output of the neuron of layer l + 1.

3. The Proposed Framework

The overall block diagram of the proposed method is shown in Figure 3. Firstly, the
original vibration signal was subjected to discrete wavelet packet transform (DWPT) to
obtain eight sub-bands and extract the RMS values of different sub-bands. Then, KPCA
was used to downscale the multidimensional RMS to obtain HI. Finally, the remaining
lifetime prediction was performed by CNN-BiLSTM network.

(1) Data acquisition: The accelerometers were placed on the horizontal and vertical axes
with sampling frequency of 25.6 KHZ, sampling interval of 10 s, and sampling time of
0.1 s. Sampling was performed under three working conditions.

(2) Building health indicators: The original vibration signal was decomposed into eight
sub-bands using DWPT. The sub-bands were reconstructed according to the coef-
ficients, and RMS values were extracted. The multidimensional RMS values were
dimensionalized using the KPCA algorithm, and low-dimensional sensitive features
were selected as HI and used as training labels for the prediction network.

(3) Proposed neural network: The spatial features of the signal were extracted using a
convolutional network followed by a BiLSTM layer to extract temporal features from
the forward and reverse directions. The global average pooling layer in the model can
pay attention to the overall information, which is conducive to model prediction [35].
The mean square error was used as the loss function, and the optimizer was Adam.
The input to the network was RMS at the current moment, and the output was the HI
at the future moment.
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4. Experiments and Results
4.1. Data Description

To verify the effectiveness of the proposed method, the PHM 2012 Challenge dataset
was used in this study. The data was collected and obtained from the PRONOSTIA testbed,
as shown in Figure 4.
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The acquisition device was used for 17 full-life cycle experiments of the bearing under
three operating conditions, and a total of 17 sets of data were collected in the horizontal
and vertical directions of the bearing using an accelerometer. The sampling frequency of
the accelerometer sensor was 25.6 kHZ, and the experimental setup recorded the vibration
signals at 10 s intervals with a sampling time of 0.1 s [36]. Under working condition I,
bearings 1-1 to 1-7 were tested with motor speed of 1800 rpm and load of 4000 N. Under
working condition II, bearings 2-1 to 2-7 were tested with motor speed of 1650 rpm and
load of 4200 N. Under working condition III, bearings 3-1 to 3-3 were tested with motor
speed of 1500 rpm and load of 5000 N. Details of the data are shown in Table 1.

Table 1. Operating condition of the PHM2012 dataset.

Working Condition Load (N) Rotation Speed Dataset

1 4000 1800 rpm

Bearing 1-1 (train)
Bearing 1-2 (train)
Bearing 1-3 (test)
Bearing 1-4 (test)
Bearing 1-5 (test)
Bearing 1-6 (test)
Bearing 1-7 (test)

2 4200 1650 rpm

Bearing 2-1 (train)
Bearing 2-2 (train)
Bearing 2-3 (test)
Bearing 2-4 (test)
Bearing 2-5 (test)
Bearing 2-6 (test)
Bearing 2-7 (test)

3 5000 1500 rpm
Bearing 3-1 (train)
Bearing 3-2 (train)
Bearing 3-3 (test)

4.2. Construction of Health Indicators

In this section, we describe the process of HI construction in detail. Figure 5 shows the
original vibration signal of bearing 1-1. As can be seen, the vibration signal amplitude of
bearing 1-1 initially fluctuated roughly smoothly. The vibration signal showed a gradual
upward trend with increase in time and increased sharply at the later stage.
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In the original time-domain signal shown in Figure 5, every 2560 consecutive points
constitute a sample. These samples were processed by fast Fourier transform to obtain the
corresponding frequency-domain samples. In Figure 6, 10 frequency-domain samples are
shown. In the figure, the time corresponding to these samples increases with the sample
number. For example, sample 1 corresponds to the beginning of the bearing life cycle, and
sample 10 corresponds to the end of the bearing life cycle.
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As can be seen from Figure 6, the bearings had different degrees of amplitude increase
in different frequency sections. The low-frequency vibration was due to rotation frequency,
rolling body, and internal and external fault frequency of rolling. The high-frequency
vibration was caused by the inherent frequency of each component of the bearing. When
the bearing failed, the shape and quality of the component changed, affecting the high-
frequency vibration.

To construct the HI, the original vibration signal was first decomposed into wavelet
packets using db4 wavelets for three-level decomposition [20]. Reconstruction was per-
formed according to the reconstruction coefficients to obtain eight sub-bands. The re-
constructed sub-bands are shown in Figure 7. It can be seen that the eight sub-bands
exhibited different trends, and each contained degradation characteristics of different
frequency bands.
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The RMS was extracted for each of the eight sub-bands, and the RMS values for each
sub-band were obtained, as shown in Figure 8.
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bearing 1-1.

As can be seen from Figure 8, the RMS extracted from the eight sub-bands had different
trends. During the whole life cycle of the bearing, the RMS of some sub-bands showed an
increasing trend, while the RMS of other sub-bands showed significant fluctuations. The
RMS of all sub-bands showed a steep upward trend in the last part of the life cycle, while
the RMS of some sub-bands showed sensitivity at the beginning of the wear. This indicates
that different sub-bands carry different degradation information.

In order to fuse the most important degradation information exhibited by all sub-
bands, the RMS of the eight sub-bands were feature fused using the KPCA algorithm.
First, the eight sub-band RMS sequences shown in Figure 8 were selected to construct an
eight-dimensional high-dimensional feature set. Then, the KPCA algorithm was used to
reduce the dimensionality of the feature set. Finally, the first principal element (contribution
rate >90%) was selected as the final HI. Table 2 shows the contribution rates of the principal
elements. The final construction results are shown in Figure 9.

Table 2. Contribution rate of partial principal components.

Principal Component
Serial Number Contribution Rate Cumulative Contribution Rate

1 0.919 0.919
2 0.061 0.980
3 0.019 0.999

Figure 9 shows a comparison of the values of RMS extracted from the sub-bands and
RMS extracted using the method proposed in this study. The sub-band RMS fluctuated
a lot, and the curves were messy. The method proposed in this paper could fuse the
important characteristics of each sub-band, such as the sudden increase in RMS of sub-
band (3,5) near sample 2500, which reflected the sensitivity at the early stage of wear; the
gentle fluctuation of RMS of sub-band (3,7) at sample 2600 and the decrease in HI, which
reflected the sensitivity at the recovery period of wear; and the sharp increase in RMS of
sub-band (3,1) at the last part of the life cycle, which reflected the sensitivity of the late
wear period. The proposed HI thus contained more comprehensive information on bearing
degradation and the curve was smoother, reflecting its superiority as an HI. To further
illustrate the superiority of the proposed HI, the HI of bearings 2-1, 2-6, 3-2, and 3-3 under
different operating conditions were extracted, and the results are shown in Figure 10.
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The health factor, which reflects the degradation trend of the bearing, needs to have a
strong correlation with the degradation trend of the bearing. The physical degradation pro-
cess of the bearing is irreversible, so the health factor should also have a similar monotonic
change trend [37]. Monotonicity indexes are widely used in the evaluation of health factor
performance. Yang et al. [38] obtained the optimal HI by optimizing the monotonicity
index of HI. Lin et al. [39] used ensemble stacked autoencoders to construct health factors
for bearings and evaluated their performance using monotonicity metrics.

We compared the performance of the proposed HI with the original RMS using the
metric of monotonicity according to the following equation:

Mon(X) =
1

K− 1
|No.o f d/dx > 0− No.o f d/dx < 0| (22)

where X denotes the feature sequence; K denotes the total number of features; and
No.o f d/dx > 0 and No.o f d/dx < 0 denote the number of positive and negative vari-
ances, respectively. The higher the Mon score, the better the monotonicity and the better
the index performance. The results are shown in Table 3.

Table 3. HI performance analysis using monotonicity.

Bearing Monotonicity of RMS Monotonicity of
Proposed HI

1-1 0.161 0.961
1-2 0.102 0.962
1-3 0.047 0.936
1-4 0.051 0.917
1-5 0.101 0.959
1-6 0.099 0.908
1-7 0.149 0.933
2-1 0.087 0.915
2-2- 0.132 0.941
2-3 0.141 0.907
2-4 0.097 0.913
2-5 0.089 0.968
2-6 0.127 0.947
2-7 0.152 0.903
3-1 0.074 0.931
3-2 0.046 0.903
3-3 0.047 0.933

From the table, we can see that the proposed HI had better monotonicity, which proves
the superiority of the proposed method.

4.3. RUL Prediction

In this section, we outline the development of a CNN-BiLSTM prediction model with
RMS input and HI labels and discuss the effect of model parameters on prediction accuracy.
Bearing 1-1 was used as an example to develop a detailed description.

4.3.1. Input Selection

It is convenient to process raw vibration signals of bearings in the time domain, and
features such as Rms, Peak2Peak, Kurtosis, Impulse Factor, Var, and Clearance Factor are
commonly used in the analysis of the remaining service life of bearings and as inputs to
prediction networks [4,40].

We can extract many features, such as time domain and frequency domain, from
vibration signals. These features have different representation abilities for vibration signals.
Some features are not helpful or even cause interference for characterizing signals. There-
fore, it is very important to select appropriate features [41]. The degradation process is an
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accumulation of random fatigue failure processes, so it should have a certain overall increas-
ing or decreasing trend on the time axis, i.e., the characteristic quantity should have certain
monotonicity [37]. Zhang et al. [42] extracted signal time-domain, frequency-domain, and
time–frequency-domain correlation features and defined metrics such as monotonicity for
feature selection based on the trend and residuals of the features. Tian et al. extracted
10 features of bearing vibration signals and used the monotonicity index to screen good
features as input to the neural network [43].

Different time-domain features have different characterization capabilities for the orig-
inal signal, and monotonicity continues to be used to assess the characterization capabilities
of time-domain features.

The monotonicity score was calculated for the time-domain features, and the results
are shown in Figure 11.
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As can be seen from Figure 11, the Rms monotonicity of the original vibration signal
was the best, and Rms was chosen here as input to the prediction network.

4.3.2. Training and Test of CNN-BiLSTM Model

Before training and testing a prediction model, it is necessary to construct the dataset
and determine the correspondence between the input Rms and output HI labels. Suppose
the Rms sequence is [X1, X2, X3, X4] and the HI sequence is [Y1, Y2, Y3, Y4], then the predic-
tion relationship of the network is F([X1, X2]) = Y3, F([X2, X3]) = Y4. A sliding window
was used to take the value of the Rms sequence with a window width of 64 and a sliding
step of 1. The specific correspondence is shown in Figure 12. The final sample format
(number of samples, time step, and dimension) obtained was (2739, 64, and 1).

For the CNN-BiLSTM model, Adam optimizer with an initial learning rate of 0.001 was
used, and in order to maximize the optimization of the network parameters, a decreasing
learning strategy was used to reduce the learning rate by 10−6 per round. The training
results of the model are shown in Figure 13, and the prediction results of the training set
were almost identical to the real HI labels.
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Figure 13. Training of the model.

Signal processing was performed as described in the previous section for HI construc-
tion, and finally the trained CNN-BiLSTM model was used for prediction of bearing 1-5.
The prediction results are shown in Figure 14. As can be seen, the prediction results are
basically consistent with the real HI labels, which verifies the effectiveness of the method.
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4.3.3. Selection of Hyper Parameters

In prediction models, the width of the sliding window and the size of the batch size
are key hyperparameters that affect the performance of the model. This section discusses
the effects of both parameters on the model performance.

The 2n facilitated the computer processor for optimization, and window widths of 8,
16, 32, 64, and 128 were used to shape the samples. The prediction model was then trained
and tested. The models were evaluated using mean square error (MSE), root mean square
error (RMSE), and mean absolute error (MAE). The errors on the training and test sets are
shown in Figure 15.
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The above metrics can be described as follows.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (23)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (24)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (25)

where yi is the true label; ŷi is the predicted label; yi is the mean of the actual labels; and N
denotes the total number of samples.

As can be seen from Figure 15, on the training set, with the increase in the window
width, each error showed a decreasing–increasing trend and the smallest error was at
the window width of 64. On the test set, with the increase in the window width, the
error showed irregular fluctuations and the smallest error was at the window width of 64.
Therefore, the window width of 64 was chosen.

The batch size represents the number of data samples crawled in one training session.
The batch size affects the training speed and model optimization. Batch sizes of 8, 16, 32,
64, 128, and 256 were selected, and the relationship between the three types of errors and
batch size was observed. The results are shown in Figure 16.
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From Figure 16, it can be seen that the three errors on the training set basically showed
a decreasing trend with the increase of Batch size. However, in the test set, the three
errors first decreased and then increased as the batch size increased. The errors increased
significantly when the batch size exceeded 64, so 64 was chosen as the batch size.

4.3.4. Results of Different Models

This section discusses the prediction effects of CNN, LSTM, and BiLSTM models on
the PHM2012 dataset and compares them with the method proposed in this paper.

Prediction experiments were conducted on the dataset using each of the three models
mentioned above, and the prediction results for bearings 1-1, 1-3, and 1-5 were visualized.
The results are shown in Figure 17.
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Figure 17. Prediction effects of different models. (a–c) is the prediction result of our method. (d–f) is
the prediction result of CNN model. (g–i) is the prediction result of LSTM model. (j–l) is the predicted
result of BiLSTM.

From Figure 17, it can be seen that the proposed method could accurately predict
the degradation trend of the bearing, and the rest of the models had different degrees
of problems. For example, both the LSTM and CNN models could not well predict the
rapid degradation stage of bearing 1-1. The prediction effect of BiLSTM was better, but the
fluctuation trend at the beginning of degradation could not be well predicted. Both the
LSTM and CNN models could not well predict the rapid degradation stage of bearing 1-1.
The prediction effect of BiLSTM was better, but the fluctuation trend at the beginning of
degradation could not be well predicted. The BiLSTM model could not predict the rapid
degradation trend of the bearing at the end of cycle 1-5. The CNN could roughly predict
the degradation trend of the bearing from 1-3, but the accuracy was insufficient.

As shown in Table 4, the proposed model achieved the smallest prediction error on
almost all bearings using MSE as an indicator, thereby showing the superiority of the
proposed method.

Table 4. MSE for different prediction models.

Model
(MSE)

Bearing
1-3

Bearing
1-4

Bearing
1-5

Bearing
1-6

Bearing
1-7

Bearing
2-3

Bearing
2-4

Bearing
2-5

Bearing
2-6

Bearing
2-7

Bearing
3-3

Proposed 0.0054 0.0031 0.007 6 0.0044 0.0048 0.0621 0.0091 0.0143 0.0087 0.1026 0.0078
CNN 0.1431 0.1101 0.1923 0.0942 0.2721 0.0623 0.0089 0.2641 0.3101 0.2176 0.1739
LSTM 0.2145 0.0671 0.2167 0.1743 0.0074 0.1473 0.1012 0.1149 0.2031 0.0098 0.2147

BiLSTM 0.0097 0.1431 0.1016 0.2497 0.1364 0.1824 0.2107 0.1087 0.1047 0.4102 0.3006

5. Conclusions

The remaining service life prediction of bearings is a research focus. In this study, we
established a suitable health indicator (HI) and proposed a prediction network combining
CNN and BiLSTM. First, wavelet packet transform was performed on the original vibration
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signal of the bearing to obtain eight sub-bands, and the RMS of each of the eight sub-bands
were extracted. The KPCA algorithm was then used to fuse the features of the extracted
RMS of the eight sub-bands to obtain the HI of the bearing life cycle. The CNN-BiLSTM
prediction network was then developed, which can extract the spatiotemporal features of
the signal at the same time to improve prediction accuracy. The prediction network uses
the RMS of the original signal at the current moment as the network input and the HI of
the future moment as the network output. Experiments were conducted on the PHM2012
dataset to verify the effectiveness of the proposed prediction model.
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