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Abstract: In this work, an Al coating prepared using the arc spray process was carried out with a
corrosion–wear analysis by a block-on-ring system. The interaction of corrosion and wear of coatings
in seawater was also investigated. The effect of different corrosion potentials on the corrosion
and wear of the coating was discussed, and the structure and corrosion products of the coating
were observed by SEM. The results of dynamic potential polarization curves and friction coefficient
measurements were used to clarify the corrosion and wear behavior of aluminum coatings in seawater.
After quantitative analysis of a corrosion and wear test, it was found that with the increase in
polarization potential, the total weight loss of corrosion and wear (Wtotal) of the aluminum coating
increased significantly. This means that the corrosion–wear interaction accounts for most of the
weight loss of the coating.

Keywords: pure thermal spray Al coating; corrosion; corrosion and wear

1. Introduction

The ocean contains many corrosive elements, including UV explosion, chloride sur-
roundings, frequent dry–wet cycles, high humidity, low temperature, and marine bacteria,
as well as microorganisms, which accelerate the corrosion rate and reduce the time of use
of structural materials. Taiwan is located in the subtropics, where the weather is high in
temperature with strong sunshine, and it is surrounded by the ocean, which causes high
humidity and salt content in the air. Therefore, the foundations of any construction and
important instruments serving in this environment are threatened by serious corrosion [1,2].
Recently, the use of Al alloys has risen to second place among all metal uses, lower only
than steel. Due to their low density and high strength/weight ratio, Al and its alloys have
been widely applied in the aerial, automobile, and defense industries. Due to stable prices
and the distinct physical properties of low weight, low density, and good thermal and
conductive properties, the process technologies and applications of Al have developed
quickly, and corrosion and wear resistance can be improved by an anode oxidation process
and Ni–Co sealing [3,4].
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Thermal spray was employed to modify the coating in the early stage using flame
fusion technology or arc fusion technology with Al and Zn wire as feeding materials. With
the development of equipment and technologies, thermal spray technology has been used
to repair tools and develop a corrosion resistance layer on steel. The thermal spray coating
was fabricated by fusing metals, alloy ceramics, polymer powders, or wires and injecting
them on the substrate layer by layer in a rate; and it was widely applied in wear, corrosion,
thermal, and insulation resistance coatings, as well as recovering coatings [5]. There
are many common coatings, including Al-based coatings [6–8], Ni-based coatings [9,10],
Fe-based alloy coatings [11,12], Co-based alloy coatings [13], and carbide and ceramic
coatings [14,15].

In Al-based thermal spray coatings, pure Al and Al–Zn alloy thermal spray coatings
have better corrosion resistance than pure Zn thermal spray coatings due to the formation
of a thin oxide layer on the surface of Al-based coatings—the greater the coating thickness,
the better corrosion resistance of coatings [16–18]. Liang et al. [19] studied the exposure of
Al materials in sea splash, tide, and full immersion for 2 years. The results showed that
the most serious pitting and corrosion occurred at the coatings in full-immersion seawater.
The corrosion types included shallow and deep pits, intergranular corrosion, and crystal
erosion; however, there was no high corrosion on other sites. The corrosion behavior of a
pure Al bulk and its composite materials with catalyst enhancement was studied by salt
spray for 100 hr, and the result indicated that the enhanced composite materials had better
wear and corrosion resistance [20]. Ding et al. [21] studied the wear behaviors of the 2024
Al alloy in distilled water, artificial seawater, and rainwater, and the results showed that
the friction coefficient of the 2024 Al alloy in seawater decreased by 47% compared with
that in distilled water, indicating that the 2024 Al alloy formed a lubricating film, which
affected the friction coefficient of the 2024 Al alloy.

In addition to thermal spraying technology, there is also the use of high-current pulsed
electron beam (HCPEB) technology to prepare cold sprayed aluminum coatings. The
results show that the coatings prepared by this technique have the potential to develop
anticorrosion and antiwear properties [22]. After preparing a thermally sprayed aluminum
layer on a steel substrate and using plasma electrolytic oxidation technology for surface
modification, it was found that the wear resistance of the thermally sprayed aluminum
layer can be effectively improved [23]. However, the above-mentioned studies only carried
out research on the corrosion resistance of thermal sprayed aluminum layers, and the
corrosion–wear behaviors that act simultaneously on corrosion and wear in the workpieces
are rarely explored in depth. In the marine corrosive environment, the workpiece is often
accompanied by corrosion and wear, so the corrosion–wear behavior of related protective
coatings is a very important topic that needs to be studied in depth. Moreover, Lee et al. [24–26]
found that corrosion and wear in metals were mutual; corrosion can accelerate wear, and
wear can enhance corrosion to deteriorate metals.

In this study, a pure thermal spray Al coating was prepared on 304 L substrates. Then
applying different voltages under seawater, the corrosion–wear characters of thermal spray
Al coatings were studied.

2. Experimental Procedures
2.1. Preparation of Substrates

In the present study, a 304 L cylindrical cube with a diameter of 20 mm and a length of
500 mm was degreased by using alcohol, sand-blasted by using Al2O3 to obtain a surface
roughness of Ra = 60–80 µm, and preheated to 150 ◦C in order to enhance the bonding
coherence between coating and substrate.

2.2. Thermal Spraying of Al Coatings

An arc-melting technology (Metco 11E, Metalcoat Inc., Jodhpur, India) was employed
to manufacture the thermal spray Al coating, with a working current of 260–280 A, a
working voltage of 28–30 V, and a pressure of approximately 8 kg/cm2. After the coating



Lubricants 2022, 10, 197 3 of 15

process, the coated steel was put into the oven to bake at 70 ◦C for 15 min and taken out to
cool for the following study and analysis.

2.3. Mechanical Properties of the Coatings

The coated samples were cut and glued face-to-face using G1 EpoxyBond 110 (Fadracer
Technology Inc., Taipei, Taiwan), mechanically ground with grade 2400 emery paper, and
polished by 1 to 0.5 µm diamond pastes. The hardness of the coating was measured directly
on the polisher cross section using a micro-Vickers hardness tester (FM series, Taiwan
Nakazawa Co., Ltd., New Taipei City, Taiwan) under a 0.1 g loading magnitude and a 15 s
loading duration, with 10 points for average. The contact angle tester (Phoenix-Smart M,
KYOWA Co., Ltd., Tokyo, Japan) was employed with RO (reverse osmosis) water, 3.5 wt.%
NaCl solution, and seawater, respectively, on the coating after the thermal spray Al coating
was polished, with the average of four different points taken. The scratch test (Scratch
Tester: RST3 (Anton Paar, Graz, Austria)) was used on the polished coating surface, with
loading from 0 to 30 N and a length of 5 mm. The scratch of coatings was observed using an
optical microscope to find the position of cracks of coating and estimate the critical loading.

2.4. Characterization of the Coatings

A high-resolution XRD (D8 SSS, BRUKER Co., Ltd., Billerica, MA, USA) was used
to identify the phases of the spray coating using monochromatic Cu Kα (λ = 1.54439 Å)
radiation at 40 kV and 40 mA. A SEM (Hitachi SEM S-3400N, Hitachi High-Tech. Co.,
Ltd., Tokyo, Japan) was used to observe the microstructures and corrosion morphology of
coatings, and the energy dispersive spectrometry (EDS) in the SEM was used to analyze
the compositions of the coatings and corrosion products. Moreover, an X-ray photoelectron
spectroscopy (XPS, PHI 5000 Versa Probe, ULVAC-PHI, Co., Ltd., Tokyo, Japan) was utilized
to analyze the oxide layer of Al spray coatings after the corrosion–wear process. The X-ray
photoelectron spectra of samples were calibrated using carbon 1 s (284.6 eV). The surface of
each coating was cleaned using Ar+ ion sputtering for 300 s. An optical microscope (OM,
Nikon LV150N, Nikon Co., Ltd., Tokyo, Japan) was used to observe the position of cracks
of coating during a scratch test.

2.5. Corrosion and Wear Evaluations

The coating was exposed to seawater, and the rotating corrosion tester was used in
the present study to examine corrosion and wear. The measured methods, parameters and
the schematic diagram of the instrument for corrosion wear are described in detail in our
past published literature [24,25]. For the wear test, a sintered Al2O3 bulk with dimensions
of 21 × 21 × 21 mm, a surface roughness of 1 µm, and a hardness of 1460 ± 20 Hv as the
grinding test sample was employed. The coated specimen was attached to the rotating
spindle, which ran at a speed of 200 rpm, a load of 3.92 N, and a test duration of 1200 s. The
friction force was measured and recorded by a load cell, and then the friction coefficient
was obtained via Equation (1).

µ = F/N (1)

The corrosion behavior of the coating was evaluated using a potentiodynamic polarization
test. The electrochemical stripping was conducted via an Zahner Zennium (E 41100,
ZAHNER-elektrik GmbH & Co., Kronach, Germany) using a conventional three-electrode
cell. The coating with an exposure area of approximately 1.0 cm2 was employed as the
working electrode. A platinum plate of 16 cm2 and a saturated calomel electrode (SCE)
were used as the counter and reference electrodes, respectively. The test solution for
the polarization test was seawater at 25.5–26 ◦C, with a dissolved oxygen content of
4.5–8.4 mg/L, a Cl− concentration of 14,000–24,300 ppm, a pH value of 7.25–8.64, and a
conductivity of 38.0–52.5 mΩ/cm. The polarization curve was measured by sweeping the
potential from −1000 to 2000 mV relative to the open circuit potential (OCP) or corrosion
potential at a scan rate of 0.5 mV/s; the steady OCP of the tested specimen was reached
when the potential vibration was less than 5 mV over a time period of 300 s, in this study,
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the OCP equal to −713 mVSCE. The corrosion evaluation was also conducted at different
applied potentials, including −713, −600, −200, and +600 mVSCE.

2.6. Quantitative Analysis of the Mutual Corrosion and Wear

In the corrosion environment, the weight loss of the coating is not only simply the
combination of wear and corrosion but also the accelerating effect of corrosion. There-
fore, the multi-influence from wear and corrosion is usually the combined action of wear
and corrosion.

The total weight loss of the coating is written as Equation (2) [23].

Wtotal = Wwear + Wcorr + ∆Wwear+cor (2)

In Equation (2), Wtotal is the total weight loss from the corrosion test. Wwear is the
weight loss from simple wear in seawater, and Wcorr is the weight loss from simple corrosion.
Therefore, ∆Wwear+corr is the weight loss from the synergic effect. In order to characterize
the origin of the synergic effect, ∆Wwear+corr is further divided into two components, as
shown in Equation (3):

∆Wwear+corr = ∆Wcorr + ∆Wwear (3)

By using Faraday’s law, the weight loss ∆Wcorr arising from the corrosion from the
extra increase in corrosion current ∆icorr, again, ∆Wcorr was obtained via Faraday’s law and
can be written as Equation (4):

∆Wcorr =
M
nF
× ∆icorr × S × t (4)

In Equation (4), M is the equivalent Al molecular weight (g/mole), n is the equivalent
number of valence electrons for the oxidation of the Al coating, and ∆icorr is the current
density (mA/cm2). Moreover, S (cm2) and t (s) show the surface area of the specimen and
testing duration, respectively. Finally, the ∆Wwear component from the mutual effects can
be obtained from Equation (5):

∆Wwear = Wtotal −Wwear −Wcorr − ∆Wcorr (5)

3. Results
3.1. Microstructures of the Spray Al Coating

Figure 1 presents the XRD pattern of the spray coating of pure Al. The diffraction
peaks of (111), (200), (220), and (311) planes are similar to the pure Al powder, and there is
not any texture structure in the spray coating.
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Figure 1. XRD pattern of the arc thermal spray Al coating.
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The SEM cross sectional and surface morphology images of spray coating are shown
in Figure 2. Figure 2a shows that there are no obvious cracks at the interface between the
coating and the substrate, but many microvoids are formed inside the coating. This is
because under the condition of low arc spraying power, the melting of aluminum particles
is insufficient, resulting in a loose structure between semiliquid aluminum metals, and
when some aluminum particles have a thermal softening temperature close to the melting
temperature, it is easy to form aluminum droplets. During the solidification process, due
to the release of thermal stress, it is easy to form microcracks near the voids [26]. In
Figure 2b, the surface of the spray coating is uneven, and some voids are found. This can
be attributed to the accumulation of molten or semimolten metal particles on each other
during thermal spraying.
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Figure 2. SEM images of the arc thermal spray Al coating: (a) cross-sectional; (b) surface morphology.

Figure 3 shows the contact angle tests of spray pure Al coating in RO water, 3.5 wt%
NaCl solution, and seawater. The average contact angle of the coating in seawater is about
99◦ to 110◦, and in 3.5 wt% NaCl solution, it is about 96◦ to 102◦, while the average contact
angle of RO water is about 86◦ to 94◦. This shows that the pure aluminum coating using arc
spraying is hydrophobic in seawater and 3.5 wt% NaCl solution, which helps to prevent
pollutants and droplets from sticking to the surface of the coating, which is helpful for
corrosion resistance.
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Figure 3. Contact angle test results of the arc thermal spray Al coating in RO water, 3.5 wt% NaCl
solution, and seawater.

The SEM and OM images of the scratch test of the spray Al coating are shown in
Figure 4a. Figure 4b shows that the scratching profile results were 0 to 1.2 mm, and the
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slope of the penetrating depth increased, which was consistent with the loose coating
surface in the SEM observations. Then, as the applied force (N) increased, the penetrating
depth also increased until the surface area was identical and the relative friction coefficient
became stable.
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3.2. Electrochemical Analysis of Corrosion and Corrosion–Wear Behavior of Al Coating

In this study, the Tafel extrapolation method was used to calculate the values of icorr;
the Tafel slope of anode (βa) and cathode (βc) was estimated from polarization curves. In
corrosion, by employing the Stern–Geary equation, quantitative information about corro-
sion potentials along with corrosion currents can be obtained from the slope of the curves.
Figure 5a shows the polarization curve of the corrosion of Al coating and corrosion–wear
of Al coating in seawater, and the values of Ecorr, icorr, friction coefficient, and weight loss
of specimens are also shown in Tables 1 and 2. In only the corrosion condition, the corro-
sion potential and the corrosion current density of spray Al coating are −0.672 VSCE and
57 µA/cm2, which illustrate the corrosion behavior of active→passive→transpassive of
spray Al coating under seawater. In the corrosion–wear of Al coating, the corrosion poten-
tial and the corrosion current density of spray Al coating are −1.051 VSCE and 459 µA/cm2,
and the friction coefficient of Al coating is 0.13 during the corrosion–wear condition. In
the corrosion–wear of the Al coating result, there was unclear passive behavior due to
the elimination of the oxidation of Al2O3 by continuous wearing, which resulted in an
increase in the slope in the anodic polarization zone [26]. In addition, the corrosion and
corrosion–wear tests of the aluminum coating were carried out in seawater, respectively.
The open circuit potentials of the aluminum coating under the above two conditions were
measured to be −0.713 and −1.151 VSCE, respectively, with both corrosion potentials re-
maining stable within 1200 s (Figure 5b). In the corrosion of Al coating, the corrosion
potential is −0.713 VSCE, and the weight loss of coating is 2 mg. In the corrosion–wear of
Al coating, the corrosion potential is −1.151 VSCE, the weight loss is 56 mg, and the friction
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coefficient of coating is 0.14. The corrosion potential in the corrosion of Al coating evalua-
tion was larger than in the corrosion–wear of Al coating evaluation, which demonstrated
the interactive effect of corrosion and wear, which caused weight loss in the coating.
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Figure 5. Electrochemical test results: (a) polarization of corrosion and corrosion–wear condition in
seawater; (b) the corrosion and corrosion–wear condition in seawater at −713 mVSCE (OCP).

Table 1. Corrosion of Al coating and corrosion–wear of Al coating at corrosion polarization condition.

Ecorr (V) icorr (µA/cm2) Friction Coefficient

Corrosion–wear of Al coating −1.051 450 0.13
Corrosion of Al coating −0.672 57 -

Table 2. Corrosion of Al coating and corrosion–wear of Al coating when the applied potentials at
−713 mVSCE.

Potential (V) Weight Loss (mg) Friction Coefficient

Corrosion–wear of Al coating −1.151 56 0.14
Corrosion of Al coating −0.713 2 -

3.3. Corrosion and Corrosion–Wear Characteristics in the Spray Al Coating

Figure 6 shows the SEM surface morphology of the corrosion result of the spray Al
coating in seawater. The voids grew as the applied polarization potential increased, and the
coating became looser than the initial smooth coating, as shown in Figure 6a. Figure 6a and
Table 3 show the corrosion current density, weight loss of the coating, and relative surface
roughness raised after −713 mVSCE for 1200 s. The results show that when the test piece
is immersed in the corrosive solution, when the applied voltage is larger, the surface of
the test piece is corroded more seriously (increase of weight loss), resulting in a significant
increase in surface roughness.

Table 3. Current density, weight loss, and surface roughness after the corrosion test on the coating.

Applied Voltage I
(mA/cm2)

Weight Loss
(mg)

Ra
(µm)

−713 mVSCE - 2 9.35
−600 mVSCE 19.0 7 10.57
−200 mVSCE 95.4 10 11.18
+100 mVSCE 214.2 15 13.46
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As shown in Figure 7a, the spray Al coating was smooth but was not destroyed in
the dip area when the coating was conducted in the corrosion–wear of the Al coating test
in the seawater under a load of 3.92 N. However, the coating was destroyed but smooth
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when conducted in −600 mVSCE, as shown in Figure 7b. The coating was completely
destroyed, and many voids formed when conducted in −200 mVSCE, as shown in Figure 7c.
The voids on the coating continuously grew and worsened in the applied potential of
+100 mVSCE, as shown in Figure 7d. From the cross-section result, some area under load
was smooth, while other areas were still rugged under −713 mVSCE, as shown in Figure 7e.
The coating was smooth, although it continued wearing in the −600 mVSCE, as shown in
Figure 7f. The coating roughness increased, and more voids and cracks formed, caused
by the corrosion–wear of Al coating while conducting in −200 mVSCE and +100 mVSCE, as
shown in Figure 7g,h.
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From Figure 8b and Table 4, it can be seen that the corrosion current density, weight 
loss, and surface roughness of the coating all increase with the increase in polarization 
potential. The corrosion current density and the weight loss of Al coating in the corrosion–
wear test were larger than that of the coating only carried out with the corrosion test; 
however, the surface roughness was lower than that of the only proceeding corrosion test. 

  

Figure 7. SEM surface morphology of coating after corrosion–wear of the Al coating test in seawater:
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Figure 8a is a curve showing the change of the corrosion current on the surface of the
coating as a function of the corrosion time with the change of the applied voltage when the
aluminum coating is only in the corrosion condition (without being in the wear condition).
It can be observed from the curve that the coating is corroded to a greater depth as the
applied voltage increases, which is consistent with the results observed by SEM (Figure 6).
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Figure 8. Chronoamperometric curves: (a) corrosion of Al coating in different potential; (b) corrosion–
wear of Al coating in different potential.

From Figure 8b and Table 4, it can be seen that the corrosion current density, weight
loss, and surface roughness of the coating all increase with the increase in polarization
potential. The corrosion current density and the weight loss of Al coating in the corrosion–
wear test were larger than that of the coating only carried out with the corrosion test;
however, the surface roughness was lower than that of the only proceeding corrosion test.

Table 4. Current density, weight loss, surface roughness, and friction coefficient after the corrosion–
wear test on the coating.

Applied
Voltage

I
(mA/cm2)

Weight Loss
(mg)

Ra
(µm)

Friction
Coefficient

−713 mVSCE - 56 2.64 0.14
−600 mVSCE 24.1 98 3.63 0.23
−200 mVSCE 108.4 154 4.96 0.17
+100 mVSCE 229.9 178 5.54 0.19
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4. Discussion
4.1. XPS Analysis of Thermal Spray Al Coating after the Corrosion–Wear Test

In the depth analysis of the coating by using XPS, Ar+ ablation is usually adopted for
etching. In this study, the operated voltage for Ar+ was 2 kV, and the scanning range was
2× 2 mm. This parameter setting corresponds to an etching rate of 11.38 nm/min on silicon
dioxide (SiO2). The element analysis of the Al thermal spray coating corroded at seawater
included Al and O, and the results are shown in Figure 9. Using XPS Peak Version 4.0
software (ULVAC-PHI, Co., Ltd., Tokyo, Japan) along with the combination of the NIST
(National Institute of Standards and Technology) database and the recent literature with
the background subtraction method, Table 5 presents the peak maps of the Al element and
alumina, and their associated fitting results. The deconvolution curve fitting results on the
binding energy peaks of the Al element and alumina in the measured XPS spectra of the
thermal spray Al coating corroded at seawater is shown in Figure 10. The binding energy
at 72.9 and 74.6 eV indicates the Al element and alumina in the coatings, respectively, and
agreement with the binding energy in the past study [27].
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Figure 9. XPS depth profiles of the Al thermal spray coating corroded at seawater. Figure 9. XPS depth profiles of the Al thermal spray coating corroded at seawater.

Table 5. NIST USA XPS element binding energy data.

Element Spectral Line Formula
Binding Energy (eV)

NIST Reference Experimental on the Surface

Al 2p Al 72.9 72.9 72.9
Al 2p Al2O3 74.6 74.2 74.6
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sulting in the measured friction coefficient being lower. An external applied potential of 
−600 mVSCE due to the contact area increased, and the oxide layer was thin without a lu-
bricating effect, resulting in the friction coefficient of coating being large. With an external 
applied potential of −200 mVSCE, in addition to the production of more surface corrosion 
oxides, it also causes the formation of corrosion voids on the surface of the coating, which 
increases the surface roughness. At the same time, it is easy to be scraped off by abrasive 
blocks or washed away by seawater solution, which increases the weight loss of the coat-
ing, while the liquid in the corrosion voids and alumina block contacts, resulting in the 
effect of heterogeneous phase boundary lubrication and the increased pressure of solution 
carrying results in less contact area, which reduces the coefficient of friction. With the 
largest external applied potential of +100 mVSCE, the surface was clearly damaged because 
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caused the surface roughness and weight loss to increase. Due to the continuous serious 
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4.2. Relation between Corrosion–Wear and Friction Coefficient

Figures 8 and 11 and Table 3 show that the weight loss, surface roughness, and
friction coefficient of the spray Al coating were measured in a corrosion solution under a
−713 mVSCE condition, respectively. Due to the large surface roughness of the Al coating,
the contact area between the wear part and the coating is small during the wear process,
resulting in the measured friction coefficient being lower. An external applied potential
of −600 mVSCE due to the contact area increased, and the oxide layer was thin without
a lubricating effect, resulting in the friction coefficient of coating being large. With an
external applied potential of −200 mVSCE, in addition to the production of more surface
corrosion oxides, it also causes the formation of corrosion voids on the surface of the
coating, which increases the surface roughness. At the same time, it is easy to be scraped off
by abrasive blocks or washed away by seawater solution, which increases the weight loss
of the coating, while the liquid in the corrosion voids and alumina block contacts, resulting
in the effect of heterogeneous phase boundary lubrication and the increased pressure of
solution carrying results in less contact area, which reduces the coefficient of friction. With
the largest external applied potential of +100 mVSCE, the surface was clearly damaged
because the large potential caused the surface to loosen, and voids, as well as cracks, grew,
which caused the surface roughness and weight loss to increase. Due to the continuous
serious corrosion, the surface lost the lubricating effect, which caused the contact area to
increase and made the friction coefficient rise again [22,24,25].
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4.3. Corrosion of Al Coating and Corrosion–Wear of Al Coating Interaction

The weight loss of the coating can be used to describe the corrosion of Al coating
and corrosion–wear of Al coating interaction: corrosion of Al coating and corrosion–wear
of Al coating loss can be the sum of the corrosion of Al coating and corrosion–wear of
Al coating results. Wtotal = Wwear + Wcorr + ∆W, where ∆W includes Wwear + Wcorr. By
block-on-ring corrosion–wear of Al coating quantitative analysis, ∆Wcorr can be calculated.
∆Wwear = (M/nF) × ∆icorr × S × t, where M is the Al atomic weight of 26.98 g/mole, the
corrosion current density is ∆icorr= icorr − ipure-corr (mA/cm2, as shown in Tables 3 and 4),
S is the tested area, and t is the test time of 1200 s, as shown in Table 6. Figure 12 illustrates
the weight loss and friction coefficient under different polarization potentials [22–25].
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Table 6. Mutual corrosion–wear of Al coating test results.

Applied
Voltage

Wtotal
(mg)

Wwear
(mg)

Wcorr
(mg)

∆W (mg)

∆Wcorr ∆Wwear

−713 mVSCE 56 45 2 0 9
−600 mVSCE 98 45 7 0.57 45.3
−200 mVSCE 154 45 10 1.45 97.55
+100 mVSCE 178 45 15 1.76 116.2
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It can be seen from Table 5 that under the conditions of −713 and −600 mVSCE, the
amount of ∆Wcorr is small and the amount of ∆Wwear is large, which can be attributed to
the fact that when the polarization potential is low, the coating is not easily corroded, while
most of the weight loss of the coating comes from the alumina block contacting the coating
surface, which also causes the coating to peel off when the abraded surface area increases
and thus increases the coefficient of friction.

For a polarization potential of −200 mVSCE and +100 mVSCE, as shown in Figure 8,
voids formed on the surface, which showed the corrosion current causing Wcorr. While
conducting the corrosion–wear of the Al coating test, the Al2O3 block contacted the coating
surface and continued scraping the surface to accelerate corrosion and increase the current
density, which raised ∆Wwear, as shown in Figure 8b. With corrosion and wear conducting
simultaneously and increasing the polarization potential, Wtotal strongly increased and the
corrosion–wear mutual interaction was primary [22–25].

5. Conclusions

A corrosion and wear test in marine water under the speed of 200 rpm was conducted
on a pure Al coating. After applying different polarization potentials to evaluate the
corrosion rate, the SEM surface observation, weight loss, and friction coefficient, the
conclusions are summarized as follows:

1. In the corrosion test, the weight loss increased as the polarization potentials rose, and
the weight loss was only 15 mg with an applied potential of +100 mVSCE, indicating
that the coating had excellent corrosion resistance.

2. In the results from the corrosion–wear of the Al coating test, the weight loss was
from 56 to 178 mg, with the applied polarization potentials from −713 mVSCE to
+100 VSCE. The surface morphologies changed from wear scratch to inner voids in the
scratches, which explained that the coating suffered not only from wear but also from
serious corrosion.

3. Mutual corrosion of Al coating and corrosion–wear of Al coating were the primary
causes of deterioration of the pure Al coating in seawater in the corrosion–wear test.
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Via the quantitative analysis, ∆Wcorr changed somewhat as the applied polarization
potentials increased; however, ∆Wwear continued rising due to the mutual corrosion
and wear and primarily caused the weight loss of the coating.
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