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Abstract: Low-loss gears are an interesting design approach for increasing the efficiency and thermal
load limits of gearboxes. The loss-optimized gear geometry concentrates sliding around the pitch
point, which results in low load-dependent gear power losses. In this study, a method for model-
ing transient EHL (elastohydrodynamically lubricated) contacts in gear mesh considering mixed
lubrication and thermal effects is introduced and applied to analyze the tribological behavior of a
low-loss gear geometry. Special focus is placed on local frictional losses to analyze the role of the
thermal effects of the gear mesh. Although a thermal reduction in fluid friction is observed, the
overall effect on total frictional losses of the low-loss gear geometry is evaluated to be very small.
The edge geometry strongly influences the lubricant film thickness and frictional power losses.
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1. Introduction

The current progress of the reduction in energy consumption and emission of green-
house gases driven by the Paris Agreement [1] runs through all sectors of the economy.
Since passenger transport is a particularly important part of our mobility behavior, the
potential for cutting emissions and energy consumption is particularly high. Consequently,
it is important to minimize power losses and increase efficiency in powertrains. According
to ISO/TR 14179-2 [2], the power loss of a geared transmission is composed of power losses
from gears, bearings, sealings and others.

Efforts to reduce power losses are particularly concentrated on gears [3]. One approach
is to reduce no-load gear power loss by, e.g., reducing the viscosity or minimizing the
lubricant quantity in order to keep churning, squeezing, impulse and ventilation losses
low [4,5]. Another approach is to reduce the load-dependent gear power loss PLGP, which
often represents a large share calculated by:

PLGP =
1
tc

∫ tc

0
PLGP(t)dt =

1
tc

∫ tc

0
FN(t) · µ(t) · vg(t)dt (1)

Thereby, PLGP is derived from the integral of the local load-dependent gear power loss
PLGP(t) over the contact time tc.

Load-dependent gear power losses can be reduced, e.g., by tribological coatings [6],
reduced flank surface roughness [7], surface texturing [8] or lubricants with a low shear
resistance [9]. Furthermore, the gear geometry can be modified to concentrate sliding
around the pitch point [7,10–13]. These strictly loss-optimized gear geometries known as
low-loss gears are typically characterized by a small normal modulus mn, a small transverse
contact ratio εα and a high pressure angle α [7]. However, there are design limits in terms of
good NVH (noise, vibration and harshness) behavior and sufficient load carrying capacity.
Hinterstoißer et al. [7] describes the design process of moderate low-loss gears (εα ≈ 1.1)
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and extreme low-loss gears (εα ≈ 0.65). In measurements, Hinterstoißer shows a reduction
in the load-dependent gear power loss by up to 55% and 74%.

The load-dependent gear power loss typically shows a strong dependency with the
circumferential speed, e.g., Hinterstoißer et al. [7] and Yilmaz et al. [14]. At a low circum-
ferential speed, the load-dependent gear power loss is typically high due to a boundary
lubrication regime. With an increasing circumferential speed, the load-dependent gear
power loss decreases due to a shift to mixed and fluid film lubrication regime. At a high
circumferential speed and increasing power loss, thermal effects play a decisive role and
lead to a thermal reduction in the load-dependent gear power loss. Hinterstoißer et al. [7]
shows that this reduction is much less pronounced for a low-loss gear design than for con-
ventional ones. For a detailed analysis of this behavior, they suggested calculation studies
of the thermal elastohydrodynamically lubricated (EHL) gear contact. Modeling and the
calculation of the thermal EHL gear contact can improve the understanding of mechanisms
and the accuracy of the gear design process. In the past few years, various models have
been developed to analyze the thermal EHL contact in different kinds of gears. The there-
fore required geometric, kinematic and load distribution across the area of gear contact
can be derived by tooth contact analysis (TCA) based on analytical methods [11,15,16] or
dynamic models [17,18].

Keller et al. [19] used a finite element method (FEM) and rigid multibody dynamics
simulation and a thermal EHL model considering mixed lubrication to optimize the gear
geometry of a single tooth gear box. Bobach, Beilicke and Bartel [20,21] as well as Beilicke,
Bobach and Bartel [22] used an analytical TCA to obtain the input for a thermal EHL model
of spur, helical and spiral bevel gears. In [20], the authors show the influence of mixed
lubrication and geometric modifications such as the crowning, filleting and chamfering of
involute spur gears. In [21], the authors focused on the load and temperature dependency
of tribological quantities in spiral bevel gears. They show the movement and shape of the
contact area as well as the impact of the temperature on mixed lubrication. In [22], Beilicke,
Bobach and Bartel analyzed the influence of DLC (Diamond-like carbon) coatings on
temperature and friction in helical gears. In the context of finite line contacts, Habchi [23]
shows the impact of different roller profilings on the thermal EHL contact. Ziegltrum,
Lohner and Stahl [24] used a loaded TCA (LTCA) and a thermal EHL model to show the
influence of different lubricants on load-dependent gear power losses.

No literature has been found analyzing the tribological characteristics of low-loss
gear geometries in detail. Consequently, the experimentally observed small effect of
thermal friction reduction has not been understood. Therefore, the aim of this study is
the tribological characterization of a low-loss gear geometry with special focus on local
frictional losses to analyze the role of thermal effects across the area of gear contact. For
this, a transient EHL model considering thermal effects and mixed lubrication is used. The
results of this study were partly presented at a technical session at the 7th World Tribology
Congress in Lyon in 2022 [25].

2. Methods

This section first describes the object of investigation. It is followed by a description of
the individual stations of the simulation chain used to analyze the tribological character-
istics of a low-loss gear mesh. Finally, the numerical procedure is explained on how the
individual simulation steps are connected to each other.

2.1. Object of Investigation

The object of investigation is a moderate low-loss gear with a center distance of
a = 91.5 mm as it was considered experimentally by Hinterstoißer et al. [7]. The gear
geometry data used can be taken from Table 1.

Figure 1 shows the considered low-loss gear with shafts and bearing, as it can be
assembled at the FZG efficiency test rig (DIN 51354 [26], FVA 345 [27]). The gear bulk
material is set to be a case-carburized steel (16MnCr5) [24]. The input torque of the pinion
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shaft is set to be T1 = 208 Nm (1 = pinion, 2 = wheel) and the pitch line velocity is
vt = 8.3 m/s, following Hinterstoißer et al. [7]. The bulk and oil temperature TM/oil is set
to be 363.15 K. The gear flank surface topography is considered to be ground and run-in
(Section 2.4). The considered oil is an ISO VG 100 mineral oil also used by Ziegltrum,
Lohner and Stahl [24] (Section 2.5).

Table 1. Gear geometry data of the considered low-loss gear (data from [7]).

Normal pressure angle αn 27◦

Normal module mn 1.92 mm

Number of teeth pinion z1 34

Number of teeth wheel z2 46

Helix angle β 31.5◦

Transverse contact ratio εα 1.10

Overlap ratio εβ 2.10

Face width b 23.3 mm

Center distance a 91.5 mm

Tooth crowning - 6.5 µm
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Figure 1. Considered low-loss gear with shafts and bearings.

2.2. Loaded Tooth Contact Analysis

The LTCA of the considered low-loss gear is performed by the software RIKOR
explained by Weinberger, Otto and Stahl [28]. Thereby, deflection, deformation and loads
of gearbox systems can be considered including gear and tooth flank deformation. Since
the focus of this work is on the tribological characterization of a low-loss gear, and not
on the detailed reproduction of boundary conditions of a test rig or practical application,
bearings and shafts are modeled as rigid.

Figure 2 shows the calculated normal force FN , sliding velocity vg = vt1 − vt2, mean
velocity vm = (vt1 + vt2)/2, slide-to-roll-ratio SRR = vg/vm, reduced radius Rred and gear
geometry correction corr across the area of gear contact, which has a size of AE = 6.87 mm
and b = 23.3 mm. The gear meshing and area of gear contact are explained in Figure 3a.

For the transformation of the calculated geometric, kinematic and load distributions
across the area of gear contact into a format suitable for input information for EHL calcu-
lation, contact lines and their time steps ti have to be calculated by gear trigonometry, as
shown in Figure 3.

In the model representation of an involute gear mesh, a plane with width b can be
rolled from a small cylinder with db1 onto a large cylinder with db2. In the case of the helical
gear meshing, the contact lines lie diagonally in the area of gear contact on the plane. With
increasing time steps ti, the contact lines move from the beginning of the gear meshing (A)
to the end of the gear meshing (E). Since the velocity vni is the same at every point along
the line of action, there is a clear correlation between the time step ti and the position of
the contact line [29].
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Figure 2. (a) Normal force FN(t); (b) sliding velocity vg(x, y); (c) mean velocity vm(x, y); (d) slide–
to-roll-ratio SRR(x, y); (e) reduced radius Rred(x, y) and (f) tooth geometry correction corr(x, y) for
26 contact lines (number reduced for illustration purposes).
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nate system of the TEHL contact dependent on ti (schematic).
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A separate Cartesian coordinate system is used for the thermal EHL simulation. The
contact line direction corresponds to the y direction (gap width direction). The x-direction
(gap length direction) is perpendicular to the area of gear contact. The z-direction (gap
height direction) is perpendicular to the y-direction in the area of gear contact.

2.3. Thermal Elastohydrodynamic Lubrication Model

The considered EHL model includes thermal effects and mixed lubrication. In the
following, the governing equations and calculation domains are explained.

2.3.1. Governing Equations

The principle of the present thermal EHL contact is based on the idea of substitution
bodies, according to which two contact bodies can be converted into an elastic plain and a
rigid cylindrical contact body [30]. The elastic deformation from the hydrodynamic pressure
δ (x, y, t) is included in the film thickness equation. The gear tooth corrections corr(y, t)
are considered depending on the position on the contact line and time t. Furthermore, the
gear geometry varying along the contact line and time is described by the reduced radius
Rred(y, t). Since no elastic deformation of the shafts and bearings are included, the rigid
body separation h0 is constant along the contact line. Hence, the lubricant film thickness
can be described by:

h(x, y, t) = h0(t) +
x2

2Rred(y, t)
+ corr(y, t) + δ(x, y, t) (2)

The elastic deformation in the EHL contact δ is calculated by classic continuum
mechanics, which can be described by:

∇·σ = 0 (3)

The formulations of the material properties of the equivalent system Eeq and νeq can
be found in Habchi [31]. Inertial effects are not considered.

The fluid flow in the EHL contact is described by the generalized Reynolds equation
for thermal and non-Newtonian contacts based on the formulation of Habchi [31]. It is
extended by the shear (s) and pressure (p) flow factors Φp;s

xx;yy and terms based on Bartel [32]:

∂
dx

(
Φp

xxε
∂p f
∂x

)
+ ∂

dy

(
Φp

yyε
∂p f
∂y

)
= ∂ρ∗x

∂x +
∂ρ∗y
∂y + ∂ρe

∂t

+ ∂
∂x

(
ρe

(v2,x−v1,x)
2h Φs

xx

)
+ ∂

∂y

(
ρe
(v2,y−v1,y)

2h Φs
yy

)
with ε = ηe

ηe ′ρ
′ − ρ′′ and ρ′ =

∫ h
0 ρ
∫ z

0
dz′
η dz and ρ′′ =

∫ h
0 ρ
∫ z

0
z′ dz′

η dz

and ρ∗x = ρev1,x + ηe(v2,x − v1,x)ρ
′ and ρ∗y = ρev1y + ηe

(
v2,y − v1,y

)
ρ′ and

1
ηe

=
∫ h

0
dz
η and 1

ηe ′ =
∫ h

0
z
η dz and ρe =

∫ h
0 ρdz

(4)

x, y and z correspond to the coordinates described in Figure 3b. The surface velocities
vi of the contact bodies are distinguished. Other elements are the hydrodynamic pressure
p, the lubricant density ρ, the lubricant viscosity η and the lubricant film thickness h.
The flow factors Φp;s

xx;yy are described in Section 2.4.2. The penalty method is used as the
cavitation condition.

The corresponding directional lubricant velocities

v f ,x =
∂p f
∂x

(∫ z
0

z′
η dz′ − ηe

η′e

∫ z
0

1
η dz′

)
+ ηe(v2,x − v1,x)

∫ z
0

1
η dz + v1,x

v f ,y =
∂p f
∂y

(∫ z
0

z′
η dz′ − ηe

η′e

∫ z
0

1
η dz′

)
+ ηe

(
v2,y − v1,y

) ∫ z
0

1
η dz + v1,y

(5)
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and shear rates
.
γzx and

.
γzy are given as (Habchi [31]):

.
γzx = 1

η

∂p f
∂x

(
z− ηe

η′e

)
+ ηe

η (v2,x − v1,x)

.
γzy = 1

η

∂p f
∂y

(
z− ηe

η′e

)
+ ηe

η

(
v2,y − v1,y

)
.

(6)

The shear stress components τzx and τzy along the gap height direction are derived by

τf ,zx = z
∂p f
∂x + τ0

zx with τ0
zx = τ0

zx(z = 0) and
∫ z2

z1

z ∂p
∂x +τ0

f ,zx
η dz = v2,x − v1,x

τf ,zy = z
∂p f
∂y + τ0

zy with τ0
zy = τ0

zy(z = 0) and
∫ z2

z1

z ∂p
∂y +τ0

f ,zy
η dz = v2,y − v1,y.

(7)

The shear stress magnitude τ is calculated from the components of the shear stress:

τf =
√

τ2
f ,zx + τ2

f ,zy. (8)

For the calculation of the coefficient of fluid friction, a friction force tangential to the
gear surface can be calculated by the surface integral of the shear stress at z = h/2:

µ f =

∫
ΩP

τf ,zx

∣∣∣
z=h/2

dΩP

FN
. (9)

The frictional force operates in the direction opposite to the sliding velocity.
For every time step, the equilibrium of forces is ensured. This means that the total

normal force FN(t) has to be met by the surface integral of the hydrodynamic pressure
p(x, y, t). In the case of mixed lubrication, the solid contact solid contact pressure ps(x, y, t)
(Section 2.4.1) is considered according to the load sharing principle in which the load is
shared by solid contact and hydrodynamic pressure:

FN(t)−
∫

ΩP

p(x, y, t)dΩP −
∫

ΩP

ps(x, y, t)dΩP = 0 (10)

The energy equation is used to calculate the temperature distribution. The energy
equation in the lubricant includes the specific heat capacity cp as well as the thermal
conductivity λ. Thermal boundary conditions from [23] are applied.

∂
∂x

(
λ ∂T

∂x

)
+ ∂

∂y

(
λ ∂T

∂y

)
+ ∂

∂z

(
λ ∂T

∂z

)
− ρcp

(
v f ,x

∂T
∂x + v f ,y

∂T
∂y

)
− T

ρ
∂ρ
∂T

(
v f ,x

∂p
∂x + v f ,y

∂p
∂y

)
+η

[(
∂v f ,x

∂z

)2
+
(

∂v f ,y
∂z

)2
]
= ρcp

∂T
∂t

(11)

The energy equation of the two solid bodies is:

∂
∂x

(
λi

∂T
∂x

)
+ ∂

∂y

(
λi

∂T
∂y

)
+ ∂

∂z

(
λi

∂T
∂z

)
− ρicp,i

(
vi,x

∂T
∂x + vi,y

∂T
∂y

)
= ρicp,i

∂T
∂t

with i = 1, 2
(12)

According to Bobach, Beilicke and Bartel [21], a further heat flux density is defined
on the interface between the lubricant domain and the solid contact bodies to consider the
thermal influence of solid contact friction:

.
q f + k1,2|(v1,x − v2,x)τs|+ k1,2

∣∣(v1,y − v2,y
)
τs
∣∣ = .

q1,2 with
.
q = λ f ,1,2

∂T
∂z

(13)

Thereby, the coefficient of thermal distribution k1;2 characterizes the heat flux distri-
bution between the two solid bodies. Since the solid bodies in this work have the same
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material properties, the coefficient of thermal distribution is k1,2 = 0.5 [20]. The friction
shear stress caused by solid contacts τs reads as follows:

τs(x, y, t) = µs · ps(x, y, t) (14)

where µs is the solid coefficient of friction [6].

2.3.2. Dimensionless Equations

For the dimensionless form of the governing equations, the formulation of Habchi [31]
is used and applied in a straightforward manner. Density ρ and viscosity η are divided by a
reference value (index R) for a constant reference temperature TR and pressure pR given. TR
is used for the initial oil temperature Toil . The pressure used for the dimensionless pressure
is the maximum Hertzian pressure pH,max evaluated in Section 2.2. and the corresponding
Hertzian half width ax.

X = x
ax

, Z =

{ z
ax

in solid domains
z
h in f luid domain

, Y =

{ y
l(t) quasi− static terms

y
lmax

time− dependent terms

H = hRred
a2

x
, U = ux Rred

a2
x

, V =
uyRred

a2
x

, W = uzRred
a2

x
, δ = δRred

a2
x

,

t = tvm
ax

, P = p
pH,max

, T = T
TR

, ρ = ρ
ρR

, η = η
ηR

, τ = τ
pH,max

.

(15)

For static terms, the time-dependent contact length l(t) is used for the dimensionless
formulation in the y-direction. Thus, in the dimensionless model, the contact length is
always between 0 and 1 (including 0 and 1). In order to calculate the time derivative of the
transient terms, the maximum contact length lmax is used for the dimensionless form in an
adapted coordinate system. Thus, all terms are calculated with the maximum numbers of
discretization elements.

In accordance with the dimensionless formulation, the resulting calculation domains
are shown in Figure 4. The size of the individual domains are the same as in Habchi [23].
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Figure 4. Dimensionless calculation domains.

Equation (3) containing the continuum mechanics is defined on Ωδ with σ ·→n = p on
ΩP. The relevant deformation δ (x, y, t) is the entry on the deformation vector

{
ux, uy, uz

}
in the z-direction of the contact area (δ (x, y, t) = uz(x, y, z = 0, t) on ΩP). The Reynolds
equation (Equation (4)) is solved on ΩP while the integration terms along the lubricant
gap height h are performed in ΩT . The boundary conditions are set to be p = 0 over
∂ΩP. Velocities, shear rates and shear stresses (Equations (5)–(8)) are performed on ΩT
as well. The energy equation is defined in the lubricant domain ΩT (Equation (11)) and
the two solid bodies ΩT,1;2 (Equation (12)). The heat flux of Equation (13) is defined on
∂ΩT,1;2|z=0;h = ∂ΩT |z=0;h.

2.4. Mixed Lubrication

As soon as asperities of a surface topography touch, load sharing occurs. Hence, the
normal force between the rolling elements is carried by hydrodynamic pressure and solid
contacts. As the hydrodynamic lubricant film thickness decreases, more asperities come
into contact and deform elasto-plastically. The integral solid contact pressure curve can



Lubricants 2022, 10, 200 8 of 19

characterize the relationship between the integral solid contact pressure over a surface
topography and the deformed gap height. The influence of a surface topography on hydro-
dynamics can be described by flow factors (see Equation (4)), which are also dependent on
the deformed gap height.

For the determination of the solid contact pressure and flow factor curves, the surface
topography was measured using the focus variation method with an Alicona InfiniteFocus
device developed by Bruker Alicona. Figure 5 shows exemplary results. For each gear, two
teeth were measured on both the pinion and wheel at the tooth tip, tooth center and tooth
root flank area. The measurement size is approx. 1 mm × 1 mm. The different possibilities
to combine the measured topographies result in 12 paring configurations to determine the
solid contact pressure and flow factor curves.
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Figure 5. Exemplary surface topography measured in run-in state in the (a) tooth root, (b) tooth
center and (c) tooth tip flank area of the pinion.

2.4.1. Integral Solid Contact Pressure Curve

The model used for the calculation of the solid contact pressure is based on the
multilevel method of Venner et al. [33], extended by a linear elasto-plastic material model
according to Bartel [32]. The plastic flow pressure is set to plim = 4.5 GPa, as used by
Bobach et al. [6,20]. Figure 6 shows the calculated integral solid contact pressure curve
ps(h) averaged from the 12 contact pairing configurations.
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Figure 6. Integral solid contact pressure curve ps(h) for considered surface topography.

2.4.2. Flow Factors

The calculation of flow factors is based on Patir and Cheng [34–36] and its extension
according to Bartel [32]. The flow model is described by a partial differential equation in
the finite element software Comsol Multiphysics [37]. For the pressure flow, the Poiseuille
term and for shear flow, the Couette term are solved on a domain with a size corresponding
to the measured surface area. The boundary conditions refer to a viscosity of η = 0.01 Pas,
a pressure difference of ∆p = 120 Mpa and velocities of v1,2 = ±2 m/s. The curves are the
result of a study of the nominal gap height and mesh size.

The flow factor curves Φp;s
xx;yy(h) in Figure 7 are also averaged over the 12 contact

pairing configurations.
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 Figure 7. (a) Pressure flow factor curves Φp

xx;yy(h) and (b) shear flow factor curves Φs
xx;yy(h) for

considered surface topography.

2.5. Lubricant Equations

The fluid models considered are the same as used by Ziegltrum, Lohner and Stahl [24],
except the non-Newtonian viscosity model. To describe the temperature dependence of
viscosity η(T), the formulation of Vogel [38], Flucher [39] and Tamman and Hesse [40]
is used:

η(T) = Aη · exp
(

Bη

Cη + (T − 273.15 K)

)
(16)

The equation according to Roelands [41] is used to consider the pressure dependency
of viscosity η(T, p):

η(T, p) = η(T) · exp
{
[ln(η(T)) + 9.67] ·

[
−1 +

(
1 + p

pη0

)zη(T)
]}

with zη(T) =
αp(T)·pη0

ln(η(T))+9.67 and αp(T) = Eαp1 · exp
(

Eαp2 · T
) (17)

The non-Newtonian fluid behavior is described by the Eyring equation [42]:

.
γ =

τC
η
· sinh

(
τ

τC

)
(18)

The pressure and temperature dependency of density is modeled according to Bode [43]:

ρ(T, p) =
ρs · (1− αs · T)

1− Dρ0 ·
(

Dρ1+Dρ2·T+Dρ3·T2+p
Dρ1+Dρ2·T+Dρ3·T2

) (19)

Thermal conductivity λ(p) and specific heat capacity cp(T, p) are determined accord-
ing to [44]:

λ(p) = λ0 ·
(

1 + dλ1·p
1+dλ2·p

)
(
cp · ρ

)
(T, p) =

(
cp,0 · ρ0

)(
1 + Ac1·p

1+Ac2·p

)[
1 + Ac3 ·

(
1 + Ac4 · p + Ac5 · p2)(T − T0)

] (20)

The oil used in this calculation is a standard ISO VG 100 mineral oil also used by
Ziegltrum, Lohner and Stahl [24]. All parameters of the lubricant models can be found in
Table 2. A coefficient of solid friction µs = 0.05 is assumed, following Bobach et al. [6].
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Table 2. Lubricant parameters for the ISO VG 100 mineral oil.

Aη in mPas 0.047 Dρ3 in N/
(

mm ·K2
)

0.00035

Bη in ◦C 1006 λ0 in W/(m ·K) 0.1370

Cη in ◦C 95 dλ1 in 1/Gpa 1.72

pη0 in Pa 1.96 · 108 dλ2 in 1/Gpa 0.54

Eαp1 in m2/N 0.181
(
cp,0 · ρ0

)
in J/

(
m3 ·K

)
1.71 · 106

Eαp2 in 1/K −0.0059 Ac1 in 1/Gpa 0.47

τC in Pa 3.8 · 106 Ac2 in 1/Gpa 0.81

ρs in kg/m3 1042 Ac3 in 1/K 9.3 · 10−4

αs in 1/K 0.00053 Ac4 in 1/Gpa 1.4

Dρ0 0.0786 Ac5 in 1/GPa2 −0.51

Dρ1 in N/mm2 315.8 T0 295

Dρ2 in N/(mm ·K) −0.723

2.6. Numerical Procedure

The numerical procedure includes the LTCA, the determination of the integral solid
pressure and flow factor curves as well as the EHL calculation.

In the first step, the LTCA is performed by RIKOR. In this case, 90 contact lines are
used. This results in 90 × 90 grid points in the direction of the tooth width and line of
action. Its results including fN(x, y), Rred(x, y), vt,1;2(x, y) and corr(x, y), as well as the
time steps ti and gear geometry (see Figure 2), are mapped into the EHL coordinate system
as described in Section 2.3.2. In order to be able to use the continuous corrections from the
discrete calculation, a small damping is used to smooth corr(x, y). In parallel, the integral
solid contact pressure and flow factor curves are calculated.

The results are used as input for the EHL model in the Comsol Multiphysics soft-
ware [37]. The model used is a ultiphysics FEM-model based on Habchi’s full-system
approach [31] with fully coupled governing equations. A direct solver in combination with
the implicit backward Euler method is used. The mesh used is a free triangular mesh with
tetrahedral and prismatic elements, including a mesh refinement in the contact area. At var-
ious time steps, local Peclet numbers Pee > 1 are reached. Then convection dominates over
diffusion, leading to numerical features in the standard Galerkin formulation. Therefore,
the Galerkin Least Squares and Isotropic Diffusion are applied as stabilization methods
(Habchi [31]).

A mesh sensitivity analysis is performed for a highly loaded contact line at t = 1.2 ms.
The total number of elements are varied between 38,359 and 148,870 corresponding to a
variation of dofs between 269,634 and 1,017,785. As Figure 8 shows, the minimum and
central lubricant film thickness hm and hc, maximum hydrodynamic pressure p f ,max and
total frictional power loss PL do not change significantly within the varied mesh density.
To limit the calculation time, a mesh with 64,597 elements and 461,443 dofs is used.
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The time steps are controlled by Comsol Multiphysics, but the maximum number of
time steps is limited to 1134.

3. Results and Discussion

First, the tribological quantities such as hydrodynamic, solid and total contact pressure
as well as the lubricant film thickness and contact temperature rise are explained along
selected contact lines. Second, the frictional power and its local characteristics are analyzed,
followed by an analysis of thermal effects.

For each time step of gear mesh, the results of the thermal EHL simulation can be
shown along the contact line. For simplification, a dimensionless time t = t/tc is chosen.
The presentation of results concentrates on three characteristic time steps t1, t2 and t3 at
10 %, 50 % and 90 % of the total contact time tc as shown in Figure 9. The gear faces are at
y = {0; b}, the beginning of tooth mesh is at x = A and the end of tooth mesh is at x = E.
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Figure 9. Considered contact lines of gear mesh t1, t2 and t3.

3.1. Tribological Quantities along the Contact Line

Figure 10 shows the calculated hydrodynamic pressure p f (a), solid contact pressure
ps (b), total pressure p (c), lubricant film thickness h (d) and contact temperature rise ∆T (e)
for the three considered time steps t1, t2 and t3 of the gear mesh. For the hydrodynamic
pressure p

(
X, Y, t

)
, some specific characteristics can be identified. The crowning of the

gear tooth in the face width direction (see Figure 2f) causes a drop in the hydrodynamic
pressure at the gear faces. Therefore, the hydrodynamic pressure slowly reduces at t1 in
the positive Y-direction and at t3 in the negative Y-direction. In general, the contact shape
changes from a more line-shaped contact at t1 to a more point-like contact at t2 to a more
line-shaped contact at t3. There are pressure maxima in the beginning (A) and end of the
gear mesh (E), which is typical for finite line contacts as analyzed by Habchi [23]. The
center section at t2 shows an elliptical pressure distribution typical for point contacts.

The solid contact pressure ps
(
X, Y, t

)
directly results from the lubricant film thickness

h
(
X, Y, t

)
and the solid contact pressure curve ps(h) in Figure 6. A decrease in lubricant

film thickness leads to a significant increase in solid contact pressure. However, the solid
contact pressure is comparatively low at the gear face edges at Y = 1 at t1 and Y = 0
at t3. In the central area of the contact lines, the solid contact pressure is moderate and
plateau-like. The drop of the hydrodynamic pressure at the beginning and end of the
gear mesh leads to a drop in the lubricant film thickness, which again locally increases
the solid contact pressure. The total pressure p

(
X, Y, t

)
represents the combination of the

hydrodynamic pressure p f
(
X, Y, t

)
and the solid contact pressure ps

(
X, Y, t

)
.

The lubricant film thickness h
(
X, Y, t

)
is in accordance with the hydrodynamic pres-

sure. For all time steps, a typical plateau is formed. The contour depends on the hydro-
dynamic pressure. A typical constriction in the X-direction at the end of the contact zone
can be observed. At t2, a characteristic horseshoe-shaped film thickness contour can be
noticed. At the edges of contact lines at Y = {0; 1}, a constriction with minimum lubricant
film thickness is formed. Even at the edges with a continuous hydrodynamic pressure drop
(t1 at Y = 1; t3 at Y = 0), a constriction can be noticed after a moderate increase in the film
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thickness. This is to be expected for finite line contacts with straight roller geometry and
the considered boundary conditions (Section 2.3, Habchi [23]).
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Figure 10. (a) Hydrodynamic pressure p f
(
X, Y, t

)
, (b) solid contact pressure ps

(
X, Y, t

)
, (c) to-

tal pressure p
(
X, Y, t

)
, (d) lubricant film thickness h

(
X, Y, t

)
and (e) contact temperature rise

∆T
(
X, Y, t

)∣∣
z=h/2 along the contact line for three time steps t1, t2 and t3.

The contact temperature rise ∆T
(
X, Y, t

)
is related to the heat sources by lubricant

shearing and compression and solid friction. Characteristics for a thermal EHL contact such
as the rise in temperature with pressure increase, a temperature drop after the pressure
maximum, followed by a temperature tail can be seen. For the time steps t1 and t3,
the contact line does not cross the pitch point C with pure rolling (SRR = 0). Due to
the increasing sliding velocity in the direction of the higher hydrodynamic pressure in Y-
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direction, a strongly asymmetric temperature profile is established with high temperatures
at the edges. At time step t2, the influence of the sliding velocity on the temperature change
becomes clear. At the pitch point C with pure rolling, there is only a minimal increase in
temperature. As the distance to the pitch point increases, the contact temperature strongly
increases, which is consistent with the increase in sliding. In comparison to conventional
gear designs, the overall contact temperature rise for the low-loss gear is very small.
Ziegltrum et al. [24] shows for a more conventional gear design and similar operating
conditions temperature rises of up to 50 K.

3.2. Tribological Quantities across the Area of Gear Contact

Figure 11 gives a fuller picture over the EHL calculation results by plotting tribological
quantities across the area of gear contact. Each quantity is evaluated and plotted along
250 contact lines which lie diagonal in the area of gear contact (see Figure 2). Figure 11a
shows the line load fN(x, y) along the contact lines considering the total contact load. It is
determined by first integrating the total contact pressure p

(
X, Y, t

)
along the x-direction

of the EHL contact for each time step (see Figure 10), before it is mapped into the area
of gear contact fN(x, y). The maximum of the total pressure p

(
X, Y, t

)
, hydrodynamic

pressure p f
(
X, Y, t

)
, solid contact pressure ps

(
X, Y, t

)
, contact temperature rise ∆T

(
X, Y, t

)
and shear stress τ

(
X, Y, t

)
in Figure 11b–e are evaluated along the x-direction of the EHL

contact for every evaluated point in the y-direction and for each time step and mapped onto
the area of gear contact fN(x, y). Thereby, ∆Tmax

(
X, Y, t

)
and τf ,max

(
X, Y, t

)
are evaluated

at z = h/2. Considering the discrete evaluation of the quantities across the area of gear
contact, the plots in Figure 11 show some unevenness.

The line load fN(x, y) in Figure 11a is driven by the total contact load. The geometrical
effect of crowning of the gear teeth (see Figure 2f) in the tooth width direction is clearly visible.
Towards the beginning and end of the gear mesh, there is a decline in the load. Although
the hydrodynamic load drops to zero here, the solid contact pressure (see Figure 11d) leads
to an increase in the line load again, especially at these edges. This can also be seen in
the distribution of the maximum hydrodynamic pmax (x, y) and solid contact pressure
ps,max(x, y) in Figure 11c,d. The hydrodynamic pressure dominates the line load in the
majority of the area of gear contact. There is a strong increase in the solid contact pressure
only at the beginning and end of the gear mesh. As expected, the shear stress of the
lubricant τf ,max(x, y) is related to the hydrodynamic pressure. The pitch point C is visible,
where the sliding velocity and shear stress tend to zero. The influence of the pitch point
can also be seen in the maximum contact temperature rise ∆Tmax(x, y). With increasing the
sliding velocity with distance from the pitch point C, the maximum contact temperature
rises strongly.

3.3. Frictional Power Density

In the following, the power dissipation is investigated in detail. Besides frictional
power loss by shearing or compression of oil, the solid contacts results in solid friction and
thus frictional power loss. In order to understand the influences across the area of gear
contact, the local friction power density dPF/dA is calculated:

dPL, f
dA = τf ,zx · |v1x − v2x|
dPL,s
dA = τs · |v1x − v2x|

 at z = h/2 (21)

As Equation (21) shows, the power loss density depends linearly on the velocity
difference |v1x − v2x|. It is zero at the pitch point C, which is also represented in the
calculated power loss densities dPF, f /dA, dPF,s/dA and dPF/dA at time step t2 shown in
Figure 12a–c. At time step t1 and t3, the pitch point C is not on the contact line. When
comparing the frictional power densities, it can be seen that dPF, f /dA dominates in most
of the contact areas and represents the largest proportion. Towards the edge the shear
stress decreases, which leads to a drop in the fluid friction. At the edges at Y = 1 and
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Y = 0, there is a rapid increase in the solid frictional power density dPF,s/dA, in accordance
with the solid contact pressure in Figure 10, but with the linear influence of the sliding
velocity. The proportion of dPF,s/dA in the central mixed friction region of the contact
line is subordinated. By comparing the total frictional power density dPF/dA with the
temperature distribution in Figure 10, clear parallels can be seen and the individual heat
sources can be identified.
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Figure 11. Results from the thermal EHL simulation along the contact lines mapped onto the
area of gear contact: (a) Line load fN(x, y), (b) maximum total pressure pmax (x, y), (c) maximum
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Figure 12. Frictional power density due to (a) fluid dPL, f /dA and (b) solid dPL,s/dA friction and
(c) total frictional power density dPL/dA along the contact line for three time steps t1, t2 and t3.

3.4. Analysis of Thermal Effects

The presented calculation results relate to the EHL simulation considering non-
Newtonian, thermal effects and mixed lubrication. Hence, the influence of thermal effects
on the power loss densities are included. In order to quantify the influence of these thermal
effects, a comparison of the power loss calculation in Section 3.2. with an isothermal EHL
simulation is made, using an identical model apart from the thermal part.

Figure 13 shows the calculated frictional power densities dPL, f /dA, dPF,s/dA and
dPF/dA at time steps t1, t2 and t3 for the isothermal EHL simulation. In comparison
with the thermal EHL simulation results in Figure 12, dPL,s/dA remains nearly unchanged,
whereas the fluid frictional power density dPL, f /dA increases. This becomes clearer in
Figure 14, which shows the maximum fluid power density dPL, f /dA (a), the fluid friction
power loss PL, f (b), the solid friction power loss PL,s (c) and the total fluid friction power
loss PL (d) for the isothermal and thermal EHL calculation along the dimensionless contact
time. Thereby, the power loss densities dPL,i/dA are integrated over the contact area.

The maximum fluid frictional power density dPL, f /dA from the thermal EHL calcula-
tion is maximal 34.7 % lower compared the isothermal EHL calculation, whereas the fluid
frictional power PL, f is maximal 17.7 % lower. The solid frictional power PL,s is maximal
7.7 % higher. This results in a total frictional power loss PL, which is only maximal 9.4 %
lower for the thermal EHL compared to the isothermal EHL calculation.
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Figure 13. Isothermal EHL simulation: Frictional power density due to (a) fluid dPL, f /dA and
(b) solid dPL,s/dA friction and (c) total frictional power density dPL/dA along the contact line for
three time steps t1, t2 and t3.

The reduction in the fluid frictional power density dPL, f /dA is due to thermal effects.
The heat sources in the thermal EHL contact leads to an increase in temperature, which in
return leads to a decrease in the effective contact viscosity and thus to a reduction in fluid
friction. This effect is well known and pronounced for DLC coatings ([22,45]). At positions
across the area of gear contact with a high load and sliding, the reduction in dPL, f /dA is
highest. As dPL, f /dA is a very local value, the reduction in the fluid frictional power PL, f
along the gear mesh is smaller. The solid frictional power PL,s is hardly influenced and even
increases slightly, as the film thickness is governed by the conditions at the contact inlet
of EHL contacts. There, the influence of the contact temperature increase is comparably
small. Accordingly, the reduction in the total frictional power PL is mainly governed by the
reduction in PL, f .

The small differences between the thermal and isothermal EHL calculation at the
considered operating condition show that the effect of thermal reduction in gear friction
is small for low-loss gears. This is consistent with the experimental results of Hinter-
stoißer et al. [7], who shows that the thermal reduction in the load-dependent gear power
loss is less pronounced for low-loss compared to conventional gear geometries.
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Figure 14. Maximum fluid frictional power density (a) and the fluid (b), solid (c) and total frictional
power loss (d) along the dimensionless contact time t in comparison between isothermal and thermal
EHL calculation.

4. Conclusions

This study analyzed the tribological behavior of a low-loss gear geometry using a
transient EHL model considering thermal effects and mixed lubrication. Special focus was
placed on local frictional losses to analyze the role of the thermal effects of the gear mesh.
The main conclusions are:

1. The EHL contact of low-loss gears is determined by a short path of contact with
resulting small sliding portions;

2. The edge geometry has a strong influence on lubricant film thickness and frictional
power losses;

3. The frictional power density obtained from the numerical calculation can be used to
characterize the specific power input to fluid and solids;

4. The thermal reduction in fluid friction is observed at gear mesh positions with a high
load and sliding;

5. Due to small sliding portions across the gear mesh, the general effect of the thermal
friction reduction is small.

Low-loss gears are an interesting design approach for increasing gearbox efficiency
and thermal load limits, e.g., for dry or minimum quantity lubrication. The tribological
comparison of low-loss gears with conventional gear geometries and the validation of
calculation results with power loss measurements can be the focus of further investigations.
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