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Abstract: During the TDT of 41Cr4 steel specimens, a uniformly reinforced white layer with a
nano-crystalline structure is formed in the surface layers. The wear resistance of sliding friction
without the lubrication of a pair of steel 41Cr4—grey cast iron EN-GJL-200 (EN) under the face-to-face
(“ring-ring”) scheme has been studied. It is revealed that when the sliding velocity changes from
0.25 m/s to 4 m/s and the unit load changes from 0.2 MPa to 1.0 MPa, a pair with a reinforced surface
layer on 41Cr4 steel specimens and unreinforced specimens of EN-GJL-200 (EN) grey cast iron has a
higher wear resistance than an unreinforced pair. The wear resistance increases for both reinforced
and not reinforced specimens operating in a friction pair.

Keywords: white layer; wear; nanocrystalline structure; thermo-deformation treatment

1. Introduction

The reliability of products (technological equipment) depends on the quality of the
individual machine parts that comprise them and is determined by their operating char-
acteristics. The operating characteristics of machine parts are determined by the physico-
chemical and mechanical properties of the surface layer, as well as the quality parameters
of the working surfaces of the parts, which are formed during the finishing operations of
the manufactured parts [1]. The quality parameters of the machined surface and surface
layer have a major impact on the operating characteristics of machine parts [2], namely
resistance to fatigue fracture [3], wear [4–6], corrosion [7], etc. All fracture processes that
occur during product use start at the surface [8].

The surface layer wears in the process of the sliding friction of the contacting surfaces
of machine parts. The actual contact area, local stress, contact stiffness, oil film formation
conditions, and other parameters have a significant effect on the contact interaction of
machine part surfaces [9,10]. The wear resistance and contact strength of surface layers
depend mainly on the quality parameters of the layer, such as its thickness, microhardness,
magnitude and sign of residual stresses, structure, texture, grain size, etc. [4,6,11].

New methods of the surface treatment of the working surfaces of machine parts can
improve the operating characteristics and performance parameters of components and
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products in general [9]. Such methods allow the formation of the specified surface stere-
ometry parameters (waviness, roughness, linear and surface bearing capacity profile) and
the corresponding characteristics (hardness, residual stress, structure, phase and chemical
composition, texture, etc.) of the working surfaces of machine parts. They mainly affect
the processes of friction and wear, fatigue, corrosion, and fatigue destruction [1,3,7,9]. It
is sufficient to strengthen only the surface layers of the contacting surfaces of machine
parts to improve the operating characteristics of machine parts [1,12]. The formation of
reinforced surface layers on the working surfaces of machine parts and ensuring the appro-
priate accuracy and quality of machined surfaces are problematic tasks. For this purpose,
various cutting methods are used, which provide high parameters of accuracy and quality
of treated surfaces [13], the formation of a regular profile on the contacting surfaces [14],
grinding with various types of abrasive wheels [15], surface plastic deformation [16], the
application of various coatings [17–19], surfacing with alloy metal [20,21], electrophysical
and electrochemical processing methods [22], etc. [23].

In order to strengthen the surface layers of the working surfaces of machine parts,
which in most cases work under frictional conditions, processing methods using concen-
trated energy sources are used [24,25]. These include laser [26], plasma, ion-beam [27],
friction [28,29], and other treatments [30]. In the process of these treatments, concentrated
sources of thermal energy act on local volumes of metal in the surface layer of the treated
surfaces. The metal is heated at a high rate to temperatures above the phase transformation
point. After the removal of the heat source, the heated local volume of metal cools at
a high rate. By heating and cooling local volumes of metal at high rates, strengthened
(hardened) layers (white layers) with a nanocrystalline structure (NCS) are formed in
the surface layers [31,32]. The surface layers with an NCS have a fine-grained structure,
altered phase and chemical compositions [33], as well as specific physical, mechanical,
electrochemical, and other properties that differ significantly from the base metal [30,34].
The resulting strengthened layers significantly improve the performance of the working
surfaces of machine parts [35]. Methods involving intense plastic deformation are used to
grind grains, increase hardness, and modify properties [36,37]. The process of using these
methods involves intensive grain grinding and metal formation with an NCS [38,39].

A metal with an NCS significantly improves its operating characteristics [40]. Thermo-
deformation treatment (TDT) is a method of reinforcing the working surfaces of machine
parts. This treatment combines two methods: the action of a highly concentrated energy
source and the intense plastic deformation of the metal of the surface layer of the treated
surfaces [41,42]. A highly concentrated energy source arises in the process of the high-speed
friction (60–90 m/s) of the tool on the treated surface in the contact zone [43,44]. The local
contact zone is heated at a high rate (5 × 105–4 × 106 K/s) to temperatures above the
phase transition point of the metal being processed [45]. In the contact zone, the shear
deformation of the surface layer metal occurs. The tool is made with transverse grooves
on its periphery (with a discontinuous working surface), which interrupts the action of
thermal energy and increases the intensity of shear deformation [46]. Due to the movement
of the contact zone along the treated surface, the local zone of the metal surface layer is
cooled at a high rate (2 × 105–1 × 106 K/s) [45]. Strengthened surface layers with an NCS
(white layers) are formed on the treated surfaces of machine parts [47,48].

The aim of this work was to study the effect of surface layer reinforcement with an
NCS on the wear resistance of a friction pair of steel 41Cr4—grey cast iron EN-GJL-200
(EN) during friction without lubrication.

2. Materials and Methods

The flat surfaces of the specimens were strengthened by using TDT on a grinding
machine KNUTH HFS 3063 VS (Wasbek/Neumünster, Germany) (Figure 1). The DC electric
motor with driver were installed on the spindle rotation drive to achieve the required speed
on the peripheral working surface of the tool (60–90 m/s). The research was carried out at
a speed of 70 m/s.
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TTG) on its working surface was used for the TDT (Figure 1). The transverse grooves (24 
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was pressed against the treated surface with a force of 1000 N. Under the action of the 
pressure force, intense friction occurs in the zone of contact, which is a source of highly 
concentrated thermal energy and a generator of the intense plastic deformation of the sur-
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stopped. When the next smooth surface comes into contact, the contact zone is sharply 
loaded, and its longitudinal deformation is intensified. A strengthened layer is formed in 
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The process medium is supplied to the processing zone during the TDT. Mineral oil 
with active additives containing polymers was used as a technological medium. In the 
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Figure 1. Scheme (a): 1—tool; 2—sample; 3—nozzle (to direct liquid medium to the treatment zone);
4—table of grinding machine; Vtool—linear speed of the tool; (b) equipment for TDT of flat surfaces.

The tool was made of X10CrNiTi18-10 (EU) stainless steel in the form of a disk. The
diameter of the tool was 360 mm (the same as the diameter of the grinding wheel it was
installed in place of), and the width of the working surface was 6–8 mm. The disk was
mounted on a faceplate used on this machine. The faceplate with the attached disk was
statically balanced before being mounted on the machine.

The tool with a smooth working surface (tool-SWS) and transverse grooves (tool-TTG)
on its working surface was used for the TDT (Figure 1). The transverse grooves (24 pcs.)
alternated evenly with the smooth surface. The groove width was 12 mm. The tool was
pressed against the treated surface with a force of 1000 N. Under the action of the pressure
force, intense friction occurs in the zone of contact, which is a source of highly concentrated
thermal energy and a generator of the intense plastic deformation of the surface metal layer
of the treated surfaces. When the groove passes over the zone of contact between the tool
and the workpiece, the workpiece is unloaded and the heat flow is stopped. When the next
smooth surface comes into contact, the contact zone is sharply loaded, and its longitudinal
deformation is intensified. A strengthened layer is formed in the surface metal layer of the
treated surfaces.

The process medium is supplied to the processing zone during the TDT. Mineral oil
with active additives containing polymers was used as a technological medium. In the
process of TDT, under the influence of high temperatures and pressures in the tool-part
contact zone, the process medium decomposes into its constituent chemical elements and
diffuses into the metal surface layer. The chemical composition of the metal of the surface
layer of the machined surfaces changes [49].

The wear resistance of the studied pair of steel 41Cr4—grey cast iron EN-GJL-200 (EN)
was determined during friction without lubrication on a friction machine of the UMT-1,
according to the scheme “ring-ring” (Figure 2). The tested specimens are shown in Figure 3.
The sliding velocity varied from 0.2 m/s to 4 m/s. The load on the contacting surfaces of the
specimens was adjusted in the range from 0.1 MPa to 1.5 MPa. The counter-specimen was
mounted in a differential sensor of a force meter, the signal from which recorded the friction
moment of a given pair. Three thermocouples with a diameter of 0.2 mm were mounted on
it. The signals from the thermocouples were recorded using an automatic three-channel
potentiometer. The integral temperature was recorded at a depth of 0.3–0.5 mm below the
friction surface.
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Figure 3. Sketch of specimen and counter-specimen for the study of sliding friction wear according
to the “ring-ring” scheme.

The contacting face surfaces of the friction pair specimens were run-in before the tests.
The run-in was performed until the friction torque stabilized and the face surfaces of each
specimen were fitted. The contact area was at least 90% of the area of each sample.

The moving specimens of the friction pairs under study were made of steel 41Cr4
(quench hardening (QH) and low-temperature tempered (LTT), HRC 48–51), and the
counter-specimens (immovable) were made of grey cast iron EN-GJL-200 (EN). The working
face surfaces of the movable specimens were reinforced by TDT with a tool-SWS and a
tool-TG. The counter-specimens were not reinforced, only ground. For comparison, a
friction pair was used in which the moving specimens were not strengthened.

The chemical composition of the steel 41Cr4 is as follows: mass. %: 0.40 C; 0.78 Mn;
0.26 Si; 1.12 Cr; 0.01 S; 0.01 P; and Fe: balance. The chemical composition of the cast iron
EN-GJL-200 is as follows: mass. %: 3.4 C; 0.85 Mn; 1.9 Si; 0.15 S; 0.2 P; and Fe: balance.

The roughness of the working surfaces of the specimens after TDT was Ra = 0.35–0.50 µm
with a tool-SWS, Ra = 0.25–0.40 µm with a tool-TG, and Ra = 0.50–0.63 µm after grinding.
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The amount of wear of each specimen was determined by the loss of their mass after
each stage of friction, which was determined by weighing on the lab analytical balance
(accuracy ± 0.2 mg). The wear intensity of the friction pair specimens was determined by
the amount of their wear.

The value of the average wear intensity J at each stage of the experiments was deter-
mined as the ratio of the value of linear wear ∆h to the friction path L, i.e.,

J = ∆h/L, (1)

The amount of linear wear ∆h was determined by the formula:

∆h = ∆G/(ρ × F), (2)

where ∆G is the mass loss of the specimen at this stage of testing, mg; ρ is the density of
the material, kg/m3; and F is the surface area friction of the specimen, mm2.

The temperature in the contact zone was determined using a thermocouple, which
was installed in a hole near the contact surface of the counter-specimen (cast iron speci-
mens, immoveable).

3. Results

Metallographic studies have shown that during TDT using a tool-SWS of the flat
face surfaces of specimens made of steel 41Cr4 (QH and LTT), the thickness of the rein-
forced layer was 150–160 µm, and the microhardness was 8.1 GPa (Figures 4 and 5). The
microhardness of the base metal was 5.1 GPa. When using a tool-TG during TDT, the
thickness of the reinforced layer increased to 260–280 µm, and its hardness increased to
9.7 GPa (three measurements were performed and the mean value, measurement errors,
and plotting were determined in OriginPro).

In the process of strengthening by the TDT using a tool-TG, the metal of the surface
layer of the workpiece in the tool-part contact zone is deformed with greater intensity.
This leads to an increase in the thickness and microhardness of the reinforced layer and a
decrease in grain size. The grain size is 9–11 nm near the treated surface [48]. The structure
of the reinforced layers is nanocrystalline. The grain size increases with the depth of the
strengthened layer.
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During friction without lubrication, the properties of the materials directly involved in
the process and those related to wear resistance are most evident. The contacting surfaces
of the friction parts act on each other, and the protrusions (peaks) of both surfaces come
into direct contact. Energy is localized in the contact zone, which affects the chemical and
tribochemical reactions that occur on the contacting surfaces. At the same time, secondary
structures are formed on them, which are different in chemical composition and structure
from the contacting metals of the friction pair parts. They consist mainly of iron oxides and
in most cases have a favourable effect on wear processes. High-quality, solid secondary
structures generally prevent the contacting surfaces of the friction pair from adhering to
each other. In cases where the rate of the formation of secondary structures is higher than
the rate of their destruction, the value of the friction coefficient is reduced, and the wear
rate of the friction pair is reduced too.

Experiments have shown that when a steel 41Cr4 specimen is reinforced (QH and
LTT) using both tools, the wear resistance without the lubrication of the steel 41Cr4—grey
cast iron EN-GJL-200 (EN) pair increases significantly.

The maximum effect of increasing the wear resistance of the friction pair after TDT
compared to not reinforced specimens is at sliding velocities of 0.8–1.0 m/s, and is equal
to 3.2–4.3 times (Figure 6). As the sliding velocity increases to 0.8–1.0 m/s, the formation
of the type of oxides that are an integral part of the secondary structures’ changes and
the thickness of the oxide film decreases. The oxide film has a small thickness and is
quickly destroyed. The wear rate of the film exceeds the rate of its formation, and an
intensive destruction of the unprotected base metal occurs. The protrusions are cut off and
solid particles of wear products are formed, which enter the friction zone as an abrasive,
increasing the wear of the friction pair. The rate of the oxide film formation increases with
the subsequent increase in the sliding velocity.

Only the moving specimen was strengthened. With an increase in sliding velocity
(more than 1 m/s), the wear rate decreases and has a wave-like character.

The nature of the wear curves of the specimens with a white layer is the same as that
of the not reinforced pair, but the wear intensity is lower. As already noted, the maximum
effect is observed in the range of sliding velocities in which abrasive wear processes take
place. The white layer has a higher hardness, toughness, and strength, and is therefore less
susceptible to fracture.
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EN-GJL-200 (EN) after TDT (P = 1 MPa): 1—not reinforced specimens; 2—TDT, using the tool-SWS;
3—TDT, using the tool-TG.

Significant amounts of oxides (up to 30%) were detected in the white layer with
a thickness of less than 1 µm by Mössbauer spectroscopy. The reinforced surface has
favourable conditions for the formation of high-quality secondary structures in the contact
zone of the friction pair under different friction conditions, which significantly affect the
wear process. Local X-ray diffraction studies of the white layer showed the presence of
sulphur, nitrogen, chlorine, sodium, and other elements near the surface.

The quality of the reinforced white layer significantly affects the friction and wear
processes. Thus, during friction, a pair in which the specimen is reinforced by a tool-TG
has a lower wear rate than the same pair where the specimen is reinforced by a tool -SWS.
The wear rate does not change significantly with an increase in sliding velocity.

The wear rate of the not reinforced grey cast iron specimens working in conjunction
with the reinforced specimens also decreased. The effect of increasing the wear resistance
is reduced in the case of the TDT of both parts of the friction pair. The TDT increases the



Lubricants 2023, 11, 418 8 of 13

wear resistance of the friction pair as a whole. The white layer produced by TDT with a
tool-TG increases the wear resistance compared to the white layer produced by a tool-SWS.

One of the major parameters in the wear process is the temperature in the friction zone.
An increase in the temperature in the friction zone can lead to local softening, metal melting,
and then adhesion. In practice, there are cases when, under severe friction conditions, the
welding (adhesion) of one part to another occurs after the load is removed. Such a case can
be accompanied by jamming and an accident.

When friction occurs without the lubrication of a steel 41Cr4—grey cast iron EN-GJL-
200 (EN) pair, the temperature rises sharply at the beginning of the friction process, reaches
a maximum after 15–20 min, and then stabilizes (Figure 7). The maximum value of the
steady-state temperature in the friction zone was recorded on the ground specimens, and
the minimum value was recorded after TDT with a tool-TG. The temperature in the contact
zone increases with an increase in the unit load and sliding velocity (Figure 8).
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The coefficient of friction is also significantly affected by surface reinforcement. In
the initial period of pair friction, the value of the friction coefficient increases sharply and
reaches its maximum value, then the friction process stabilizes, and the friction coefficient
decreases slightly (Figure 9).
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Figure 9. The kinetics of friction coefficient in the contact zone due to friction without lubrication of
pair “Steel 41Cr4 (QH and LTT)—Grey Cast Iron EN-GJL-200 (EN)” after TDT (P = 1 MPa): 1—not
reinforced; 2—TDT, using the tool-SWS; 3—TDT, using the tool-TG.

During this time, secondary structures are formed on the surfaces of the friction pair.
The structural adaptability of this friction pair occurs, which leads to the establishment of
the value of the friction coefficient. The coefficient of friction in the initial period increases
since the contacting surfaces of the pair do not adjoin the entire area, and at certain points
and contact spots, a high unit load occurs, and, accordingly, the temperature increases.

The friction surfaces are smoothed and high-quality secondary structures are formed
if the force required to shift the individual points of the contacting parts is less than the
intermolecular adhesion force. The metal is torn from the surface, and accidental wear is
possible if the forces of interatomic adhesion are lower.

The decrease in the friction coefficient with an increase in the unit load can be explained
by the more intense oxidation processes. Increasing pressure increases the temperature in
the contact zone, which contributes to the formation of high-quality secondary structures,
which in turn reduces the role of adhesion. The kinetics of the friction coefficient of the
steel-iron pair can be explained by the different physical and mechanical properties of the
materials, and especially by the presence of graphite in the cast iron, which is released into
the friction zone (Figure 10).

At low sliding velocities, the friction coefficient has maximum values. With an increase
in sliding velocity, the friction coefficient first decreases and then increases again, reaches a
peak, and then decreases monotonically (Figure 11).

If we compare the dependence of the wear intensity and friction coefficient, the highest
value of the coefficient corresponds to the sliding velocity at which the shape of iron oxide
changes in secondary structures.

Oxidative wear can be divided into several stages: the adsorption and diffusion
of oxygen on the friction surface, and the formation of secondary structures and their
destruction. The adsorption and diffusion of oxygen on the surface and in the surface
layers of the friction pair are the main factors that affect the properties of secondary
structures. As a result of repeated loading and the presence of internal stresses, microcracks
appear and develop in secondary structures, the bonds weaken, and the films delaminate
at the interface between the secondary structures and the base metal. The time required
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for the destruction of the oxide film depends on the strength of its adhesion to the base
metal and the contact stresses in the contact zone. The higher the adhesion, the lower the
ratio of the specific volumes of the oxide and the base metal: for FeO, this ratio is 1.72; for
Fe2O3—2.15; and for Fe3O4—2.1. At low contact loads and low sliding velocities, secondary
structures mainly consist of Fe2O3 oxide, and under more severe friction conditions—of
Fe3O4 [50,51].
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without lubrication of pair “Steel 41Cr4 (QH and LTT)—Grey Cast Iron EN-GJL-200 (EN)” after TDT
(P = 1 MPa): 1—not strengthened; 2—TDT, using the tool-SWS; 3—TDT, using the tool-TG.

The sliding velocity significantly affects the thermal operation of the contact and
the type of oxide film. At low sliding velocities, only the Fe2O3 film wears out, since its
thickness is higher than the critical one, i.e., the rate of film formation is higher than the rate
of its destruction. With an increase in sliding velocity, the Fe2O3 film and the base metal
wear, with the latter wearing much faster than the film. As the sliding velocity increases,
the temperature at the surface of the contacting bodies reaches values at which Fe3O4 oxide
appears and wear begins, partly affecting the base metal. With a further increase in sliding
velocity, only the wear of the Fe3O4 film is observed.
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The kinetics of mechanical and chemical wear depend heavily on processes that take
place in very thin layers under the influence of high local temperatures, pressures, and
strains. These high-speed processes lead to changes in the chemical composition of surface
layers. One of the mechanisms for accumulating energy supplied to a metal during its
mechanical deformation is its accumulation in the form of dislocation energy. This energy,
in our opinion, mainly ensures the occurrence of tribochemical reactions in the contact zone
during friction pair wear. Much of the mechanical work consumed in the friction process is
converted into heat, which is constantly removed from the friction zone by heat conduction,
convection, or radiation. The dislocation energy is concentrated in the thin surface layer
and is an important source for these chemical reactions.

The reinforced nanocrystalline white layer has an increased density of dislocations
(more than 10 times) and an increased amount of residual austenite compared to the main
structure [48,52]. The dispersion of martensite, residual austenite, and carbides in the white
layer is much higher than in steel after quench-hardening and low-temperature tempering.
The residual austenite increases the viscosity of the surface layer while increasing its
hardness due to the high dispersion of martensite. In this case, the resistance to plastic
deformation also increases. The increased number of dislocations activates the surface,
increases the rate of diffusion and chemical reactions, and accelerates the formation of oxide
films. At the same time, the dislocations in the white layer are blocked, their movement
is impaired, and crack initiation is inhibited, which means that the formation of wear
products is reduced.

The main field of application is sliding bearings, where the shaft is made of steel, and
the insert is made of cast iron.

4. Conclusions

In the TDT process, the surface layers of the specimens made of 41Cr4 steel (QH
and LTT) are subjected to the formation of reinforced layers with an NCS. The thickness
of the reinforced layer was 150–160 µm and the microhardness was 8.1 GPa when the
tool-SWS was used. The microhardness of the base metal was 5.1 GPa. When using a
tool-TG during TDT, the thickness of the reinforced layer increased to 260–280 µm, and the
hardness increased to 9.7 GPa. The structure of the reinforced layer is nanocrystalline.

After the TDT of the contact surfaces of specimens made of steel 41Cr4 with a tool-
TG, the wear resistance of the friction pair steel 41Cr4—grey cast iron EN-GJL-200 (EN)
increased by 2.2–2.3 times compared to the not reinforced pair at a sliding velocity of
0.8–1.0 m/s.

With an increase in sliding velocity from 0.25 m/s to 4 m/s, the temperature in the
friction zone increases monotonically. The lowest temperature occurs during the sliding of
the friction pair with the specimen with a reinforced layer by the tool-TG and is ~60 ◦C at a
velocity of 0.25 m/s and ~220 ◦C at 4 m/s. During the sliding of a not reinforced friction
pair, the temperature is ~100 ◦C and ~300 ◦C, respectively.

The lowest value of the friction coefficient was obtained when the friction pair slid
against the reinforced specimen with the tool-TG. The nature of the change in the friction
coefficient is similar to the change in the wear intensity of the friction pair, and is ~0.5 at a
velocity of 0.25 m/s and ~0.3 at 4 m/s.

The study of steel-iron friction pairs under friction without lubrication has shown that
white layers reinforced with NCS significantly increase the resistance to wear.
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